首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
BackgroundBuruli ulcer is a neglected tropical disease caused by Mycobacterium ulcerans, an environmental mycobacterium. Although transmission of M. ulcerans remains poorly understood, the main identified risk factor for acquiring Buruli ulcer is living in proximity of potentially contaminated water sources. Knowledge about the clinical features of Buruli ulcer and its physiopathology is increasing, but little is known about recurrence due to reinfection.Methodology/Principal findingsWe describe two patients with Buruli ulcer recurrence due to reinfection with M. ulcerans, as demonstrated by comparisons of DNA from the strains isolated at the time of the first diagnosis and at recurrence. Based on the spatial distribution of M. ulcerans genotypes in this region and a detailed study of the behavior of these two patients with respect to sources of water as well as water bodies and streams, we formulated hypotheses concerning the sites at which they may have been contaminated.Conclusions/SignificanceSecond episodes of Buruli ulcer may occur through reinfection, relapse or a paradoxical reaction. We formally demonstrated that the recurrence in these two patients was due to reinfection. Based on the sites at which the patients reported engaging in activities relating to water, we were able to identify possible sites of contamination. Our findings indicate that the non-random distribution of M. ulcerans genotypes in this region may provide useful information about activities at risk.  相似文献   

2.

Background

Mycobacterium ulcerans is the causative agent of Buruli ulcer (BU). In West Africa there is an association between BU and residence in low-lying rural villages where aquatic sources are plentiful. Infection occurs through unknown environmental exposure; human-to-human infection is rare. Molecular evidence for M. ulcerans in environmental samples is well documented, but the association of M. ulcerans in the environment with Buruli ulcer has not been studied in West Africa in an area with accurate case data.

Methodology/Principal Finding

Environmental samples were collected from twenty-five villages in three communes of Benin. Sites sampled included 12 BU endemic villages within the Ouheme and Couffo River drainages and 13 villages near the Mono River and along the coast or ridge where BU has never been identified. Triplicate water filtrand samples from major water sources and samples from three dominant aquatic plant species were collected. Detection of M. ulcerans was based on quantitative polymerase chain reaction. Results show a significant association between M. ulcerans in environmental samples and Buruli ulcer cases in a village (p = 0.0001). A “dose response” was observed in that increasing numbers of M. ulceran- positive environmental samples were associated with increasing prevalence of BU cases (R2 = 0.586).

Conclusions/Significance

This study provides the first spatial data on the overlap of M. ulcerans in the environment and BU cases in Benin where case data are based on active surveillance. The study also provides the first evidence on M. ulcerans in well-defined non-endemic sites. Most environmental pathogens are more broadly distributed in the environment than in human populations. The congruence of M. ulcerans in the environment and human infection raises the possibility that humans play a role in the ecology of M. ulcerans. Methods developed could be useful for identifying new areas where humans may be at high risk for BU.  相似文献   

3.

Background

The reservoir and mode of transmission of Mycobacterium ulcerans, the causative agent of Buruli ulcer, remain unknown. Ecological, genetic and epidemiological information nonetheless suggests that M. ulcerans may reside in aquatic protozoa.

Methodology/Principal Findings

We experimentally infected Acanthamoeba polyphaga with M. ulcerans and found that the bacilli were phagocytised, not digested and remained viable for the duration of the experiment. Furthermore, we collected 13 water, 90 biofilm and 45 detritus samples in both Buruli ulcer endemic and non-endemic communities in Ghana, from which we cultivated amoeboid protozoa and mycobacteria. M. ulcerans was not isolated, but other mycobacteria were as frequently isolated from intracellular as from extracellular sources, suggesting that they commonly infect amoebae in nature. We screened the samples as well as the amoeba cultures for the M. ulcerans markers IS2404, IS2606 and KR-B. IS2404 was detected in 2% of the environmental samples and in 4% of the amoeba cultures. The IS2404 positive amoeba cultures included up to 5 different protozoan species, and originated both from Buruli ulcer endemic and non-endemic communities.

