首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
细胞内离子在气孔运动中的作用   总被引:1,自引:0,他引:1  
高巍  尚忠林 《植物学报》2010,45(5):632-639
气孔运动与植物水分代谢密切相关。保卫细胞中的无机离子作为第二信使(Ca2+)或者渗透调节物质(K+、Cl)在响应 外界理化因子的刺激、调节保卫细胞膨压过程中发挥重要作用。保卫细胞质膜和液泡膜上的离子通道作为各种刺激因素作 用的靶位点, 是保卫细胞离子转运的关键组分, 在气孔运动调控过程中扮演关键角色。该文对近年来保卫细胞离子的作用 和离子通道研究的进展进行了综述。  相似文献   

2.
Water loss from plants is determined by the aperture of stomatal pores in the leaf epidermis, set by the level of vacuolar accumulation of potassium salt, and hence volume and turgor, of a pair of guard cells. Regulation of ion fluxes across the tonoplast, the key to regulation of stomatal aperture, can only be studied by tracer flux measurements. There are two transport systems in the tonoplast. The first is a Ca2+-activated channel, inhibited by phenylarsine oxide (PAO), responsible for the release of vacuolar K+(Rb+) in response to the “drought” hormone, abscisic acid (ABA). This channel is sensitive to pressure, down-regulated at low turgor and up-regulated at high turgor, providing a system for turgor regulation. ABA induces a transient stimulation of vacuolar ion efflux, during which the flux tracks the ion content (volume, turgor), suggesting ABA reduces the set-point of a control system. The second system, which is PAO-insensitive, is responsible for an ion flux from vacuole to cytoplasm associated with inward water flow following a hypo-osmotic transfer. It is suggested that this involves an aquaporin as sensor, and perhaps also as responder; deformation of the aquaporin may render it ion-permeable, or, alternatively, the deformed aquaporin may signal to an associated ion channel, activating it. Treatment with inhibitors of aquaporins, HgCl2 or silver sulfadiazine, produces a large transient increase in ion release from the vacuole, also PAO-insensitive. It is suggested that this involves the same aquaporin, either rendered directly ion-permeable, or signalling to activate an associated ion channel.  相似文献   

3.
Uptake experiments and efflux compartmental analyses of abscisic acid (ABA) with acid treated epidermal peels of Valerianella locusta were performed to elucidate the mechanisms of transport of ABA across the plasmalemma and tonoplast of guard cells. ABA uptake across the plasmalemma is linearly correlated with external ABA concentration in the incubation medium. Under alkaline conditions ABA-uptake was not significantly above background, indicating that ABA uptake occurs mainly by diffusion of undissociated ABAH as the most permeable species, which is trapped afterwards in the alkaline cytosol as impermeable ABA?. Efflux analysis of ABA revealed a saturable component of ABA transfer across the tonoplast. A Woolf-Augustinsson-Hofstee analysis suggested the existence of two transport systems for ABA at the tonoplast. The high affinity transport system had a KM of 0.21 mol m?3 and a Vmax 85.8 amol ABA cell?1 h?1. Using the data of the uptake and efflux experiments we calculated the permeability coefficients of ABA for the plasmalemma and the tonoplast of guard cells, which are 2.46 10?7 m s–1 and 1.26 10?8m s?1, respectively. The distribution of the pH-probe (14C)-DMO between medium, cytosol and vacuole was investigated and used to calculate cytosolic and vacuolar pH. The vacuolar pH is too low to explain the high vacuolar ABA concentration by trapping of ABA?, whereas the cytosol is sufficiently alkaline to act as an efficient anion trap. Therefore we conclude that ABA transport across the guard cell tonoplast is catalyzed by a saturable uptake component.  相似文献   

4.
A theoretical model of calcium signaling is presented that simulates oscillations of cytoplasmic calcium concentration ([Ca2+]cyt) in stomatal guard cells under the action of abscisic acid. The model is based on the kinetics of inositol 1,4,5-trisphosphate-sensitive calcium channels of endoplasmic reticulum and cyclic ADP-ribose-sensitive calcium channels of the tonoplast. The operation of two energy-dependent pumps—the Ca2+-ATPase of the endoplasmic reticulum and the Ca2+/H+ antiporter of the tonoplast—is also included in the model. It is shown that the removal of excessive Ca2+ from the cytoplasm by the tonoplast Ca2+/H+ antiporter is the main factor accounting for generation of [Ca2+]cyt oscillations at a wide range of ABA concentrations (0.01–1 M). The long period of [Ca2+]cyt oscillations in plant cells is explained by a slow release from inhibition of inositol 1,4,5-trisphosphate-gated calcium channels.  相似文献   

