首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
米志平  杨智 《四川动物》2001,20(4):214-216
小熊猫的胃属单室腺型胃,它以角切迹为界,可分为胃底部和幽门部两部分。胃壁由粘膜、粘膜下层、肌层和浆膜四层组成。四上皮为单层柱状上皮,具有分泌粘液的功能。胃腺有贲门腺、胃底腺、幽门腺三种,但贲门腺不发达。主细胞、壁细胞和粘液细胞的数量与分布呈现规律性变化。肌层发达,特别是内环行肌发达。并与大熊猫胃的结构作了比较。  相似文献   

2.
Apelin cells in the rat stomach   总被引:4,自引:0,他引:4  
Apelin is a recently discovered peptide that is the endogenous ligand for the APJ receptor. Apelin is produced in the central nervous system, heart, lung, mammary gland and gastrointestinal (GI) tract. The aim of this study was to identify by immunohistochemistry (IHC) cell types in the rat stomach that produce apelin peptide. IHC revealed abundant apelin-positive cells, primarily in the neck and upper base regions of the gastric glands in the mucosal epithelium. Apelin is not detected in the muscle layer. Apelin-positive cells were identified as mucous neck, parietal cells, and chief cells. Apelin is also identified in gastric epithelial cells that produce chromogranin A (CGA), a marker of enteroendocrine cells. The findings that apelin is expressed in gastric exocrine and endocrine cells agrees with and extends other data showing that apelin peptide is measurable in the gut lumen and in the systemic circulation by immunoassay.  相似文献   

3.
Summary The gastric mucosa of a reptile, the lizard Tiliqua scincoides, has been examined by light and electron microscopy. The gastric pits lead into glands that are extensively coiled in the proximal stomach but become progressively shorter and straighter in the distal stomach. The following epithelial cell types have been identified: (i) Surface mucous cells (SMC) line the entire lumenal surface as well as the pits. They contain mucus granules that stain with periodic acid-Schiff and, like the granules of mammalian SMC, commonly contain an electron dense core that appears not to be mucus (periodic acid-chromic acid-silver methenamine nonreactive). (ii) Glandular mucous cells are present in glands throughout the mucosa. They are probably homologous with the mucous neck and antral gland cells of mammals; like SMC their mucus granules contain nonglycoprotein cores. (iii) Oxynticopeptic cells (OPC) are the predominant cell type in the proximal glands but become infrequent distally. Their fine structure resembles that of OPC in other nonmammalian vertebrates, with features like those of both parietal cells and zymogen cells of mammals, (iv) Endocrine cells of three different types have been identified. Two of these show close similarities to the EC and ECL cells of mammals.The authors thank Mrs. D. Flavell for technical assistance. This study was supported by a grant from the Clive and Vera Ramaciotti Foundations  相似文献   

4.
The cardiac and pyloric glands in the gastric mucosa of the South African hedgehog, Atelerix frontalis, are described. The cardiac area of the stomach contains proper cardiac glands and lacks undifferentiated fundic glands. The cardiac glands are simple tubular, coiled, and lined with columnar cells ultrastructurally similar to those of the gastric surface epithelium. Secretory granules with varying electron densities fill the apical cytoplasm of these cells. In contrast to other mammals, these glands lack mucous neck cells. The neck of the pyloric glands contains only a single cell type, whereas the basal regions of these glands contain “light” and “dark” cells. The secretory granules in the “dark” cells and the pyloric neck cells have a moderate electron density and often contain an electron dense core. An electron-lucent cytoplasm with numerous polysomes is characteristic of the “light” cells. Some “light” cells contain electron-dense granules in the apical cytoplasm. The presence of only neutral mucins in the cardiac gland cells denotes the absence of mucous neck cells. The acidic mucins within the pyloric neck cells seem to indicate that these cells are mucous neck cells, whereas the neutral mucins within the basally located pyloric gland cells show at least a partial functional difference from the pyloric neck cells. © 1993 Wiley-Liss, Inc.  相似文献   

