首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Arteriovenous fistulas (AVFs) used for hemodialysis fail because of venous neointimal hyperplasia (VNH). There are 1,500,000 patients that have end stage renal disease worldwide and the majority requires hemodialysis. In the present study, the role of the intermediate early response gene X-1 (IEX-1), also known as IER-3 in the pathogenesis of VNH was evaluated. In human samples removed from failed AVF, there was a significant increase in IEX-1 expression localized to the adventitia. In Iex-1 −/− mice and wild type (WT) controls, chronic kidney disease was induced and an AVF placed 28 days later by connecting the carotid artery to jugular vein. The outflow vein was removed three days following the creation of the AVF and gene expression analysis demonstrated a significant decrease in vascular endothelial growth factor-A (Vegf-A) and monocyte chemoattractant protein-1 (Mcp-1) gene expression in Iex-1 −/− mice when compared to WT mice (P<0.05). At 28 days after AVF placement, histomorphometric and immune-histochemical analyses of the outflow vein demonstrated a significant decrease in neointimal hyperplasia with an increase in average lumen vessel area associated with a decrease in fibroblast, myofibroblast, and Ly6C staining. There was a decrease in proliferation (Ki-67) and an increase in the TUNEL staining in Iex-1 KO mice compared to WT. In addition, there was a decrease in Vegf-A, Mcp-1, and matrix metalloproteiniase-9 (Mmp-9) staining. Iex-1 expression was reduced in vivo and in vitro using nanoparticles coated with calcitriol, an inhibitor of Iex-1 that demonstrated that Iex-1 reduction results in decrease in Vegf-A. In aggregate, these results indicate that the absence of IEX-1 gene results in reduced VNH accompanied with a decrease in proliferation, reduced fibroblast, myofibroblast, and Ly6C staining accompanied with increased apoptosis mediated through a reduction in Vegf-A/Mcp-1 axis and Mmp-9. Adventitial delivery of nanoparticles coated with calcitriol reduced Iex-1 and VNH.  相似文献   

2.
The arteriovenous fistula (AVF) still suffers from a high number of failures caused by insufficient remodeling and intimal hyperplasia from which the exact pathophysiology remains unknown. In order to unravel the pathophysiology a murine model of AVF-failure was developed in which the configuration of the anastomosis resembles the preferred situation in the clinical setting. A model was described in which an AVF is created by connecting the venous end of the branch of the external jugular vein to the side of the common carotid artery using interrupted sutures. At a histological level, we observed progressive stenotic intimal lesions in the venous outflow tract that is also seen in failed human AVFs. Although this procedure can be technically challenging due to the small dimensions of the animal, we were able to achieve a surgical success rate of 97% after sufficient training. The key advantage of a murine model is the availability of transgenic animals. In view of the different proposed mechanisms that are responsible for AVF failure, disabling genes that might play a role in vascular remodeling can help us to unravel the complex pathophysiology of AVF failure.  相似文献   

3.
Maintaining vascular access (VA) patency continues to be the greatest challenge for dialysis patients. VA dysfunction, primarily due to venous neointimal hyperplasia development and stenotic lesion formation, is mainly attributed to complex hemodynamics within the arteriovenous fistula (AVF). The effect of VA creation and the subsequent geometrical remodeling on the hemodynamics and shear forces within a mature patient-specific AVF is investigated. A 3D reconstructed geometry of a healthy vein and a fully mature patient-specific AVF was developed from a series of 2D magnetic resonance image scans. A previously validated thresholding technique for region segmentation and lumen cross section contour creation was conducted in MIMICS 10.01, allowing for the creation of a 3D reconstructed geometry. The healthy vein and AVF computational models were built, subdivided, and meshed in GAMBIT 2.3. The computational fluid dynamic (CFD) code FLUENT 6.3.2 (Fluent Inc., Lebanon, NH) was employed as the finite volume solver to determine the hemodynamics and shear forces within the healthy vein and patient-specific AVF. Geometrical alterations were evaluated and a CFD analysis was conducted. Substantial geometrical remodeling was observed, following VA creation with an increase in cross-sectional area, out of plane curvature (maximum angle of curvature in AVF=30?deg), and angle of blood flow entry. The mean flow velocity entering the vein of the AVF is dramatically increased. These factors result in complex three-dimensional hemodynamics within VA junction (VAJ) and efferent vein of the AVF. Complex flow patterns were observed and the maximum and mean wall shear stress (WSS) magnitudes are significantly elevated. Flow reversal was found within the VAJ and efferent vein. Extensive geometrical remodeling during AVF maturation does not restore physiological hemodynamics to the VAJ and venous conduit of the AVF, and high WSS and WSS gradients, and flow reversal persist. It is theorized that the vessel remodelling and the continued non-physiological hemodynamics within the AVF compound to result in stenotic lesion development.  相似文献   