5.
In higher plants anion channels have recently been suggested to play key roles in controlling cellular functions, including turgor- and osmoregulation, stomatal movements, anion transport, signal transduction and possibly also signal propagation. In guard cells and roots, physiological functions of anion channels have been proposed which will be discussed here. In initial investigations it was proposed that anion channels in the plasma membrane of guard cells provide a prominent control mechanism for stomatal closing. The proposed model suggests that anion channel activation and the resulting anion efflux from guard cells cause membrane depolarization, thereby driving K+ efflux through outward-rectifying K+ channels required for stomatal closing. This article provides a brief review of new and recent insights into the molecular properties and cell biological functions of anion channels in guard cells. Furthermore, recently implicated putative functions of anion channels in roots during salt stress, xylem loading and Al3+ tolerance are addressed.  相似文献   

6.
The cellular mechanisms that regulate potassium (K+) channels in guard cells have been the subject of recent research, as K+ channel modulation has been suggested to contribute to stomatal movements. Patch clamp studies have been pursued on guard cell protoplasts of Vicia faba to analyze the effects of physiological cytosolic free Ca2+ concentrations, Ca2+ buffers and GTP-binding protein modulators on inward-rectifying K+ channels. Ca2+ inhibition of inward-rectifying K+ currents depended strongly on the concentration and effectiveness of the Ca2+ buffer used, indicating a large Ca2+ buffering capacity and pH increases in guard calls. When the cytosolic Ca2+ concentration was buffered to micromolar levels using BAPTA, inward-rectifying K+ channels were strongly inhibited. However, when EGTA was used as the Ca2+ buffer, much less inhibition was observed, even when pipette solutions contained 1 µM free Ca2+. Under the imposed conditions, GTPγS did not significantly inhibit inward-rectifying K+ channel currents when cytosolic Ca2+ was buffered to low levels or when using EGTA as the Ca2+ buffer. Furthermore, GDPβS reduced inward K+ currents at low cytosolic Ca2+, indicating a novel mode of inward K+ channel regulation by G-protein modulators, which is opposite in effect to that from previous reports. On the other hand, when Ca2+ was effectively elevated in the cytosol to 1 µM using BAPTA, GTPγS produced an additional inhibition of the inward-rectifying K+ channel currents in a population of cells, indicating possible Ca2+-dependent action of GTP-binding protein modulators in K+ channel inhibition. Assays of stomatal opening show that 90% inhibition of inward K+ currents does not prohibit, but slows, stomatal opening and reduces stomatal apertures by only 34% after 2 h light exposure. These data suggest that limited K+ channel down-regulation alone may not be rate-limiting, and it is proposed that the concerted action of proton-pump inhibition and additional anion channel activation is likely required for inhibition of stomatal opening. Furthermore, G-protein modulators regulate inward K+ channels in a more complex and limited, possibly Ca2+-dependent, manner than previously proposed.  相似文献   

7.
Abstract Using the method of compartmental analysis, the ion fluxes and compartment concentrations of Ca2+, K+ and Cl- have been compared in the untreated vegetative frond and the abscisic acid (ABA) induced turion of Spirodela polyrrhiza. The ABA-induced turion is characterized by reduced Ca2+ exchange across the tonoplast and low vacuolar Ca2+ concentration relative to the vegetative frond. In addition the turion exhibits a higher plasmalemma flux with a correspondingly high Ca2+ concentration in the cytoplasm. The concentration of K+ and Cl- is much lower in the cytoplasm of the ABA-induced turion than in the vegetative frond with the influx/efflux ratio at both the plasmalemma and the tonoplast being less than 1, a finding exhibited also in dormant storage tissue. Treatment of vegetative fronds with ABA for 18 h resulted in a reduced K+ plasmalemma efflux relative to untreated vegetative fronds and a concomitant increase in the cytoplasmic concentration. There was no rapid effect of ABA on Ca2+, K+ or Cl- fluxes through either membrane. These results are consistent with the notion that drastic changes in ion fluxes and concentrations in the turion are a secondary consequence of ABA-induced development, possibly due to prior regulation by ABA of enzymes inherent to processes involved in membrane transport.  相似文献   