5.
Gastric and cranial duodenal structure of the bowhead whale (Balaena mysticetus) was examined grossly and microscopically. The stomach was arranged in a series of four compartments. The first chamber, or forestomach, was a large nonglandular sac lined by a keratinized stratified squamous epithelium. It was followed by the fundic chamber, a large, somewhat globular and entirely glandular compartment. At the entrance of the fundic chamber, a narrow cardiac gland region could be defined. The remaining mucosa of the chamber contained the proper gastric glands. A narrow, tubular connecting channel, the third distinct gastric division, was lined by mucous glands and joined the fundic chamber with the final stomach compartment, or pyloric chamber. This fourth chamber was also tubular and lined by mucous glands but was of a diameter considerably larger than the connecting channel. The stomach terminated at the pyloric sphincter which consisted of a well-developed band of circular smooth-muscle bundles effecting a division between the pyloric chamber and small intestine. The small intestine began with the duodenal ampulla, a dilated sac considerably smaller than the fundic chamber of the stomach. The mucosa of this sac contained mucous glands throughout. The ampulla led without a separating sphincter into the duodenum proper which continued the intestine in a much more narrow tubular fashion. The mucosal lining of the duodenum was composed of villi and intestinal crypts. Although their occurrence varied among whales, enteroendocrine cells were identified within the mucous glands of the cardiac region, connecting channel, pyloric chamber, and cranial duodenum. The hepatopancreatic duct entered the wall of the duodenum shortly after the termination of the duodenal ampulla and continued intramurally along the intestine before finally joining the duodenal lumen.  相似文献   

6.
Fine structural characteristics of the columnar mucus cells lining the surface and pits of the gastric mucosa, oxyntic cells lining the glands and the gastric endocrine cells were studied. The surface mucus cells, in addition to their primary involvement in production of mucus, showed structural adaptations. Release of the mucus vesicles was achieved by exocytosis. Transition from pit gland cells was abrupt since no mucus neck cells were observed. The oxyntic cells possessed apical and basal microvillous processes, a well developed tubulovesicular system, zymogen granules and extensive RER associated with many large mitochondria. When stimulated by distension of the stomach, the apical cytoplasm was converted into a labyrinth of cytoplasmic processes, while annular lamellae, each of which showed a short peripheral linear density appeared in the basal cytoplasm. The endocrine cells showed apical modifications as microvilli, cilia and reduced glycocalyx covering. Three types were distinguished on the basis of their granular morphology.  相似文献   

7.
The gastric mucosa is covered by a continuous layer of mucus. Although important for understanding the mechanism of this protective function, only scarce information exists about the pH inside the gastric gland and its outlet. pH in the lumen of the gastric glands, in the outlet of gastric crypts, and in the adjacent cells was measured in the isolated acid-secreting mucosa of the guinea pig. Ultrafine double-barreled pH microelectrodes were advanced at high acceleration rates through the gastric mucus and the tissue to ensure precise intracellular and gland lumen pH measurements. A pH gradient was found to exist along the gastric gland, where the pH is 3.0 at parietal cells, i.e., in the deepest regions, and increases to 4.6 at the crypt outlet. Intracellular pH (pH(i)) of epithelial cells bordering a crypt outlet, and of neck cells bordering a gland, was acidic, averaging 6.0 and 6.5, respectively. pH(i) of deep cells bordering a gland was nearly neutral, averaging 7.1, and the secreting parietal cells were characterized by a slightly alkaline pH(i) of 7.5. This gland pH gradient is in general agreement with a model that we recently proposed for proton transport in the gastric mucus, in which protons secreted by the parietal cells are buffered to and transported with the simultaneously secreted mucus toward the gastric lumen, where they are liberated from the degraded mucus.  相似文献   