4.
The study of hemodynamic alterations following the creation of an arteriovenous fistula (AVF) is relevant to vascular adaptive responses and hemodialysis access dysfunction. This study examined such alterations in a murine AVF created by anastomosing the carotid artery to the jugular vein. AVF blood flow was markedly increased due to reduced AVF vascular resistance. Despite such markedly increased basal blood flow, AVF blood flow further increased in response to acetylcholine. This AVF model exhibited increased cardiac output and decreased systemic vascular resistance; the kidney, in contrast, exhibited decreased blood flow and increased vascular resistance. Augmentation in AVF blood flow was attended by increased arterial heme oxygenase-1 (HO-1) mRNA and protein expression, the latter localized to smooth muscle cells of the AVF artery; AVF blood flow was substantially reduced in HO-1(-/-) mice compared with HO-1(+/+) mice. Finally, in a murine model of a representative disease known to exhibit impaired hemodynamic responses (sickle cell disease), the creation of an AVF was attended by decreased AVF flow and impaired AVF function. We conclude that this AVF model exhibits markedly increased AVF blood flow, a vasodilatory reserve capacity, increased cardiac output, decreased renal blood flow, and a dependency on intact hemodynamic responses, in general, and HO-1 expression, in particular, in achieving and maintaining AVF blood flow. We suggest that these findings support the utility of this model in investigating the basis for and the consequences of hemodynamic stress, including shear stress, and the pathobiology of hemodialysis AVF dysfunction.  相似文献   

5.
A series of novel techniques, adapted from the field of tumor biology, were developed to quantify vascular structure and function and to explore the role of ANG II receptor AT1 in cardiac remodeling after myocardial infarction (MI). We examined the scar neovasculature at 1-4 wk post-MI in Sprague-Dawley rats with a view toward its ability to deliver and exchange oxygen. CD31 and DiOC7(3) staining was used to visualize anatomical vessels vs. those perfused. EF5/Cy3 immunohistochemical staining was used to quantify tissue hypoxia. We compared untreated controls with rats treated with losartan, an AT1 receptor antagonist. Our findings indicated that, at the infarct site, there was not only a 42-75% (1-4 wk post-MI) decrease in the number of anatomical vessels compared with controls but also a decrease in the fraction of perfused vessels from 70% in normal coronary vasculature to 48% at the infarct site. These changes were accompanied by progressive increases in diffusion distance and tissue hypoxia (100% increase in EF5/Cy3 staining at 4 wk post-MI). Losartan-treated rats exhibited a significantly less marked reduction in vascular perfusion and a significantly lesser extent of tissue hypoxia. Over the course of 4 wk post-MI, there is a reduction in coronary vasculature at the infarct site, the extent of which is attenuated by losartan. These findings implicate AT1 receptor upregulation, and perhaps angiotensin-related peptides, as being antiangiogenic.  相似文献   

6.

Objective

To evaluate the effect of hemodynamic remodeling on the survival status of the arterialized venous flaps (AVFs) and investigate the mechanism of this procedure.