8.
How do heavy metals affect stomatal movements and whether water channels are involved in stomatal movements was investigated in broad bean (Vicia faba L.) leaves. Three-week old fully expanded leaves were harvested. Leaf epidermis was peeled off and soaked in the Mes–KOH buffer containing the salts of heavy metals. Stomatal aperture was measured under the microscope. The tested heavy metal ions, such as Hg2+, Pb2+, Zn2+, and La3+, partly inhibited stomatal opening in light or closing in darkness at submillimolar concentrations, while K+, Na+ and Mg2+ had no visible effects on stomatal movements. As compared to La3+, Hg2+ affected stomatal movements more significantly. Stomatal movements were almost completely inhibited under a combined Hg2+ and La3+ treatment. Apparently, La3+, a Ca2+ channel blocker, inhibits the changes in the cytosolic Ca2+ concentration in guard cells, thus affecting stomatal movements. The inhibitory effect of Hg2+ on stomatal movements may be explained by the inhibition of water channels. Like Hg2+, Zn2+ and Pb2+ interfered with stomatal movements. It is concluded that heavy metals at submillimolar concentrations inhibit stomatal movements. They may affect water fluxes through guard cell membranes in different ways, i.e., Hg2+, Pb2+, and Zn2+ inhibit water channels, whereas La3+ block ion channels. Water channels may be involved in stomatal movements by regulating water fluxes and play a dominant and primary role in stomatal movements.  相似文献   

9.
Patch-clamp studies carried out on the tonoplast of the moss Physcomitrella patens point to existence of two types of cation-selective ion channels: slowly activated (SV channels), and fast-activated potassium-selective channels. Slowly and instantaneously saturating currents were observed in the whole-vacuole recordings made in the symmetrical KCl concentration and in the presence of Ca2+ on both sides of the tonoplast. The reversal potential obtained at the KCl gradient (10 mM on the cytoplasmic side and 100 mM in the vacuole lumen) was close to the reversal potential for K+ (E K), indicating K+ selectivity. Recordings in cytoplasm-out patches revealed two distinct channel populations differing in conductance: 91.6 ± 0.9 pS (n = 14) at ?80 mV and 44.7 ± 0.7 pS (n = 14) at +80 mV. When NaCl was used instead of KCl, clear slow vacuolar SV channel activity was observed both in whole-vacuole and cytoplasm-out membrane patches. There were no instantaneously saturating currents, which points to impermeability of fast-activated potassium channels to Na+ and K+ selectivity. In the symmetrical concentration of NaCl on both sides of the tonoplast, currents have been measured exclusively at positive voltages indicating Na+ influx to the vacuole. Recordings with different concentrations of cytoplasmic and vacuolar Ca2+ revealed that SV channel activity was regulated by both cytoplasmic and vacuolar calcium. While cytoplasmic Ca2+ activated SV channels, vacuolar Ca2+ inhibited their activity. Dependence of fast-activated potassium channels on the cytoplasmic Ca2+ was also determined. These channels were active even without Ca2+ (2 mM EGTA in the cytosol and the vacuole lumen), although their open probability significantly increased at 0.1 μM Ca2+ on the cytoplasmic side. Apart from monovalent cations (K+ and Na+), SV channels were permeable to divalent cations (Ca2+ and Mg2+). Both monovalent and divalent cations passed through the channels in the same direction—from the cytoplasm to the vacuole. The identity of the vacuolar ion channels in Physcomitrella and ion channels already characterised in different plants is discussed.  相似文献   