8.
The signals that guide the morphogenesis and differentiation of rat fetal gastric mucosa remain largely unknown. We have investigated the role of capsulin in pit/gland formation and epithelial cell differentiation in cultured stomach tissue. Embryonic day 16.5 (E 16.5) stomach tissue cultured for three days in the presence of 1 microM hydrocortisone underwent dramatic transformation, from undifferentiated, stratified cells to differentiated epithelia composed of polarised columnar cells with mucous cells and pit/glands. In the presence of capsulin antisense oligonucleotides directed against capsulin mRNA, tissues do not undergo further development. Significantly, both mucous granules and pit/gland formation were inhibited compared to capsulin sense/scrambled oligonucleotide treated controls. However, in tissues treated with specific anti-rat HGF-antiserum to neutralise secreted HGF, pit/gland formation was inhibited, but the number of mucous granules remained unchanged compared to controls treated with non-specific antiserum (mouse monoclonal cytokeratin 8 antiserum). This data suggests that capsulin may have a role in the morphogenesis of pit/glands and mucin granule formation in the developing rat gastric mucosa. We discuss the possibility that this role of capsulin may be partly mediated through the actions of HGF.  相似文献   

9.
Using a specific polyclonal antibody raised against rat pancreatic phospholipase A2 (PLA2), we investigated the localization of the enzyme in the rat pancreas and stomach by light and electron microscopy. In the pancreas, the enzyme was localized in the acinar cells, whereas the pancreatic islets showed no immunoreaction. In the stomach, the PLA2 reactive with the anti-pancreatic PLA2 antibody was distributed exclusively in the gastric glands, but not in the gastric pits or the pyloric glands. On the section of the stomach subjected to immuno- and PAS-staining, immunopositive cells were not the PAS-positive cells located in the gastric pit and the neck region of the gastric gland. Immunopositive cells were present from the neck to the bottom of the gastric gland. Immunoelectron microscopic observation revealed that the immunogold-labeled cell had a highly-developed rough endoplasmic reticulum in the basal cytoplasm and characteristic zymogen granules in the apical cytoplasm. Taking into account the cell position in the gastric gland, the immunopositive cell could therefore be identified as a chief cell. Since no double stainability with PLA2 and PAS was observed in the same cell, it is suggested that PLA2 could be used cytochemically as a marker enzyme of the chief cell in the gastric gland at the light-microscopic level. From the immunoelectron microscopic findings, we believe that the PLA2 in the stomach is released into the lumen of the stomach by exocytosis and could function as a digestive enzyme in the alimentary tract, like the PLA2 secreted from the pancreas. Other possible roles of the PLA2 in the stomach are discussed.  相似文献   

10.
Comparative morphology of the stomach of some laboratory mammals   总被引:3,自引:0,他引:3  
Histomorphology of the stomach of mouse, rat, hamster, guineapig, gerbil, and rabbit was studied. Although a common structural basis existed in the stomach between these species, the occurrence and distribution of various cells in gastric glands differed considerably between them. In mice, rats, hamsters and gerbils, the lower one-third of the glandular lamina propria was seemingly occupied by a varying proportion of parietal and chief cells. In rabbits, the predominantly occurring chief cells were distributed in the lower three-quarters of the glands intermingling with parietal cells, but in guinea-pigs the chief cells were not discernible. In hamsters, there was, however, a gradual increase of chief cells from the junction between nonglandular-glandular stomach toward the pyloric region. In all these species, parietal cells were the predominant cell type in the upper half to upper one-third of the gastric glands, often extending up to the neck of the glands interspersing between mucus neck cells and occasionally between chief cells.  相似文献   

11.
22-Oxacalcitriol the analog with low calcemic effect and the original hormone 1,25(OH)2 vitamin D3 were localized by autoradiography in mouse stomach at different time intervals after intravenous injection. Both compunds showed a distinct nuclear concentration and retention in neck mucous cells of gastric and pyloric glands, and in dispersed endocrine cells in the antrum region. When the nuclear binding of radioactively labelled compound was compared between gastric neck cells and duodenal absorptive cells, binding was low but sustained in neck cells. Peak uptake after the injection was between 8 and 12 h in neck cells, but between 15 min and 30 min in duodenal villous epithelium. In the duodenum, weak nuclear labelling appeared at 8 h and was undetectable at 12 h under the conditions of the experiment. Nuclear labelling of neck cells remained detectable at 12 h and even after 24 h, similarly for both OCT and 1,25(OH)2 vitamin D3. These results suggest that the stomach is an important target tissue for vitamin D and its analog OCT. Regulation of neck cell functions is suggested, such as proliferation and differentiation of surface epithelium and gastric gland epithelium, and neck cell secretion of acidic mucus. Regulation is also indicated of G-cell gastrin secretion associated with gastrin paracrine effects on parietal cell HCl and intrinsic factor secretion, chief cell pepsinogen secretion, neck cell proliferation, as well as endocrine effects on systemic calcium homeostasis.  相似文献   