Conclusions/Significance

This is the first report of experimental infection of amoebae with M. ulcerans and of the detection of the marker IS2404 in amoeba cultures isolated from the environment. We conclude that amoeba are potential natural hosts for M. ulcerans, yet remain sceptical about their implication in the transmission of M. ulcerans to humans and their importance in the epidemiology of Buruli ulcer.  相似文献   

4.
Mycobacterium ulcerans is a slow-growing environmental bacterium that causes a severe skin disease known as Buruli ulcer. PCR has become a reliable and rapid method for the diagnosis of M. ulcerans infection in humans and has been used for the detection of M. ulcerans in the environment. This paper describes the development of a TaqMan assay targeting IS2404 multiplexed with an internal positive control to monitor inhibition with a detection limit of less than 1 genome equivalent of DNA. The assay improves the turnaround time for diagnosis and replaces conventional gel-based PCR as the routine method for laboratory confirmation of M. ulcerans infection in Victoria, Australia. Following analysis of 415 clinical specimens, the new test demonstrated 100% sensitivity and specificity compared with culture. Another multiplex TaqMan assay targeting IS2606 and the ketoreductase-B domain of the M. ulcerans mycolactone polyketide synthase genes was designed to augment the specificity of the IS2404 PCR for the analysis of a variety of environmental samples. Assaying for these three targets enabled the detection of M. ulcerans DNA in soil, sediment, and mosquito extracts collected from an area of endemicity for Buruli ulcer in Victoria with a high degree of confidence. Final confirmation was obtained by the detection and sequencing of variable-number tandem repeat (VNTR) locus 9, which matched the VNTR locus 9 sequence obtained from the clinical isolates in this region. This suite of new methods is enabling rapid progress in the understanding of the ecology of this important human pathogen.  相似文献   

5.
Mycobacterium ulcerans is the causative agent of Buruli ulcer, one of the most common mycobacterial diseases of humans. Recent studies have implicated aquatic insects in the transmission of this pathogen, but the contributions of other elements of the environment remain largely unknown. We report here that crude extracts from two green algae added to the BACTEC 7H12B culture medium halved the doubling time of M. ulcerans and promoted biofilm formation. Using the 7H12B medium, modified by the addition of the algal extract, and immunomagnetic separation, we also demonstrate that M. ulcerans is associated with aquatic plants in an area of the Ivory Coast where Buruli ulcer is endemic. Genotype analysis showed that plant-associated M. ulcerans had the same profile as isolates recovered in the same region from both aquatic insects and clinical specimens. These observations implicate aquatic plants as a reservoir of M. ulcerans and add a new potential link in the chain of transmission of M. ulcerans to humans.  相似文献   

6.
Aquatic Insects as a Vector for Mycobacterium ulcerans   总被引:3,自引:0,他引:3       下载免费PDF全文
Mycobacterium ulcerans is an emerging environmental pathogen which causes chronic skin ulcers (i.e., Buruli ulcer) in otherwise healthy humans living in tropical countries, particularly those in Africa. In spite of epidemiological and PCR data linking M. ulcerans to water, the mode of transmission of this organism remains elusive. To determine the role of aquatic insects in the transmission of M. ulcerans, we have set up an experimental model with aquariums that mimic aquatic microenvironments. We report that M. ulcerans may be transmitted to laboratory mice by the bite of aquatic bugs (Naucoridae) that are infected with this organism. In addition, M. ulcerans appears to be localized exclusively within salivary glands of these insects, where it can both survive and multiply without causing any observable damage in the insect tissues. Subsequently, we isolated M. ulcerans from wild aquatic insects collected from a zone in the Daloa region of Ivory Coast where Buruli ulcer is endemic. Taken together, these results point to aquatic insects as a possible vector of M. ulcerans.  相似文献   

7.
This study reports a potential role that fish may play in the transmission of Mycobacterium ulcerans disease (Buruli ulcer). Fish found positive for M. ulcerans DNA all appear to feed on insects or plankton and are believed to concentrate M. ulcerans from this usual food source. These observations provide additional data supporting our previous hypothesis on sources of M. ulcerans and modes of transmission.  相似文献   

8.

