首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 898 毫秒
1.
Acute pancreatitis (AP) is an inflammatory disease involving acinar cell injury and rapid production and release of inflammatory cytokines, which play a dominant role in local pancreatic inflammation and systemic complications. 2',4',6'-Tris (methoxymethoxy) chalcone (TMMC), a synthetic chalcone derivative, displays potent anti-inflammatory effects. Therefore, we aimed to investigate whether TMMC might affect the severity of AP and pancreatitis-associated lung injury in mice. We used the cerulein hyperstimulation model of AP. Severity of pancreatitis was determined in cerulein-injected mice by histological analysis and neutrophil sequestration. The pretreatment of mice with TMMC reduced the severity of AP and pancreatitis-associated lung injury and inhibited several biochemical parameters (activity of amylase, lipase, trypsin, trypsinogen, and myeloperoxidase and production of proinflammatory cytokines). In addition, TMMC inhibited pancreatic acinar cell death and production of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6 by inhibiting NF-κB and extracellular signal-regulated protein kinase 1/2 (ERK1/2) activation. Neutralizing antibodies for TNF-α, IL-1β, and IL-6 inhibited cerulein-induced cell death in isolated pancreatic acinar cells. Moreover, pharmacological blockade of NF-κB/ERK1/2 reduced acinar cell death and production of TNF-α, IL-1β, and IL-6 in isolated pancreatic acinar cells. In addition, posttreatment of mice with TMMC showed reduced severity of AP and lung injury. Our results suggest that TMMC may reduce the complications associated with pancreatitis.  相似文献   

2.
3.
Acute pancreatitis (AP) is an inflammatory disease involving the production of different cytokines and chemokines and is characterized by leukocyte infiltration. Because the chemokine receptor CCR5 and its ligands [the CC chemokines CCL3/MIP-1alpha, CCL4/MIP-1beta, and CCL5/regulated upon activation, normal T cell expressed and secreted (RANTES)] regulate leukocyte chemotaxis and activation, we investigated the expression of CCR5 ligands and the role of CCR5 and its ligands in experimental AP in mice. AP was induced by hourly intraperitoneal injections of cerulein in CCR5-deficient (CCR5(-/-)) or wild-type (WT) mice. Induction of AP by cerulein resulted in an early increase of pancreatic CCL2, CCL3, and CCL4 mRNA expression, whereas CCL5 mRNA expression occurred later. CCR5(-/-) mice developed a more severe pancreatic injury than WT mice during cerulein-induced AP, as assessed by a more pronounced increase in serum amylase and lipase levels and by more severe pancreatic edema, inflammatory infiltrates (mainly neutrophils), and necrosis. CCR5(-/-) mice also exhibited increased production of CCL2/MCP-1, CCL3/MIP-1alpha, and CCL4/MIP-1beta during the course of cerulein-induced AP. In vivo simultaneous neutralization of CC chemokines with monoclonal antibodies in CCR5(-/-) mice reduced the severity of cerulein-induced AP, indicating a role of CC chemokines in exacerbating the course of AP in the absence of CCR5. Moreover, simultaneous neutralization of CCR5 ligands in WT mice also reduced the severity of cerulein-induced AP. In conclusion, lack of the chemokine receptor CCR5 exacerbates experimental cerulein-induced AP and leads to increased levels of CC chemokines and a more pronounced pancreatic inflammatory infiltrate, suggesting that CCR5 expression can modulate severity of AP.  相似文献   

4.
Wang Q  Zhang M  Liang B  Shirwany N  Zhu Y  Zou MH 《PloS one》2011,6(9):e25436

Aims

Berberine, a botanical alkaloid purified from Coptidis rhizoma, is reported to activate the AMP-activated protein kinase (AMPK). Whether AMPK is required for the protective effects of berberine in cardiovascular diseases remains unknown. This study was designed to determine whether AMPK is required for berberine-induced reduction of oxidative stress and atherosclerosis in vivo.