12.
The epithelium of the gastric mucosa and its glands in the corpus of rat stomach contains mucous surface cells (MSCs), parietal cells, mucous neck cells (MNCs), zymogenic or chief cells (ZCs), several types of enteroendocrine cells, and intermediate cells with characteristics between MNCs and ZCs also called transitional or prezymogenic cells (pre-ZCs).The aim of our work was to analyze the expression of Mannose (Man) in the rat gastric glands by means of Galanthus nivalis lectin (GNA) histochemistry to identify the differences between MNC, pre-ZCs and ZCs and to establish the relationships between these cells. Most of the cytoplasm of MNCs was negative for GNA histochemistry. Intensity of GNA labeling in the gastric gland showed a graduation from pre-ZCs (weak labeling) to ZCs (moderate labeling). Labeling of ZCs was stronger at the perinuclear and apical cytoplasm.In the last years, strong evidence has been reported supporting that ZCs differentiate from MNCs. Our work also supports the origin of ZCs from MNCs, because the GNA labeling graduation might be due to oligosaccharides which are not expressed in MNCs, start to express in pre-ZCs and are more abundant in ZCs, indicating that differentiation from MNCs to ZCs is a process in which glycans with Man moieties are synthesized.  相似文献   

13.
Gross hyperplasia of the gastric mucosa and excessive mucus production in the stomach occur in rats heavily parasitized with larvae of Taenia taeniaeformis. In this study, a positive correlation between the number of larvae recovered from hepatic cysts and the weight of the stomachs of infected rats was found. By light microscopy, the hyperplasia was restricted to the glandular mucosa. Parietal and chief cells were very rare, and densely PAS-positive mucous cells were the major cell types in the hyperplastic stomach while, in comparison, alcian blue-positive cells were much fewer in number. The isolated gastric mucosa in organ culture had an increased [3H]thymidine incorporation rate in rats infected with T. taeniaeformis. The hexosamine concentration per milligram protein in the hyperplastic stomach mucosa was twice that in the control rat stomach mucosa. By electron microscopy, the apical cytoplasm of the mucous cells was found to be filled with small dark granules. These results indicate that the gastric hyperplasia is caused by stimulation of growth and major differentiation of stem cells to neutral mucus-producing cells.  相似文献   

14.
Summary Using a specific polyclonal antibody raised against rat pancreatic phospholipase A2 (PLA2), we investigated the localization of the enzyme in the rat pancreas and stomach by light and electron microscopy. In the pancreas, the enzyme was localized in the acinar cells, whereas the pancreatic islets showed no immunoreaction. In the stomach, the PLA2 reactive with the anti-pancreatic PLA2 antibody was distributed exclusively in the gastric glands, but not in the gastric pits or the pyloric glands. On the section of the stomach subjected to immuno- and PAS-staining, immunopositive cells were not the PAS-positive cells located in the gastric pit and the neck region of the gastric gland. Immunopositive cells were present from the neck to the bottom of the gastric gland. Immunoelectron microscopic observation revealed that the immunogold-labeled cell had a highly-developed rough endoplasmic reticulum in the basal cytoplasm and characteristic zymogen granules in the apical cytoplasm. Taking into account the cell position in the gastric gland, the immunopositive cell could therefore be identified as a chief cell. Since no double stainability with PLA2 and PAS was observed in the same cell, it is suggested that PLA2 could be used cytochemically as a marker enzyme of the chief cell in the gastric gland at the light-microscopic level. From the immunoelectron microscopic findings, we believe that the PLA2 in the stomach is released into the lumen of the stomach by exocytosis and could function as a digestive enzyme in the alimentary tract, like the PLA2 secreted from the pancreas. Other possible roles of the PLA2 in the stomach are discussed.  相似文献   