Materials and Methods

Two 7 x 9 cm skin flaps in each rabbit (n=36) were designed symmetrically in the abdomen. The thoracoepigastric pedicle and one femoral artery were used as vascular sources. Four groups were included: Composite skin grafts group and arterial perfusion group were designed in one rabbit; AVF group and hemodynamic remodeling group by ligation of the thoracoepigastric vein in the middle were outlined in another rabbit. Flap viability, status of vascular perfusion and microvasculature, levels of epidermal metabolite and water content in each group were assessed.

Results

Highly congested veins and simple trunk veins were found using angiography in the AVF group; while a fairly uniform staining and plenty of small vessels were observed in the hemodynamic remodeling group. The metabolite levels of the remodeling group are comparable with those in the arterial perfusion group. There was no statistically significant difference in the percentage of flap survival between the arterial perfusion group and hemodynamic remodeling group; however, significant difference was seen between the AVF group and the hemodynamic remodeling group.

Conclusions

Under the integrated perfusion mode, the AVFs are in an over-perfusion and non-physiological hemodynamic state, resulting in unreliability and unpredictability in flap survival; under the separated perfusion mode produced by remodeling, a physiological-like circulation will be created and therefore, better flap survival can be expected.  相似文献   

7.
Chorioamnionitis is associated with preterm delivery and bronchopulmonary dysplasia (BPD), characterized by impaired alveolar and pulmonary vascular development and vascular dysfunction. To study the vascular effects in a model of chorioamnionitis, preterm lambs were exposed to 20 mg of intra-amniotic endotoxin or saline for 1, 2, 4, or 7 days and delivered at 122 days gestational age (term = 150 days). This intra-amniotic endotoxin dose was previously shown to induce lung maturation. The effect of intra-amniotic endotoxin on expression of endothelial proteins was evaluated. Muscularization of the media and collagen deposition in adventitia of small pulmonary arteries was used to assess vascular remodeling. Compared with controls, bronchoalveolar lavage fluid protein content was increased 2 days after intra-amniotic endotoxin exposure. Vascular endothelial growth factor (VEGF) 165 isoform mRNA decreased 2-4 days after intra-amniotic endotoxin. VEGF, VEGF receptor-2, endothelial nitric oxide synthase (eNOS), platelet endothelial cell adhesion molecule-1, and Tie-2 protein expression in the lung coordinately decreased 1-7 days after intra-amniotic endotoxin. Intra-amniotic endotoxin appeared to selectively decrease eNOS expression in small pulmonary vessels compared with large vessels. Medial smooth muscle hypertrophy and increased adventitial fibrosis were observed 4 and 7 days after intra-amniotic endotoxin. These results demonstrate that, in the preterm lamb lung, antenatal inflammation inhibits endothelial cell protein expression followed by vascular remodeling changes in small pulmonary arteries. Exposure to antenatal inflammation may cause vascular remodeling and contribute to the development of BPD.  相似文献   