Methods

ApoE (ApoE-/-) mice and ApoE-/-/AMPK alpha 2-/- mice that were fed Western diets were treated with berberine for 8 weeks. Atherosclerotic aortic lesions, expression of uncoupling protein 2 (UCP2), and markers of oxidative stress were evaluated in isolated aortas.

Results

In ApoE-/- mice, chronic administration of berberine significantly reduced aortic lesions, markedly reduced oxidative stress and expression of adhesion molecules in aorta, and significantly increased UCP2 levels. In contrast, in ApoE-/-/AMPK alpha 2-/- mice, berberine had little effect on those endpoints. In cultured human umbilical vein endothelial cells (HUVECs), berberine significantly increased UCP2 mRNA and protein expression in an AMPK-dependent manner. Transfection of HUVECs with nuclear respiratory factor 1 (NRF1)-specific siRNA attenuated berberine-induced expression of UCP2, whereas transfection with control siRNA did not. Finally, berberine promoted mitochondrial biogenesis that contributed to up-regulation of UCP2 expression.

Conclusion

We conclude that berberine reduces oxidative stress and vascular inflammation, and suppresses atherogenesis via a mechanism that includes stimulation of AMPK-dependent UCP2 expression.  相似文献   

5.
Cyclooxygenase-2 (COX-2), a widely distributed enzyme, plays an important role in inflammation. We have studied the role of COX-2 in acute pancreatitis and pancreatitis-associated lung injury using both the pharmacological inhibition of COX-2 and genetic deletion of COX-2. Pancreatitis was induced in mice by 12 hourly injections of cerulein. The severity of pancreatitis was assessed by measuring serum amylase, pancreatic trypsin activity, intrapancreatic sequestration of neutrophils, and acinar cell necrosis. The severity of lung injury was evaluated by measuring lactate dehydrogenase levels in the bronchoalveolar lavage fluid and by quantitating neutrophil sequestration in the lung. In both the pharmacologically inhibited and genetically altered mice, the severity of pancreatitis and pancreatitis-associated lung injury was reduced compared with the noninhibited strains of COX-2-sufficient mice. This reduction in injury indicates that COX-2 plays an important proinflammatory role in pancreatitis and its associated lung injury. Our findings support the concept that COX-2 inhibitors may play a beneficial role in the prevention of acute pancreatitis or in the reduction of its severity.  相似文献   

6.
7.
Some individuals develop prediabetes and/or diabetes following acute pancreatitis (AP). AP-induced beta-cell injury and the limited regenerative capacity of beta cells might account for pancreatic endocrine insufficiency. Previously, we found that only a few pancreatic cytokeratin 5 positive (Krt5+) cells differentiated into beta cells in the murine AP model, which was insufficient to maintain glucose homeostasis. Notch signaling determines pancreatic progenitor differentiation in pancreas development. This study aimed to examine whether Notch signaling inhibition could promote pancreatic Krt5+ cell differentiation into beta cells and improve glucose homeostasis following AP. Pancreatic tissues from patients with acute necrotizing pancreatitis (ANP) were used to evaluate beta-cell injury, Krt5+ cell activation and differentiation, and Notch activity. The murine AP model was induced by cerulein, and the effect of Notch inhibition on Krt5+ cell differentiation was evaluated both in vivo and in vitro. The results demonstrated beta-cell loss in ANP patients and AP mice. Krt5+ cells were activated in ANP pancreases along with persistently elevated Notch activity, which resulted in the formation of massive duct-like structures. AP mice that received Notch inhibitor showed that impaired glucose tolerance was reversed 7 and 15 days following AP, and increased numbers of newborn small islets due to increased differentiation of Krt5+ cells to beta cells to some extent. In addition, Krt5+ cells isolated from AP mice showed increased differentiation to beta cells by Notch inhibition. Collectively, these findings suggest that beta-cell loss contributes to pancreatic endocrine insufficiency following AP, and inhibition of Notch activity promotes pancreatic Krt5+ cell differentiation to beta cells and improves glucose homeostasis. The findings from this study may shed light on the potential treatment of prediabetes/diabetes following AP.Subject terms: Endocrine system and metabolic diseases, Pancreatitis  相似文献   