15.
The stomach of the South American marsupial family Caenolestidae has a gland on its lesser curvature around the cardia. This cardiogastric gland is bi-lobed, typically 11times5 mm and bears a distinctive, highly folded mucosa which forms sac-like invaginations. These open into the stomach lumen via 40–60 slit-like orifices. The gland mucosa contains unbranched gastric glands which are considerably longer than those of other gastric glands present elsewhere in the stomach. The cells within the cardiogastric gland show intense eosinophilic staining properties, with the parietal cells being larger than those found in other regions of the stomach, as well as being arranged in clusters. Argentaffin cells are not present in the stomach mucosa. The gross morphology of the stomach and intestine is similar to that found in small carnivorous marsupials.  相似文献   

16.
Dopamine (DA) plays a critical role in the protection of gastric mucosa and is mediated through corresponding receptors. However, the details of the expression of DA receptors (D1-D5) in the gastric mucosa are lacking. The present study investigated the expression and cellular localization of DA receptors in rat gastric mucosa by means of real-time PCR and immunofluorescent techniques. The results indicated that the mRNA expressions of all five subtypes of DA receptors were found in the gastric mucosa, among which the D2 level was the highest. The immunopositive cells of D1-D3 and D5 were primarily localized to the basilar gland of the epithelial layer in gastric corpus, but D4 immunoreactivity (IR) was only observed in the enteric nerve plexus. The D1, D2, and D5 IR were found in pepsin C-IR cells except D3. No IR of any DA receptor was detected in the H(+)/K(+)-ATPase- or mucin 6-IR cells. In conclusion, for the first time, this study demonstrates the predominant distribution of DA receptors in the chief cells, not the parietal and mucous neck cells, in rat gastric mucosa, thus suggesting that DA may not directly regulate the function of parietal cells or mucous neck cells, but it may modulate the function of chief cells through the D1, D2, and D5 receptors.  相似文献   

17.
Summary Ten hamsters received repeated injections of 3H-thymidine for 4 days and were allowed to survive for 7, 28, 42 and 100 days. Changes in spatial distribution of the labelled cells and in labelling indices of each cell line in the gastric glands were studied at various days after 3H-thymidine injections, and the fate of the mucous neck cell, the replacement of the chief cell and the mode of cell migration were discussed.After 4 days of repeated injections of 3H-thymidine, the labelled parietal cells and the mucous neck cells were concentrated at the neck area. Starting from the neck area, they migrated an average of 3 micra downwards per day. By 42 days, they reached the middle level of the glands, where the labelled mucous neck cells decreased but the labelled chief cells increased in number. The differentiation of the chief cell then appears to take place at the middle level of the glands through transformation of the migratory mucous neck cells. After 4 days of the labelling, about 1.8% of the chief cells located in the lower part of the glands was found to undergo in situ replication. This indicates that the renewal of this cell type is partly assured by its own mitotic activity.The foveolar cell — the future surface epithelium — seems to migrate upwards along the long axis of the glandular tubule in the pipe line system, which means first produced, first migrates. After migrating out from the neck area, the parietal cell and the mucous neck cell (the future chief cell) take an average of 200 days to reach the lower end of the glands. In the process of migration, however, the cells produced contemporaneously at the neck area became scatteringly spread from the neck towards the bottom of the gland. The time required for the newly-formed cells to reach the lower end of the gland varied between 100 and 300 days. In the gastric glands the cells first produced at the neck area do not first reach the lower end of the glands. This mode of random migration is referred to as the stochastic flow system. As one of the probable factors which disturb the pipe line flow of downward cell migration, cellular movements perpendicular to the long axis of the glandular tubule were suggested to occur at random at an any level of the gastric glands.Supported by a Grant-in-Aid for Cancer Research from the Ministry of Education, Science and Culture, Japan  相似文献   