Background

The neglected tropical disease Buruli ulcer (BU) caused by Mycobacterium ulcerans is an infection of the subcutaneous tissue leading to chronic ulcerative skin lesions. Histopathological features are progressive tissue necrosis, extracellular clusters of acid fast bacilli (AFB) and poor inflammatory responses at the site of infection. After the recommended eight weeks standard treatment with rifampicin and streptomycin, a reversal of the local immunosuppression caused by the macrolide toxin mycolactone of M. ulcerans is observed.

Methodology/Principal Findings

We have conducted a detailed histopathological and immunohistochemical analysis of tissue specimens from two patients developing multiple new skin lesions 12 to 409 days after completion of antibiotic treatment. Lesions exhibited characteristic histopathological hallmarks of Buruli ulcer and AFB with degenerated appearance were found in several of them. However, other than in active disease, lesions contained massive leukocyte infiltrates including large B-cell clusters, as typically found in cured lesions.

Conclusion/Significance

Our histopathological findings demonstrate that the skin lesions emerging several months after completion of antibiotic treatment were associated with M. ulcerans infection. During antibiotic therapy of Buruli ulcer development of new skin lesions may be caused by immune response-mediated paradoxical reactions. These seem to be triggered by mycobacterial antigens and immunostimulators released from clinically unrecognized bacterial foci. However, in particular the lesions that appeared more than one year after completion of antibiotic treatment may have been associated with new infection foci resolved by immune responses primed by the successful treatment of the initial lesion.  相似文献   

9.
A number of studies have suggested that Mycobacterium ulcerans, the etiological agent of Buruli ulcer, may be transmitted to humans by insect bites. M. ulcerans has been isolated from a predaceous aquatic insect, and PCR detection of M. ulcerans DNA in aquatic environments suggests that the organism is widely distributed within many invertebrate taxa and functional feeding groups. Thus, M. ulcerans may be concentrated through different trophic links. However, the specific environmental niche of M. ulcerans and route of transmission to humans remain a mystery. In this study, a biologically relevant infection model in which M. ulcerans-infected mosquito larvae were fed to a species of predaceous hemiptera (African Belostomatidae) was used to demonstrate the persistent colonization of M. ulcerans and subsequent transmission of bacteria to naïve prey. The association of M. ulcerans with specific anatomical compartments showed that M. ulcerans accumulates preferentially on the exoskeleton. In contrast, few organisms were found in dissected guts or salivary glands. No difference was found between the ability of wild-type M. ulcerans and an M. ulcerans isogenic mycolactone-negative mutant to colonize belostomatids. These data show that African belostomatids can successfully be colonized by M. ulcerans and support the trophic transfer of M. ulcerans within the environment.  相似文献   

10.
Buruli ulcer is a skin disease caused by Mycobacterium ulcerans that is spreading in tropical countries, with major public health and economic implications in West Africa. Multi-analyte profiling of serum proteins in patients and endemic controls revealed that Buruli ulcer disease down-regulates the circulating levels of a large array of inflammatory mediators, without impacting on the leukocyte composition of peripheral blood. Notably, several proteins contributing to acute phase reaction, lipid metabolism, coagulation and tissue remodelling were also impacted. Their down-regulation was selective and persisted after the elimination of bacteria with antibiotic therapy. It involved proteins with various functions and origins, suggesting that M. ulcerans infection causes global and chronic defects in the host''s protein metabolism. Accordingly, patients had reduced levels of total serum proteins and blood urea, in the absence of signs of malnutrition, or functional failure of liver or kidney. Interestingly, slow healers had deeper metabolic and coagulation defects at the start of antibiotic therapy. In addition to providing novel insight into Buruli ulcer pathogenesis, our study therefore identifies a unique proteomic signature for this disease.  相似文献   