8.
Obesity is clearly an independent risk factor for increased severity of acute pancreatitis (AP), although the mechanisms underlying this association are unknown. Adipokines (including leptin and adiponectin) are pleiotropic molecules produced by adipocytes that are important regulators of the inflammatory response. We hypothesized that the altered adipokine milieu observed in obesity contributes to the increased severity of pancreatitis. Lean (C57BL/6J), obese leptin-deficient (LepOb), and obese hyperleptinemic (LepDb) mice were subjected to AP by six hourly intraperitoneal injections of cerulein (50 microg/kg). Severity of AP was assessed by histology and by measuring pancreatic concentration of the proinflammatory cytokines IL-1beta and IL-6, the chemokine MCP-1, and the marker of neutrophil activation MPO. Both congenitally obese strains of mice developed significantly more severe AP than wild-type lean animals. Severity of AP was not solely related to adipose tissue volume: LepOb mice were heaviest; however, LepDb mice developed the most severe AP both histologically and biochemically. Circulating adiponectin concentrations inversely mirrored the severity of pancreatitis. These data demonstrate that congenitally obese mice develop more severe AP than lean animals when challenged by cerulein hyperstimulation and suggest that alteration of the adipokine milieu exacerbates the severity of AP in obesity.  相似文献   

9.
Ma X  Lin L  Qin G  Lu X  Fiorotto M  Dixit VD  Sun Y 《PloS one》2011,6(1):e16391

Background

Obesity is a hallmark of aging in many Western societies, and is a precursor to numerous serious age-related diseases. Ghrelin (Ghrl), via its receptor (growth hormone secretagogue receptor, GHS-R), is shown to stimulate GH secretion and appetite. Surprisingly, our previous studies showed that Ghrl-/- mice have impaired thermoregulatory responses to cold and fasting stresses, while Ghsr-/- mice are adaptive.

Methodology/Principal Findings

To elucidate the mechanism, we analyzed the complete metabolic profiles of younger (3–4 months) and older (10–12 months) Ghrl-/- and Ghsr-/- mice. Food intake and locomotor activity were comparable for both null mice and their wild-type (WT) counterparts, regardless of age. There was also no difference in body composition between younger null mice and their WT counterparts. As the WT mice aged, as expected, the fat/lean ratio increased and energy expenditure (EE) decreased. Remarkably, however, older Ghsr-/- mice exhibited reduced fat/lean ratio and increased EE when compared to older WT mice, thus retaining a youthful lean and high EE phenotype; in comparison, there was no significant difference with EE in Ghrl-/- mice. In line with the EE data, the thermogenic regulator, uncoupling protein 1 (UCP1), was significantly up-regulated in brown adipose tissue (BAT) of Ghsr-/- mice, but not in Ghrl-/- mice.

Conclusions

Our data therefore suggest that GHS-R ablation activates adaptive thermogenic function(s) in BAT and increases EE, thereby enabling the retention of a lean phenotype. This is the first direct evidence that the ghrelin signaling pathway regulates fat-burning BAT to affect energy balance during aging. This regulation is likely mediated through an as-yet-unidentified new ligand of GHS-R.  相似文献   