10.
Methyl jasmonate (MeJA) elicits stomatal closure in many plant species. Stomatal closure is accompanied by large ion fluxes across the plasma membrane (PM). Here, we recorded the transmembrane ion fluxes of H+, Ca2+ and K+ in guard cells of wild‐type (Col‐0) Arabidopsis, the CORONATINE INSENSITIVE1 (COI1) mutant coi1‐1 and the PM H+‐ATPase mutants aha1‐6 and aha1‐7, using a non‐invasive micro‐test technique. We showed that MeJA induced transmembrane H+ efflux, Ca2+ influx and K+ efflux across the PM of Col‐0 guard cells. However, this ion transport was abolished in coi1‐1 guard cells, suggesting that MeJA‐induced transmembrane ion flux requires COI1. Furthermore, the H+ efflux and Ca2+ influx in Col‐0 guard cells was impaired by vanadate pre‐treatment or PM H+‐ATPase mutation, suggesting that the rapid H+ efflux mediated by PM H+‐ATPases could function upstream of the Ca2+ flux. After the rapid H+ efflux, the Col‐0 guard cells had a longer oscillation period than before MeJA treatment, indicating that the activity of the PM H+‐ATPase was reduced. Finally, the elevation of cytosolic Ca2+ concentration and the depolarized PM drive the efflux of K+ from the cell, resulting in loss of turgor and closure of the stomata.  相似文献   

11.
Internodal cells of a brackish water charophyte,Lamprothamnium succinctum (A. Br. in Ash.) R.D.W. regulate the turgor pressure in response to changes in both the cellular and the external osmotic pressures. During turgor regulation upon hypotonic treatment, net effluxes of K+ and Cl from the vacuole, membrane depolarization, a transient increase in the electrical membrane conductance and a transient increase in concentration of cytoplasmic Ca2+ are induced. Activation of the plasmalemma Ca2+ channels and the Ca2+-controlled passive effluxes of K+ and Cl through the plasmalemma ion channels are postulated.  相似文献   

12.
A mathematical model of action potential (AP) in vascular plants cells has been worked out. The model takes into account actions of plasmalemma ion transport systems (K+, Cl? and Ca2+ channels; H+- and Ca2+-ATPases; 2H+/Cl? symporter; and H+/K+ antiporter), changes of ion concentrations in the cell and in the extracellular space, cytoplasmic and apoplastic buffer capacities and the temperature dependence of active transport systems. The model of AP simulates a stationary level of the membrane potential and ion concentrations, generation of AP induced by electrical stimulation and gradual cooling and the impact of external Ca2+ for AP development. The model supports a hypothesis about participation of H+-ATPase in AP generation.  相似文献   

13.
Lysed guard-cell protoplasts of Vicia faba L. exhibited hydrolytic activity characteristic of tonoplast inorganic pyrophosphatase (V-PPase; EC 3.6.1.1). Activity was inhibited by the specific V-PPase inhibitor aminomethylenediphosphonate, stimulated by K+ (K m = 51 mM) and inhibited by Ca2+ (80 nM free Ca2+ was required for 50% inhibition at 0.27 mM free Mg2+). Patch-clamp measurements of electrogenic activity confirmed enzyme localisation at the tonoplast. This is the first report of V-PPase activity in guard cells; its possible involvement in stomatal opening is discussed. Received: 12 February 1998 / Accepted: 24 April 1998  相似文献   

14.
Abscisic acid (ABA) signal transduction has been proposed to utilize cytosolic Ca2+ in guard cell ion channel regulation. However, genetic mutants in Ca2+ sensors that impair guard cell or plant ion channel signaling responses have not been identified, and whether Ca2+-independent ABA signaling mechanisms suffice for a full response remains unclear. Calcium-dependent protein kinases (CDPKs) have been proposed to contribute to central signal transduction responses in plants. However, no Arabidopsis CDPK gene disruption mutant phenotype has been reported to date, likely due to overlapping redundancies in CDPKs. Two Arabidopsis guard cell–expressed CDPK genes, CPK3 and CPK6, showed gene disruption phenotypes. ABA and Ca2+ activation of slow-type anion channels and, interestingly, ABA activation of plasma membrane Ca2+-permeable channels were impaired in independent alleles of single and double cpk3cpk6 mutant guard cells. Furthermore, ABA- and Ca2+-induced stomatal closing were partially impaired in these cpk3cpk6 mutant alleles. However, rapid-type anion channel current activity was not affected, consistent with the partial stomatal closing response in double mutants via a proposed branched signaling network. Imposed Ca2+ oscillation experiments revealed that Ca2+-reactive stomatal closure was reduced in CDPK double mutant plants. However, long-lasting Ca2+-programmed stomatal closure was not impaired, providing genetic evidence for a functional separation of these two modes of Ca2+-induced stomatal closing. Our findings show important functions of the CPK6 and CPK3 CDPKs in guard cell ion channel regulation and provide genetic evidence for calcium sensors that transduce stomatal ABA signaling.  相似文献   