11.
Buruli ulcer is an emerging and neglected tropical disease caused by Mycobacterium ulcerans. Few cases have been reported so far in the Americas. With 250 cases reported since 1969, French Guiana is the only Buruli ulcer endemic area in the continent. Thus far, no genetic diversity studies of strains of M. ulcerans from French Guiana have been reported. Our goal in the present study was to examine the genetic diversity of M. ulcerans strains in this region by using the Multilocus Variable Number Tandem Repeat Analysis (MLVA) approach. A total of 23 DNA samples were purified from ulcer biopsies or derived from pure cultures. MVLA was used in the study of six previously-described Variable Number of Tandem Repeat (VNTR) markers. A total of three allelic combinations were characterized in our study: genotype I which has been described previously, genotype III which is very similar to genotype I, and genotype II which has distinctly different characteristics in comparison with the other two genotypes. This high degree of genetic diversity appears to be uncommon for M. ulcerans. Further research based on complete genome sequencing of strains belonging to genotypes I and II is in progress and should lead soon to a better understanding of genetic specificities of M. ulcerans strains from French Guiana.  相似文献   

12.
Mycobacterium ulcerans causes Buruli ulcer (BU), a debilitating infection of subcutaneous tissue. There is a WHO-recommended antibiotic treatment requiring an 8-week course of streptomycin and rifampicin. This regime has revolutionized the treatment of BU but there are problems that include reliance on daily streptomycin injections and side effects such as ototoxicity. Trials of all-oral treatments for BU show promise but additional drug combinations that make BU treatment safer and shorter would be welcome. Following on from reports that avermectins have activity against Mycobacterium tuberculosis, we tested the in-vitro efficacy of ivermectin and moxidectin on M. ulcerans. We observed minimum inhibitory concentrations of 4–8 μg/ml and time-kill assays using wild type and bioluminescent M. ulcerans showed a significant dose-dependent reduction in M. ulcerans viability over 8-weeks. A synergistic killing-effect with rifampicin was also observed. Avermectins are well tolerated, widely available and inexpensive. Based on our in vitro findings we suggest that avermectins should be further evaluated for the treatment of BU.  相似文献   

13.

Background

Buruli ulcer (BU) is a slowly progressing, necrotising disease of the skin caused by infection with Mycobacterium ulcerans. Non-ulcerative manifestations are nodules, plaques and oedema, which may progress to ulceration of large parts of the skin. Histopathologically, BU is characterized by coagulative necrosis, fat cell ghosts, epidermal hyperplasia, clusters of extracellular acid fast bacilli (AFB) in the subcutaneous tissue and lack of major inflammatory infiltration. The mode of transmission of BU is not clear and there is only limited information on the early pathogenesis of the disease available.

Methodology/Principal Findings

For evaluating the potential of the pig as experimental infection model for BU, we infected pigs subcutaneously with different doses of M. ulcerans. The infected skin sites were excised 2.5 or 6.5 weeks after infection and processed for histopathological analysis. With doses of 2×107 and 2×106 colony forming units (CFU) we observed the development of nodular lesions that subsequently progressed to ulcerative or plaque-like lesions. At lower inoculation doses signs of infection found after 2.5 weeks had spontaneously resolved at 6.5 weeks. The observed macroscopic and histopathological changes closely resembled those found in M. ulcerans disease in humans.

Conclusion/Significance

Our results demonstrate that the pig can be infected with M. ulcerans. Productive infection leads to the development of lesions that closely resemble human BU lesions. The pig infection model therefore has great potential for studying the early pathogenesis of BU and for the development of new therapeutic and prophylactic interventions.  相似文献   

14.
Accumulative indirect evidence of the epidemiology of Mycobacterium ulcerans infections causing chronic skin ulcers (i.e., Buruli ulcer disease) suggests that the development of this pathogen and its transmission to humans are related predominantly to aquatic environments. We report that snails could transitorily harbor M. ulcerans without offering favorable conditions for its growth and replication. A novel intermediate link in the transmission chain of M. ulcerans becomes likely with predator aquatic insects in addition to phytophage insects. Water bugs, such as Naucoris cimicoides, a potential vector of M. ulcerans, were shown to be infected specifically by this bacterium after feeding on snails experimentally exposed to M. ulcerans.  相似文献   