10.
Mutations in the cystic fibrosis transmembrane conductance regulator gene (CFTR) are an established risk factor for cystic fibrosis (CF) and chronic pancreatitis. Whereas patients with CF usually develop complete exocrine pancreatic insufficiency, pancreatitis patients with CFTR mutations have mostly preserved exocrine pancreatic function. We therefore used a strain of transgenic mice with significant residual CFTR function (CFTRtm1HGU) to induce pancreatitis experimentally by serial caerulein injections. Protease activation and necrosis were investigated in isolated acini, disease severity over 24h, pancreatic function by MRI, isolated duct stimulation and faecal chymotrypsin, and leucocyte function by ex vivo lipopolysaccharide (LPS) stimulation. Pancreatic and lung injury were more severe in CFTRtm1HGU but intrapancreatic trypsin and serum enzyme activities higher than in wild-type controls only at 8h, a time interval previously attributed to leucocyte infiltration. CCK-induced trypsin activation and necrosis in acini from CFTRtm1HGU did not differ from controls. Fluid and bicarbonate secretion were greatly impaired, whereas faecal chymotrypsin remained unchanged. LPS stimulation of splenocytes from CFTRtm1HGU resulted in increased INF-γ and IL-6, but decreased IL-10 secretion. CFTR mutations that preserve residual pancreatic function significantly increase the severity of experimental pancreatitis—mostly via impairing duct cell function and a shift towards a pro-inflammatory phenotype, not by rendering acinar cells more susceptible to pathological stimuli.  相似文献   

11.

Introduction

The possible role of UCP2 in modulating mitochondrial Ca2+-uptake (mCa2+-uptake) via the mitochondrial calcium uniporter (MCU) is highly controversial.

Methods

Thus, we analyzed mCa2+-uptake in isolated cardiac mitochondria, MCU single-channel activity in cardiac mitoplasts, dual Ca2+-transients from mitochondrial ((Ca2+)m) and intracellular compartment ((Ca2+)c) in the whole-cell configuration in cardiomyocytes of wild-type (WT) and UCP2-/- mice.

Results

Isolated mitochondria showed a Ru360 sensitive mCa2+-uptake, which was significantly decreased in UCP2-/- (229.4±30.8 FU vs. 146.3±23.4 FU, P<0.05). Single-channel registrations confirmed a Ru360 sensitive voltage-gated Ca2+-channel in mitoplasts, i.e. mCa1, showing a reduced single-channel activity in UCP2-/- (Po,total: 0.34±0.05% vs. 0.07±0.01%, P<0.05). In UCP2-/- cardiomyocytes (Ca2+)m was decreased (0.050±0.009 FU vs. 0.021±0.005 FU, P<0.05) while (Ca2+)c was unchanged (0.032±0.002 FU vs. 0.028±0.004 FU, P>0.05) and transsarcolemmal Ca2+-influx was inhibited suggesting a possible compensatory mechanism. Additionally, we observed an inhibitory effect of ATP on mCa2+-uptake in WT mitoplasts and (Ca2+)m of cardiomyocytes leading to an increase of (Ca2+)c while no ATP dependent effect was observed in UCP2-/-.

Conclusion

Our results indicate regulatory effects of UCP2 on mCa2+-uptake. Furthermore, we propose, that previously described inhibitory effects on MCU by ATP may be mediated via UCP2 resulting in changes of excitation contraction coupling.  相似文献   

12.
Gut hormone gastric inhibitory polypeptide (GIP) stimulates insulin secretion from pancreatic β-cells upon ingestion of nutrients. Inhibition of GIP signaling prevents the onset of obesity and consequent insulin resistance induced by high-fat diet. In this study, we investigated the role of GIP in accumulation of triglycerides into adipocytes and in fat oxidation peripherally using insulin receptor substrate (IRS)-1-deficient mice and revealed that IRS-1−/−GIPR−/− mice exhibited both reduced adiposity and ameliorated insulin resistance. Furthermore, increased gene expression of CD36 and UCP2 in liver, and increased expression and enzyme activity of 3-hydroxyacyl-CoA dehydrogenase in skeletal muscle of IRS-1−/−GIPR−/− mice might contribute to the lower respiratory quotient and the higher fat oxidation in light phase. These results suggest that GIP plays a crucial role in switching from fat oxidation to fat accumulation under the diminished insulin action as a potential target for secondary prevention of insulin resistance.  相似文献   