8.
Accumulation of oxidized extracellular matrix between endothelium and muscle is an important risk factor in the endothelium-myocytes uncoupling in congestive heart failure. Although ventricular remodeling is accompanied by increased matrix metalloproteinase (MMP)-9 activity, it is unclear whether MMP-9 plays a role in endothelial apoptosis in chronic volume overload congestive heart failure. We tested the hypothesis that, in chronic volume overload, myocardial dysfunction involves endocardial endothelial (EE) apoptosis in response to MMP-9 activation, extracellular matrix accumulation, and endothelium-myocytes uncoupling. Arteriovenous fistula (AVF) was created in control (FVB/NJ) and MMP-9 knockout (MMP-9KO; FVB.Cg-MMP9(tm1Tvu)/J) mice. Sham surgery was used as control. Mice were grouped as follows: wild type, n = 3 (sham control); MMP-9KO, n = 3 (sham); AVF, n = 3; and MMP-9KO + AVF (n = 3). Heart function was analyzed by M-mode and Doppler echocardiography, and with a pressure-tipped Millar catheter placed in the left ventricle of anesthetized mice 8 wk after AVF. Apoptosis was detected by measuring caspase-3, transferase-mediated dUTP nick-end labeling (TUNEL), and CD-31 by immunolabeling. Protease-activated receptors-1, connexin-43, and a disintegrin and MMP-12 (ADAM-12) expression were measured by Western blot analyses. MMP-2 and MMP-9 expression were measured by quantitative RT-PCR. Compared with control, AVF caused an increase in left ventricle end diastolic pressure and decrease in -dP/dt. In contrast, in the MMP-9KO + AVF group, these variables were changed toward control levels. Increased EE apoptosis (caspase-3 activation and TUNEL/CD-31 colabeling) in AVF mice was prevented in the MMP-9KO + AVF group. Protease-activated receptor-1, connexin-43, and ADAM-12 were induced in AVF. MMP-9 gene ablation ameliorated the induction. The results suggest that impaired cardiac function in volume overload is associated with EE apoptosis, cardiac remodeling, and endothelium-myocytes uncoupling in response to MMP-9 activation.  相似文献   

9.
Arteriovenous fistula (AVF) is the endorsed method of vascular access for hemodialysis in end-stage renal disease (ESRD). However, more than 60% of AVF fail to mature for hemodialysis. Intimal hyperplasia leads to stenosis is the primary cause of fistula failure. Wall shear stress (WSS) is one of the important parameters that enact a crucial role in building of intimal hyperplasia. The prime purpose of this research work is to investigate the effect of anastomosis angle on WSS, pressure drop, venous outflow rate and identify the optimal angle of anastomosis of AVF, so that it helps to standardize the surgical technique. In this research work, three-dimensional idealized geometries of end-to-side type AVF for the four different angles of anastomosis are created. Numerical simulation performed using incompressible, Newtonian blood to calculate the WSS, blood flow rate at the distal end of the vein and pressure drop across the anastomosis for the three arterial inflow 350, 500 and 900 ml/min. For all three arterial inflow, the WSS is high at 75° compared to other angles and it is less at 60°. The WSS at 45° and 90° are moderate. The venous outflow is increasing with the increase in arterial inflow condition for all anastomosis angles except for 45°. The outflow rate at distal venous end is highest, 344.85 ml/min at 45° for 500 ml/min arterial inflow. Pressure drop high at 45° and lowest at 90°. The intensity of disturbed flow and recirculation zone was observed at the area of anastomosis and it is high at 75°. From the results and observations, it can be concluded that 45° angle is the best choice for the anastomosis of AVF. This finding will standardize the surgical technique and subsequently, it will help to mature the AVF early and for a long time.  相似文献   

10.
BACKGROUND: Vascular gene therapy requires safe and efficient gene transfer in vivo. Recombinant adeno-associated virus (AAV) is a promising viral vector but its use in the vasculature has produced conflicting results and serotypes other than AAV2 have not been intensively studied. We investigated the efficiency of alternative AAV serotypes for vascular gene delivery in vitro and in vivo. METHODS: Vascular cell lines were transduced in vitro with AAV vectors. Rabbit carotid arteries were transduced with AAV1, 2 and 5 encoding enhanced green fluorescent protein (eGFP) ( approximately 1.4 x 10(9) DNAse-resistant particles (drp)). Gene transfer in vivo was assessed at 14 and 28 days. High-titre doses of AAV2 encoding beta-galactosidase in vivo were also studied. RESULTS: In vitro, transgene expression was not observed in endothelial cells using AAV2 whereas the use of serotypes 1 and 5 resulted in detectable levels of transgene expression. Coronary artery smooth muscle cells (CASMCs) transduced with AAV2 demonstrated higher levels of GFP expression than AAV1 or 5. Transgene expression in vivo was noted using low-titre AAV1 and AAV5 ( approximately 1.4 x 10(9) drp) in the media and adventitia. Only delivery of AAV1eGFP resulted in neointimal formation (3/7 vessels examined), with transgene expression noted in the neointima. Transgene expression with AAV2 was not detected in any layer of the blood vessel wall using low titre ( approximately 10(9) drp). However, high-titre ( approximately 10(11) drp) AAV2 resulted in transduction of cells in the media and adventitia but not the endothelium. CONCLUSIONS: AAV1 and AAV5 have advantages over AAV2 for vascular gene delivery at low titres.  相似文献   