15.
The vesicle‐trafficking protein SYP121 (SYR1/PEN1) was originally identified in association with ion channel control at the plasma membrane of stomatal guard cells, although stomata of the Arabidopsis syp121 loss‐of‐function mutant close normally in ABA and high Ca2+. We have now uncovered a set of stomatal phenotypes in the syp121 mutant that reduce CO2 assimilation, slow vegetative growth and increase water use efficiency in the whole plant, conditional upon high light intensities and low relative humidity. Stomatal opening and the rise in stomatal transpiration of the mutant was delayed in the light and following Ca2+‐evoked closure, consistent with a constitutive form of so‐called programmed stomatal closure. Delayed reopening was observed in the syp121, but not in the syp122 mutant lacking the homologous gene product; the delay was rescued by complementation with wild‐type SYP121 and was phenocopied in wild‐type plants in the presence of the vesicle‐trafficking inhibitor Brefeldin A. K+ channel current that normally mediates K+ uptake for stomatal opening was suppressed in the syp121 mutant and, following closure, its recovery was slowed compared to guard cells of wild‐type plants. Evoked stomatal closure was accompanied by internalisation of GFP‐tagged KAT1 K+ channels in both wild‐type and syp121 mutant guard cells, but their subsequently recycling was slowed in the mutant. Our findings indicate that SYP121 facilitates stomatal reopening and they suggest that K+ channel traffic and recycling to the plasma membrane underpins the stress memory phenomenon of programmed closure in stomata. Additionally, they underline the significance of vesicle traffic for whole‐plant water use and biomass production, tying SYP121 function to guard cell membrane transport and stomatal control.  相似文献   

16.
Early ABA Signaling Events in Guard Cells   总被引:1,自引:0,他引:1  
The plant hormone abscisic acid (ABA) regulates a wide variety of plant physiological and developmental processes, particularly responses to environmental stress, such as drought. In response to water deficiency, plants redistribute foliar ABA and/or upregulate ABA synthesis in roots, leading to roughly a 30-fold increase in ABA concentration in the apoplast of stomatal guard cells. The elevated ABA triggers a chain of events in guard cells, causing stomatal closure and thus preventing water loss. Although the molecular nature of ABA receptor(s) remains unknown, considerable progress in the identification and characterization of its downstream signaling elements has been made by using combined physiological, biochemical, biophysical, molecular, and genetic approaches. The measurable events associated with ABA-induced stomatal closure in guard cells include, sequentially, the production of reactive oxygen species (ROS), increases in cytosolic free Ca2+ levels ([Ca2+]i), activation of anion channels, membrane potential depolarization, cytosolic alkalinization, inhibition of K+ influx channels, and promotion of K+ efflux channels. This review provides an overview of the cellular and molecular mechanisms underlying these ABA-evoked signaling events, with particular emphasis on how ABA triggers an “electronic circuitry” involving these ionic components.  相似文献   

17.
Stomatal closure in response to abscisic acid depends on mechanisms that are mediated by intracellular [Ca2+] ([Ca2+]i), and also on mechanisms that are independent of [Ca2+]i in guard cells. In this study, we addressed three important questions with respect to these two predicted pathways in Arabidopsis thaliana. (i) How large is the relative abscisic acid (ABA)‐induced stomatal closure response in the [Ca2+]i‐elevation‐independent pathway? (ii) How do ABA‐insensitive mutants affect the [Ca2+]i‐elevation‐independent pathway? (iii) Does ABA enhance (prime) the Ca2+ sensitivity of anion and inward‐rectifying K+ channel regulation? We monitored stomatal responses to ABA while experimentally inhibiting [Ca2+]i elevations and clamping [Ca2+]i to resting levels. The absence of [Ca2+]i elevations was confirmed by ratiometric [Ca2+]i imaging experiments. ABA‐induced stomatal closure in the absence of [Ca2+]i elevations above the physiological resting [Ca2+]i showed only approximately 30% of the normal stomatal closure response, and was greatly slowed compared to the response in the presence of [Ca2+]i elevations. The ABA‐insensitive mutants ost1‐2, abi2‐1 and gca2 showed partial stomatal closure responses that correlate with [Ca2+]i‐dependent ABA signaling. Interestingly, patch‐clamp experiments showed that exposure of guard cells to ABA greatly enhances the ability of cytosolic Ca2+ to activate S‐type anion channels and down‐regulate inward‐rectifying K+ channels, providing strong evidence for a Ca2+ sensitivity priming hypothesis. The present study demonstrates and quantifies an attenuated and slowed ABA response when [Ca2+]i elevations are directly inhibited in guard cells. A minimal model is discussed, in which ABA enhances (primes) the [Ca2+]i sensitivity of stomatal closure mechanisms.  相似文献   