13.
Fibroblast growth factor 21 (FGF21), a metabolic hormone with pleiotropic effects on glucose and lipid metabolism and insulin sensitivity, alleviates the process of acute pancreatitis (AP). However, its mechanism remains elusive. The pathological and physiological characteristics of FGF21 are observed in both patients with AP and cerulein‐induced AP models, and the mechanisms of FGF21 in response to AP are investigated by evaluating the impact of autophagy in FGF21‐treated mice and cultured pancreatic cells. Circulating levels of FGF21 significantly increase in both AP patients and cerulein‐induced AP mice, which is accompanied by the change of pathology in pancreatic injury. Replenishment of FGF21 distinctly reverses cerulein‐induced pancreatic injury and improves cerulein‐induced autophagy damage in vivo and in vitro. Mechanically, FGF21 acts on pancreatic acinar cells to up‐regulate Sirtuin‐1 (Sirt1) expression, which in turn repairs impaired autophagy and removes damaged organs. In addition, blockage of Sirt1 accelerates cerulein‐induced pancreatic injury and weakens the regulative effect in FGF21‐activated autophagy in mice. These results showed that FGF21 protects against cerulein‐induced AP by activation of Sirtuin‐1‐autophagy axis.  相似文献   

14.
《Autophagy》2013,9(8):1060-1062
Auto-digestion of the pancreas by its own prematurely activated digestive proteases is thought to be an important event in the onset of acute pancreatitis. Although lysosomal hydrolases, such as cathepsin B, play a key role in intrapancreatic trypsinogen activation, it remains unclear where and how trypsinogen meets these lysosomal enzymes. Autophagy is an intracellular bulk degradation system in which cytoplasmic components are directed to the lysosome/vacuole by a membrane-mediated process. To analyze the role of autophagy in acute pancreatitis, we produced a conditional knockout mouse that lacks the autophagy-related (Atg) gene Atg5 in the pancreatic acinar cells. The severity of acute pancreatitis induced by cerulein is greatly reduced in these mice. In addition, Atg5-deficient acinar cells show a significantly decreased level of trypsinogen activation. These data suggest that autophagy exerts a detrimental effect in pancreatic acinar cells by activation of trypsinogen to trypsin. We propose a theory in which autophagy accelerates trypsinogen activation by lysosomal hydrolases under acidic conditions, thus triggering acute pancreatitis in its early stage.

Addendum to: Hashimoto D, Ohmuraya M, Hirota M, Yamamoto A, Suyama K, Ida S, Okumura Y, Takahashi E, Kido H, Araki K, Baba H, Mizushima N, Yamamura K. Involvement of autophagy in trypsinogen activation within the pancreatic acinar cells. J Cell Biol 2008; 181:1065-72.  相似文献   

15.
Ohmuraya M  Yamamura K 《Autophagy》2008,4(8):1060-1062
Autodigestion of the pancreas by its own prematurely activated digestive proteases is thought to be an important event in the onset of acute pancreatitis. Although lysosomal hydrolases, such as cathepsin B, play a key role in intrapancreatic trypsinogen activation, it remains unclear where and how trypsinogen meets these lysosomal enzymes. Autophagy is an intracellular bulk degradation system in which cytoplasmic components are directed to the lysosome/vacuole by a membrane-mediated process. To analyze the role of autophagy in acute pancreatitis, we produced a conditional knockout mouse that lacks the autophagy-related (Atg) gene Atg5 in the pancreatic acinar cells. The severity of acute pancreatitis induced by cerulein is greatly reduced in these mice. In addition, Atg5-deficient acinar cells show a significantly decreased level of trypsinogen activation. These data suggest that autophagy exerts a detrimental effect in pancreatic acinar cells by activation of trypsinogen to trypsin. We propose a theory in which autophagy accelerates trypsinogen activation by lysosomal hydrolases under acidic conditions, thus triggering acute pancreatitis in its early stage.  相似文献   