18.
IQGAPs, GTPase-activating proteins with an IQ motif, are thought to regulate many actin cytoskeleton-based activities through interactions with Cdc42 and Rac. Recently, Cdc42 was implicated in regulation of gastric parietal cell HCl secretion, and IQGAP2 was immunolocalized with Cdc42 to F-actin-rich intracellular canalicular membranes of isolated gastric parietal cells in primary culture. Here we sought to define distribution and localization of IQGAP1 and IQGAP2 in major oxyntic (acid-secreting) gastric mucosal cell types and to determine whether secretory agonists modulate these proteins. Differential staining protocols were used to identify different cell populations (parietal, chief, surface/pit, and mucous neck cells) in semi-intact glands isolated from rabbit gastric mucosae and to characterize these same cells after dispersion and fractionation on isopycnic density gradients with simultaneous staining for F-actin, H+-K+-ATPase, and GSII lectin-binding sites. There was a pronounced increase in intracellular F-actin staining in dispersed chief cells, apparently from internalization of F-actin-rich apical membranes that normally abut the gland lumen. Therefore, other membrane-associated proteins might also be redistributed by disruption of cell-cell contacts. Western blot analyses were used to quantitate relative concentrations of IQGAPs in defined mucosal cell fractions, and gastric glands were used for in situ localizations. We detected uniform levels of IQGAP2 expression in oxyntic mucosal cells with predominant targeting to regions of cell-cell contact and nuclei of all cell types. IQGAP2 was not detected in parietal cell intracellular canaliculi. IQGAP1 expression was variable and targeted predominantly to the cortex of chief and mucous neck cells. Parietal cells expressed little or no IQGAP1 vs. other mucosal cell types. Phosphoprotein affinity chromatography, isoelectric focusing, and phosphorylation site analyses indicated that both IQGAP1 and IQGAP2 are phosphoproteins potentially regulated by [Ca2+]i/PKC and cAMP signaling pathways, respectively. Stimulation of glands with carbachol, which elevates [Ca2+]i and activates PKC, induced apparent translocation of IQGAP1, but not IQGAP2, to apical poles of chief (zymogen) and mucous neck cells. This response was mimicked by PMA but not by ionomycin or by elevation of [cAMP]i with forskolin. Our observations support a novel, PKC-dependent role for IQGAP1 in regulated exocytosis and suggest that IQGAP2 may play a more general role in regulating cell-cell interactions and possibly migration within the gastric mucosa.  相似文献   

19.
Previous results from our laboratory employing the phospholipid-selective cytochemical stain iodoplatinate (IP) suggest that surfactant-like phospholipids (SLPL) are intracellularly contained within rodent gastric mucous cells and are occasionally seen extracellularly within the mucous gel layer. This hydrophobic lipid coating may provide the stomach with a protective water-repellent lining against the corrosive gastric juice in the lumen. Extracellular SLPL are frequently removed during tissue processing for electron microscopy. In this study, we developed a simple method employing an agarose-embedding technique to retain these extracellular SLPL in gastric mucosa excised from rats pre-treated with prostaglandin (to stimulate gastric surfactant/mucus secretion). With the help of polypropylene supporting screens and cassette carriers, thin slices of agarose-embedded gastric mucosa were well preserved and uniformly stained with IP. Extracellular myelin figures were well retained over the interfoveolar surface as well as in the pit region. The IP-reactive substances were seen within or coating the surface of the mucous gel. Our results also indicate that agarose is useful not only for supporting soft tissue while preparing sections with a microslicer but also for preservation of extracellular lipoidal material for electron microscopic observation.  相似文献   

20.
Ultrastructural changes in the cells of the proper gastric glands and their stroma are biphasic in the hemorrhagic shock. First phase: "paralysis" of the capillary vessels with an oedema of their stroma, an intracellular oedema with hydropic degeneration of the parietal cells and a degranulation of the argentaffin and argentaffin-like cells. Second phase: ischemia of the gastric mucosa with ultrastructural features of: a) the increased secretion of the parietal cells, b) the degranulation of the chief gastric cells, c) the increased secretion processes in the mucous neck cells. These findings suggest that at last 2 factors coincide in the pathogenesis of so-called stress gastric ulcerations: biphasic disturbances of blood circulation initially damage the gastric mucosa and are followed the digestive hyperactivity of the gastric juice finally resulting stress ulceration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号