11.
大鼠心肌重塑过程中Axin蛋白质的表达变化   总被引:5,自引:0,他引:5  
Li P  Li JL  Yin F  Yan J  Feng XH  Li ZP  Han QD  Zhang YY 《生理学报》2003,55(3):331-335
为观察大鼠心肌重塑过程中Axin蛋白质表达水平的变化,实验用颈静脉输注去甲肾上腺素(NE)和动静脉造瘘(AVF)方法复制大鼠心肌重塑病理模型,采用超声心动术检测心脏结构和收缩功能。取病理模型大鼠左心室以及分离培养的成年大鼠心肌成纤维细胞,采用Wester blot技术检测Axin蛋白质的表达水平。结果观察到,在颈静脉输注NE 3d后,大鼠心脏发生向心性心肌肥厚和心肌纤维化,其左心室的Axin蛋白表达水平较对照组显著升高。A-V造瘘术一周后引起大鼠离心性心肌肥厚,心肌无明显纤维化,心肌Axin表达量与对照相比无显著变化。在分离培养的成年大鼠心肌成纤维细胞,NE处理24h能明显升高Axin蛋白的表达水平。上述结果表明,大鼠心脏有Axin蛋白质表达,NE致大鼠心肌重塑过程中Axin蛋白表达显著增加,可能与该过程的心肌纤维化有关。  相似文献   

12.
Luminal shearing forces have been shown to impact both geometric remodeling and the development of intimal hyperplasia. Less well studied is the influence of intramural wall stresses on vessel growth and adaptation. Using a vein graft-fistula configuration to isolate the impact of circumferential wall stress, we identify the reorganization of adventitial myofibroblasts as the dominant histological event that limits early outward remodeling of vein grafts in response to elevated wall stress. We hypothesize that increased production of transforming growth factor-beta (TGF-beta) and connective tissue growth factor (CTGF) induces recruitment of myofibroblasts, promotes adventitial reorganization, and limits early outward remodeling in response to increased intramural wall stress. Vein grafts with a distal arteriovenous fistula in the neck of rabbits were constructed, resulting in a fourfold differential in circumferential wall stress. Using this model, we demonstrate 1) elevated wall stress augments the production of TGF-beta and CTGF, 2) increased TGF-beta expression and CTGF expression are correlated with the enhanced differentiation from fibroblasts to myofibroblasts, as evidenced by the significant increase in the alpha-actin-positive cells in adventitia, and 3) the levels of TGF-beta, CTGF, and alpha-actin are inversely correlated with the magnitude of outward remodeling of the graft wall. Increased wall stress after vein graft implantation appears to induce a TGF-beta- and CTGF-mediated recruitment of adventitial fibroblasts and a conversion to a myofibroblast phenotype. Although important in the maintenance of wall stability in the face of an increased mechanical load, this adventitial adaptation limits early outward remodeling of the vein conduit and may prove deleterious in maintaining long-term vein graft patency.  相似文献   