16.
BackgroundChaiqin chengqi decoction (CQCQD) is a Chinese herbal formula derived from dachengqi decoction. CQCQD has been used for the management of acute pancreatitis (AP) in the West China Hospital for more than 30 years. Although CQCQD has a well-established clinical efficacy, little is known about its bioactive ingredients, how they interact with different therapeutic targets and the pathways to produce anti-inflammatory effects.PurposeToll-like receptor 4 (TLR4) and the nucleotide-binding oligomerization domain-like receptor family pyrin domain containing 3 (NLRP3) inflammasome-mediated pro-inflammatory signaling pathways, play a central role in AP in determining the extent of pancreatic injury and systemic inflammation. In this study, we screened the bioactive ingredients using a pharmacological sub-network analysis based on the TLR4/NLRP3 signaling pathways followed by experimental validation.MethodsThe main CQCQD bioactive compounds were identified by UPLC-QTOF/MS. The TLR4/NLRP3 targets in AP for CQCQD active ingredients were confirmed through a pharmacological sub-network analysis. Mice received 7 intraperitoneal injections of cerulein (50 μg/kg; hourly) to induce AP (CER-AP), while oral gavage of CQCQD (5, 10, 15 and 20 g/kg; 3 doses, 2 hourly) was commenced at the 3rd injection of cerulein. Histopathology and biochemical indices were used for assessing AP severity, while polymerase chain reaction, Western blot and immunohistochemistry analyses were used to study the mechanisms. Identified active CQCQD compounds were further validated in freshly isolated mouse pancreatic acinar cells and cultured RAW264.7 macrophages.ResultsThe main compounds from CQCQD belonged to flavonoids, iridoids, phenols, lignans, anthraquinones and corresponding glycosides. The sub-network analysis revealed that emodin, rhein, baicalin and chrysin were the compounds most relevant for directly regulating the TLR4/NLRP3-related proteins TLR4, RelA, NF-κB and TNF-α. In vivo, CQCQD attenuated the pancreatic injury and systemic inflammation of CER-AP and was associated with reduced expression of TLR4/NLRP3-related mRNAs and proteins. Emodin, rhein, baicalin and chrysin significantly diminished pancreatic acinar cell necrosis with varied effects on suppressing the expression of TLR4/NLRP3-related mRNAs. Emodin, rhein and chrysin also decreased nitric oxide production in macrophages and their combination had synergistic effects on alleviating cell death as well as expression of TLR4/NLRP3-related proteins.ConclusionsCQCQD attenuated the severity of AP at least in part by inhibiting the TLR4/NLRP3 pro-inflammatory pathways. Its active ingredients, emodin, baicalin, rhein and chrysin contributed to these beneficial effects.  相似文献   

17.
Objective: The WNT signaling pathway effector gene TCF7L2 has been associated with an increased risk of type 2 diabetes. However, it remains unclear how this gene affects diabetic pathogenesis. The goal of this study was to investigate the effects of Tcf7l2 haploinsufficiency on metabolic phenotypes in mice.Experimental Design: Tcf7l2 knockout (Tcf7l-/-) mice were generated. Because of the early mortality of Tcf7l2-/- mice, we characterized the metabolic phenotypes of heterozygous Tcf7l2+/- mice in comparison to the wild-type controls. The mice were fed a normal chow diet or a high fat diet (HFD) for 9 weeks.Results: The Tcf7l2+/- mice showed significant differences from the wild-type mice with regards to body weight, fasting glucose and insulin levels. Tcf7l2+/- mice displayed improved glucose tolerance. In the liver of Tcf7l2+/- mice fed on the HFD, reduced lipogenesis and hepatic triglyceride levels were observed when compared with those of wild-type mice. Furthermore, the Tcf7l2+/- mice fed on the HFD exhibited decreased peripheral fat deposition. Immunohistochemistry in mouse pancreatic islets showed that endogenous expression of Tcf7l2 was upregulated in the wild-type mice, but not in the Tcf7l2+/- mice, after feeding with the HFD. However, the haploinsufficiency of Tcf7l2 in mouse pancreatic islets resulted in little changes in glucose-stimulated insulin secretion.Conclusion: These results suggest that decreased expression of Tcf7l2 confers reduction of diabetic susceptibility in mice via regulation on the metabolism of glucose and lipid.  相似文献   