15.
Buruli ulcer or Mycobacterium ulcerans disease occurs mainly in areas in proximity to standing or slowly running freshwater, habitats in which free-living amoebae occur. For this reason, a possible link between the habitat of M. ulcerans and free-living amoebae was investigated. Free-living amoebae and mycobacteria were isolated from water and biofilm specimens taken from protected and unprotected sources of water in villages known to have either high or low endemicity for Buruli ulcer in Benin. Amoebae were isolated from 78.8% of samples. A greater proportion of water bodies in areas of high endemicity had amoebae than in areas of low endemicity (83.3% versus 66.7%). Protected sources of water were significantly more likely to contain amoebae in areas of high endemicity than in areas of low endemicity (88.0% versus 11.1%). Several pathogenic free-living amoebae and mycobacteria were isolated. However, no M. ulcerans was isolated and no specimen was positive for IS2404 PCR. Our results show that the study area has a water hygiene problem, which is greater in areas of high Buruli ulcer endemicity than in areas of low endemicity. Our observations indicate that additional studies are required to explore the possible link between free-living amoebae and mycobacteria.  相似文献   

16.
Mycolactone, a lipid-like toxin, is the major virulence factor of Mycobacterium ulcerans, the etiological agent of Buruli ulcer. Its involvement in lesion development has been widely described in early stages of the disease, through its cytotoxic and immunosuppressive activities, but less is known about later stages. Here, we revisit the role of mycolactone in disease outcome and provide the first demonstration of the pro-inflammatory potential of this toxin. We found that the mycolactone-containing mycobacterial extracellular vesicles produced by M. ulcerans induced the production of IL-1β, a potent pro-inflammatory cytokine, in a TLR2-dependent manner, targeting NLRP3/1 inflammasomes. We show our data to be relevant in a physiological context. The in vivo injection of these mycolactone-containing vesicles induced a strong local inflammatory response and tissue damage, which were prevented by corticosteroids. Finally, several soluble pro-inflammatory factors, including IL-1β, were detected in infected tissues from mice and Buruli ulcer patients. Our results revisit Buruli ulcer pathophysiology by providing new insight, thus paving the way for the development of new therapeutic strategies taking the pro-inflammatory potential of mycolactone into account.  相似文献   

17.

Background

Buruli ulcer, the third mycobacterial disease after tuberculosis and leprosy, is caused by the environmental mycobacterium M. ulcerans. Various modes of transmission have been suspected for this disease, with no general consensus acceptance for any of them up to now. Since laboratory models demonstrated the ability of water bugs to transmit M. ulcerans, a particular attention is focused on the transmission of the bacilli by water bugs as hosts and vectors. However, it is only through detailed knowledge of the biodiversity and ecology of water bugs that the importance of this mode of transmission can be fully assessed. It is the objective of the work here to decipher the role of water bugs in M. ulcerans ecology and transmission, based on large-scale field studies.

Methodology/Principal Findings

The distribution of M. ulcerans-hosting water bugs was monitored on previously unprecedented time and space scales: a total of 7,407 water bugs, belonging to large number of different families, were collected over one year, in Buruli ulcer endemic and non endemic areas in central Cameroon. This study demonstrated the presence of M. ulcerans in insect saliva. In addition, the field results provided a full picture of the ecology of transmission in terms of biodiversity and detailed specification of seasonal and regional dynamics, with large temporal heterogeneity in the insect tissue colonization rate and detection of M. ulcerans only in water bug tissues collected in Buruli ulcer endemic areas.