13.
The muscularization of non-muscular pulmonary arterioles is an important pathological feature of hypoxic pulmonary vascular remodeling. However, the origin of the cells involved in this process is still not well understood. The present study was undertaken to test the hypothesis that transforming growth factor-β1 (TGF-β1) can induce transdifferentiation of fibroblasts into myofibroblasts, which might play a key role in the muscularization of non-muscular pulmonary arterioles. It was found that mean pulmonary arterial pressure increased significantly after 7 d of hypoxia. Pulmonary artery remodeling index and fight ventricular hypertrophy became evident after 14 d of hypoxia. The distribution of nonmuscular, partially muscular, and muscular vessels was significantly different after 7 d of hypoxia. Immunocytochemistry results demonstrated that the expression of α-smooth muscle actin was increased in intra-acinar pulmonary arteries with increasing hypoxic time. TGF-β1 mRNA expression in pulmonary arterial walls was increased significantly after 14 d of hypoxia, but showed no obvious changes after 3 or 7 d of hypoxia. In pulmonary tunica adventitia and tunica media, TGF-β1 protein staining was poorly positive in control rats, but was markedly enhanced after 3 d of hypoxia, reaching its peak after 7 d of hypoxia. The myofibroblast phenotype was confirmed by electron microscopy, which revealed microfilaments and a well-developed rough endoplasmic reticulum. Taken together, our results suggested that TGF-β1 induces transdifferentiation of fibroblasts into myofibroblasts, which is important in hypoxic pulmonary vascular remodeling.  相似文献   

14.
Successful reconstructive surgery with muscle flaps depends on adequate arterial supply and undisturbed venous drainage. Combining such surgery with reconstructive vascular surgery of a large-caliber vein that is responsible for the venous drainage of the flap poses an additional challenge--the repaired vein's susceptibility to thrombosis. Every attempt must be made to prevent venous outflow obstruction following muscle flap surgery. Data from the vascular surgery literature demonstrate a low success rate for subclavian vein repair. The success rate with venous reconstructive surgery has been greater when a distal arteriovenous fistula accompanied the repair. The present case described the use of a temporary distal cephalic-brachial arteriovenous fistula to maintain the patency of the venous drainage of a pedicled latissimus dorsi muscle flap, following subclavian vein repair, for one-stage coverage of a large chest wall defect.  相似文献   

15.
In hemodialysis patients, a native arteriovenous fistula (AVF) is the preferred form of permanent vascular access. Despite recent improvements, vascular access dysfunction remains an important cause of morbidity in these patients. In this prospective observational cohort study, we evaluated potential risk factors for native AVF dysfunction. We included 68 patients with chronic renal disease stage 5 eligible for AVF construction at the Department of General and Vascular Surgery, Central Clinical Hospital Ministry of Internal Affairs, Warsaw, Poland. Patient characteristics and biochemical parameters associated with increased risk for AVF failure were identified using Cox proportional hazards models. Vessel biopsies were analyzed for inflammatory cells and potential associations with biochemical parameters. In multivariable analysis, independent predictors of AVF dysfunction were the number of white blood cells (hazard ratio [HR] 1.67; 95% confidence interval [CI] 1.24 to 2.25; p<0.001), monocyte number (HR 0.02; 95% CI 0.00 to 0.21; p?=?0.001), and red blood cell distribution width (RDW) (HR 1.44; 95% CI 1.17 to 1.78; p<0.001). RDW was the only significant factor in receiver operating characteristic curve analysis (area under the curve 0.644; CI 0.51 to 0.76; p?=?0.046). RDW>16.2% was associated with a significantly reduced AVF patency frequency 24 months after surgery. Immunohistochemical analysis revealed CD45-positive cells in the artery/vein of 39% of patients and CD68-positive cells in 37%. Patients with CD68-positive cells in the vessels had significantly higher white blood cell count. We conclude that RDW, a readily available laboratory value, is a novel prognostic marker for AVF failure. Further studies are warranted to establish the mechanistic link between high RDW and AVF failure.  相似文献   