18.
The sensing of various extrinsic stimuli triggers the receptor-interacting protein kinase-3 (RIPK3)-mediated signaling pathway, which leads to mixed-lineage kinase-like (MLKL) phosphorylation followed by necroptosis. Although necroptosis is a form of cell death and is involved in inflammatory conditions, the roles of necroptosis in acute pancreatitis (AP) remain unclear. In the current study, we administered caerulein to Ripk3- or Mlkl-deficient mice (Ripk3−/− or Mlkl−/− mice, respectively) and assessed the roles of necroptosis in AP. We found that Ripk3−/− mice had significantly more severe pancreatic edema and inflammation associated with macrophage and neutrophil infiltration than control mice. Consistently, Mlkl−/− mice were more susceptible to caerulein-induced AP, which occurred in a time- and dose-dependent manner, than control mice. Mlkl−/− mice exhibit weight loss, edematous pancreatitis, necrotizing pancreatitis, and acinar cell dedifferentiation in response to tissue damage. Genetic deletion of Mlkl resulted in downregulation of the antiapoptotic genes Bclxl and Cflar in association with increases in the numbers of apoptotic cells, as detected by TUNEL assay. These findings suggest that RIPK3 and MLKL-mediated necroptosis exerts protective effects in AP and caution against the use of necroptosis inhibitors for AP treatment.Subject terms: Acute pancreatitis, Experimental models of disease  相似文献   

19.
20.
Factors determining severity of acute pancreatitis (AP) are poorly understood. Oxidative stress causes acinar cell injury and contributes to the severity, whereas prophylactic probiotics ameliorate experimental pancreatitis. Our objective was to study how probiotics affect oxidative stress, inflammation, and acinar cell injury during the early phase of AP. Fifty-three male Sprague-Dawley rats were randomly allocated into groups: 1) control, 2) sham procedure, 3) AP with no treatment, 4) AP with probiotics, and 5) AP with placebo. AP was induced under general anesthesia by intraductal glycodeoxycholate infusion (15 mM) and intravenous cerulein (5 microg.kg(-1).h(-1), for 6 h). Daily probiotics or placebo were administered intragastrically, starting 5 days prior to AP. After cerulein infusion, pancreas samples were collected for analysis including lipid peroxidation, glutathione, glutamate-cysteine-ligase activity, histological grading of pancreatic injury, and NF-kappaB activation. The severity of pancreatic injury correlated to oxidative damage (r = 0.9) and was ameliorated by probiotics (1.5 vs. placebo 5.5; P = 0.014). AP-induced NF-kappaB activation was reduced by probiotics (0.20 vs. placebo 0.53 OD(450nm)/mg nuclear protein; P < 0.001). Probiotics attenuated AP-induced lipid peroxidation (0.25 vs. placebo 0.51 pmol malondialdehyde/mg protein; P < 0.001). Not only was AP-induced glutathione depletion prevented (8.81 vs. placebo 4.1 micromol/mg protein, P < 0.001), probiotic pretreatment even increased glutathione compared with sham rats (8.81 vs. sham 6.18 miccromol/mg protein, P < 0.001). Biosynthesis of glutathione (glutamate-cysteine-ligase activity) was enhanced in probiotic-pretreated animals. Probiotics enhanced the biosynthesis of glutathione, which may have reduced activation of inflammation and acinar cell injury and ameliorated experimental AP, via a reduction in oxidative stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号