18.
The compartmental analysis method was used to estimate the K+ and Cl fluxes for cells of excised roots of Zea mays L. cv. Golden Bantam. When the measured fluxes are compared to those calculated with the Ussing-Teorell flux-ratio equation, an active inward transport of Cl across the plasmalemma is indicated; the plasmalemma K+ fluxes are not far different from those predicted for passive diffusion, although an active inward transport cannot be precluded. Whether fluxes across the tonoplast are active or passive depends upon the vacuolar potential which is unknown. Assuming no electropotential gradient, the tracer flux ratios are fairly close to those predicted for passive movement. However, if the vacuole is positive by about 10 millivolts relative to the cytoplasm, the data suggest active inward transport for K+ and outward transport for Cl.  相似文献   

19.
There is evidence for a role of increased cytoplasmic Ca2+ in the stomatal closure induced by abscisic acid (ABA), but two points of controversy remain the subject of vigorous debate—the universality of Ca2+ as a component of the signaling chain, and the source of the increased Ca2+, whether influx across the plasmalemma, or release from internal stores. We have addressed these questions by patch-clamp studies on guard cell protoplasts of Vicia faba, assessing the effects of ABA in the presence and absence of external Ca2+, and of internal Ca2+ buffers to control levels of cytoplasmic Ca2+. We show that ABA-induced reduction of the K+ inward rectifier can occur in the absence of external Ca2+, but is abolished when Ca2+ buffers are present inside the cell. Thus, some minimum level of cytoplasmic Ca2+ is a necessary component of the signaling chain by which ABA decreases the K+ inward rectifier in stomatal guard cells, thus preventing stomatal opening. Release of Ca2+ from internal stores is capable of mediating the response, in the absence of any Ca2+ influx from the extracellular medium. The work also shows that enhancement of the K+ outward rectifier by ABA is Ca2+ independent, and that other signaling mechanisms must be involved. A role for internal pH, as suggested by H.R. Irving, C.A. Gehring and R.W. Parish (Proc. Natl. Acad. Sci. USA 89:1790–1794, 1990) and M.R. Blatt (J. Gen. Physiol. 99:615–644, 1992), is an attractive working hypothesis.  相似文献   

20.
Abscisic acid (ABA) signal transduction has been proposed to utilize cytosolic Ca2+ in guard cell ion channel regulation. However, genetic mutants in Ca2+ sensors that impair guard cell or plant ion channel signaling responses have not been identified, and whether Ca2+-independent ABA signaling mechanisms suffice for a full response remains unclear. Calcium-dependent protein kinases (CDPKs) have been proposed to contribute to central signal transduction responses in plants. However, no Arabidopsis CDPK gene disruption mutant phenotype has been reported to date, likely due to overlapping redundancies in CDPKs. Two Arabidopsis guard cell–expressed CDPK genes, CPK3 and CPK6, showed gene disruption phenotypes. ABA and Ca2+ activation of slow-type anion channels and, interestingly, ABA activation of plasma membrane Ca2+-permeable channels were impaired in independent alleles of single and double cpk3cpk6 mutant guard cells. Furthermore, ABA- and Ca2+-induced stomatal closing were partially impaired in these cpk3cpk6 mutant alleles. However, rapid-type anion channel current activity was not affected, consistent with the partial stomatal closing response in double mutants via a proposed branched signaling network. Imposed Ca2+ oscillation experiments revealed that Ca2+-reactive stomatal closure was reduced in CDPK double mutant plants. However, long-lasting Ca2+-programmed stomatal closure was not impaired, providing genetic evidence for a functional separation of these two modes of Ca2+-induced stomatal closing. Our findings show important functions of the CPK6 and CPK3 CDPKs in guard cell ion channel regulation and provide genetic evidence for calcium sensors that transduce stomatal ABA signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号