16.
17.
Cigarette smoking may contribute to pulmonary hypertension in chronic obstructive pulmonary disease by resulting in pulmonary vascular remodeling that involves pulmonary artery smooth muscle cell proliferation. Connective tissue growth factor (CTGF) is a cysteine-rich peptide implicated in several biological processes such as cell proliferation, survival, and migration. This study investigated the potential role of CTGF in pulmonary vascular remodeling. We constructed a plasmid-based short hairpin RNA (shRNA) to knock down the expression of CTGF in primary cultured rat pulmonary artery smooth muscle cells (rPASMCs) and in rat lung vessels. Rat PASMCs were challenged with cigarette smoke extract (CSE). Rats were exposed to cigarette smoke for 3 months in the absence or in the presence of plasmid-based short hairpin RNA against CTGF which was administrated by tail vein injection. CTGFshRNA significantly prevented CTGF and cyclin D1 expression, arrested cell cycle at G0/G1 phase and suppressed cell proliferation in rPASMCs exposed to CSE. CTGFshRNA administration ameliorated pulmonary vascular remodeling, inhibited cigarette smoke-induced CTGF elevation and reversed the cyclin D1 increase in pulmonary vessels in rats. Collectively, our data demonstrated that plasmid-based shRNA against CTGF attenuated pulmonary vascular remodeling in cigarette smoke-exposed rats.  相似文献   

18.
《Gender Medicine》2007,4(2):157-169
Background: An arteriovenous fistula (AVF) creates high blood flow through the artery and fistula. With this high flow, there is flow-induced remodeling and an increase in diameter, but no intimal hyperplasia. Estrogen has been shown to modify vascular remodeling, decreasing intimal hyperplasia after endothelial injury.Objective: These experiments tested the hypothesis that estrogen administration would decrease wall thickness in an AVE model. Because estrogen may decrease wall thickness, we also tested the hypothesis that testosterone would increase wall thickness.Methods: A fistula was created between the abdominal aorta and the inferior vena cava in Sprague-Dawley rats to generate high blood flow conditions in the aorta. Four groups of female animals were examined: sham, control with AVE ovariectomized (OVX) with AVE and OVX plus testosterone with AVE Four groups of male animals were also examined: sham, control with AVE castrated with AVE and castrated plus estrogen with AVE Five weeks after creation of the AVF, the aortas were collected and fixed; wall thickness was measured both proximal and distal to the AVEResults: Ovariectomy resulted in a significant decrease in estrogen levels (P < 0.01). Testosterone administration tended to increase testosterone levels in the OVX females, but values did not approach levels observed in the control males. No difference was noted in the proximal wall thickness between the control and the OVX animals. The OVX females receiving testosterone exhibited a significant increase in both proximal and distal wall thickness compared with control females (P < 0.001). In the male animals, there was no significant change in aortic wall thickness in the castrated rats compared with the controls. Estrogen administration in the castrated males resulted in a significant decrease in wall thickness in the proximal and distal aorta (P < 0.05).Conclusion: These studies suggest that, in a model of vascular remodeling, estrogen administration decreases wall thickness, and testosterone administration increases wall thickness.  相似文献   

19.
20.
兔血管外膜对血管重构及收缩功能影响的初步观察   总被引:13,自引:0,他引:13  
Mu HM  Zhu ZM  Wang HY  Wang LJ 《生理学报》2003,55(3):290-295
本文研究血管外膜在血管重塑及功能调控中的作用。实验采用在体去除兔颈动脉外膜的方法,于术后即刻、1周及2周取出动脉作组织学、免疫组织化学染色及血管反应性测定。结果显示:(1)去除颈动脉局部外膜对内皮及中层平滑肌无明显损伤;(2)去除外膜后血管平滑肌细胞增殖,并有新生内膜形成;(3)与对照例比较,去外膜侧血管对去甲肾上腺素的收缩反应在术后即刻及1周时减弱(P<0.05)。上述研究结果提示:去除动脉外膜可导致血管内膜增殖及血管平滑肌收缩功能的改变,表明外膜可能参与血管重塑及对血管功能的调控。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号