Conclusion/Significance

The large-scale detection of bacilli in saliva of biting water bugs gives enhanced weight to their role in M. ulcerans transmission. On practical grounds, beyond the ecological interest, the results concerning seasonal and regional dynamics can provide an efficient tool in the hands of sanitary authorities to monitor environmental risks associated with Buruli ulcer.  相似文献   

18.
Mycobacterium ulcerans (M. ulcerans), the causative agent of the devastating skin disease Buruli ulcer (BU), is characterized by an extremely low level of genetic diversity. Recently, we have reported the first discrimination of closely related M. ulcerans variants in the BU endemic Densu River Valley of Ghana. In the study real-time PCR-based single nucleotide polymorphism (SNP) typing at 89 predefined loci revealed the presence of ten M. ulcerans haplotypes circulating in the BU endemic region. Here we describe the development of temperature-switch PCR (TSP) assays that allow distinguishing these haplotypes by conventional agarose gel-based analysis of the PCR products. After validation of the accuracy of typing results, the TSP assays were successfully established in a reference laboratory in Ghana. Development of the cost-effective and rapid TSP-based genetic fingerprinting method will thus allow investigating the spread of M. ulcerans clones by regular genetic monitoring in BU endemic countries.  相似文献   

19.
Buruli ulcer (BU), caused by infection with Mycobacterium ulcerans, is a chronic necrotizing human skin disease associated with the production of the cytotoxic macrolide exotoxin mycolactone. Despite extensive research, the type of immune responses elicited against this pathogen and the effector functions conferring protection against BU are not yet fully understood. While histopathological analyses of advanced BU lesions have demonstrated a mainly extracellular localization of the toxin producing acid fast bacilli, there is growing evidence for an early intra-macrophage growth phase of M. ulcerans. This has led us to investigate whether interferon-γ might play an important role in containing M. ulcerans infections. In an experimental Buruli ulcer mouse model we found that interferon-γ is indeed a critical regulator of early host immune defense against M. ulcerans infections. Interferon-γ knockout mice displayed a faster progression of the infection compared to wild-type mice. This accelerated progression was reflected in faster and more extensive tissue necrosis and oedema formation, as well as in a significantly higher bacterial burden after five weeks of infection, indicating that mice lacking interferon-γ have a reduced capacity to kill intracellular bacilli during the early intra-macrophage growth phase of M. ulcerans. This data demonstrates a prominent role of interferon-γ in early defense against M. ulcerans infection and supports the view that concepts for vaccine development against tuberculosis may also be valid for BU.  相似文献   

20.
Mycobacterium ulcerans is the causative agent of Buruli ulcer, the third most common mycobacterial disease after tuberculosis and leprosy. It is an emerging infectious disease that afflicts mainly children and youths in West Africa. Little is known about the evolution and transmission mode of M. ulcerans, partially due to the lack of known genetic polymorphisms among isolates, limiting the application of genetic epidemiology. To systematically profile single nucleotide polymorphisms (SNPs), we sequenced the genomes of three M. ulcerans strains using 454 and Solexa technologies. Comparison with the reference genome of the Ghanaian classical lineage isolate Agy99 revealed 26,564 SNPs in a Japanese strain representing the ancestral lineage. Only 173 SNPs were found when comparing Agy99 with two other Ghanaian isolates, which belong to the two other types previously distinguished in Ghana by variable number tandem repeat typing. We further analyzed a collection of Ghanaian strains using the SNPs discovered. With 68 SNP loci, we were able to differentiate 54 strains into 13 distinct SNP haplotypes. The average SNP nucleotide diversity was low (average 0.06–0.09 across 68 SNP loci), and 96% of the SNP locus pairs were in complete linkage disequilibrium. We estimated that the divergence of the M. ulcerans Ghanaian clade from the Japanese strain occurred 394 to 529 thousand years ago. The Ghanaian subtypes diverged about 1000 to 3000 years ago, or even much more recently, because we found evidence that they evolved significantly faster than average. Our results offer significant insight into the evolution of M. ulcerans and provide a comprehensive report on genetic diversity within a highly clonal M. ulcerans population from a Buruli ulcer endemic region, which can facilitate further epidemiological studies of this pathogen through the development of high-resolution tools.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号