首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Allogeneic chimeras are valuable tools for studies of complex immune cell interactions in vivo. Mice with severe combined immune deficiency (scid) should be ideal hosts for chimerism with allogeneic bone marrow cells as these animals lack mature T and B lymphocytes capable of reacting against donor alloantigens. However, it has been difficult to achieve full reconstitution of adult scid mice even using coisogenic bone marrow grafts without prior irradiation of the recipient. We explored ways to generate complete reconstitution of scid mice with allogeneic bone marrow. Unirradiated adult scid recipients of allogeneic bone marrow were only marginally reconstituted. Adult scid mice pretreated with 250 R were reconstituted with allogeneic bone marrow as measured by serum IgM concentration, peripheral lymphoid cellularity, and mitogen responses, but a potentially important immunologic deficit was found in these mice: 250 R caused a 70% loss of scid macrophages and dendritic cells which persisted at least 5 months. By contrast, when scid mice were injected i.p. with allogeneic bone marrow within the first 24 h after birth, rapid and complete reconstitution of both T and B cell lineages was achieved, and the animals had APC that were both donor and host in origin. Considering the extent and duration of engraftment (43 wk) by allogeneic cells in neonatally transplanted scid mice, it was anticipated that their bone marrow would be chimeric. However, the bone marrow contained very few donor-derived cells, suggesting that lymphopoiesis may be taking place in other organs in these chimeras.  相似文献   

2.
Lymphoid precursor cells are present in long-term bone marrow cultures (LTBMC), but their differentiation into mature lymphocytes is blocked. A quantitative assay for B cell precursors in LTBMC, which gives a linear relationship between the number of grafted LTBMC cells and the frequency of B cell colony forming units (CFU-B) in the spleen and bone marrow of immunodeficient CBA/N mice 19 days after reconstitution, is described. Characterization of the B cell precursor indicates that this assay is detecting a very early precursor and not a B lymphocyte or a late pre-B cell. This conclusion is based on the observations that a) pre-B cells transformable by Abelson murine leukemia virus are not present in LTBMC by 3 days postrecharge and CFU-B are absent by 6 days postrecharge; b) late B cell progenitors capable of rapid repopulation of irradiated CBA/N mice are not present in LTBMC, since a lag in the kinetics of B cell reconstitution in animals grafted with LTBMC cells is observed compared with fresh bone marrow cells; c) the B cell precursors in LTBMC have high proliferative potential, since they can stably repopulate recipient mice for at least 8 wk postreconstitution and through two serial passages in irradiated CBA/N recipients; and d) the B cell precursors are large, rapidly sedimenting cells as determined by velocity sedimentation. The serial transplantation experiment further shows that a split is often observed between lymphoid and myeloid reconstituting ability of LTBMC cells. The LTBMC B cell precursor may be a pluripotent stem cell or a lymphoid stem cell, although its differentiative potential remains to be determined.  相似文献   

3.
Leptin is an adipokine that regulates body weight. In the current study, we demonstrate that continuous injection of leptin prevents the lymphocyte reduction observed in fasted mice, especially the immature B cell populations in the bone marrow. Although leptin administration reduced apoptotic cells in the bone marrow of fasted mice, it did not prevent glucocorticoid-mediated apoptosis in vitro. Bone marrow atrophy has also been shown in the leptin receptor-deficient db/db mice. In order to investigate the mechanisms underlying these processes, we transplanted bone marrow cells from db/db or control (+m/+m) mice into C.B-17/lcr-scid/scid mice. We found that the spleen and bone marrow B cell populations were completely reconstituted when db/db and +m/+m cells were transplanted into scid mice. Our findings suggest that direct interactions between leptin and bone marrow cells are not essential for the development of B cells in a metabologically normal environment.  相似文献   

4.
The influence of 89Sr-treatment on the recovery of the B cell compartment in lethally irradiated, fetal liver reconstituted mice was studied by means of membrane fluorescence. 89Sr is a bone-seeking radio-isotope which causes in a dose of 3 μCi 89Sr/g body weight a depletion of all nucleated cells, including immunoglobulin-bearing (B) cells, of the bone marrow.Treatment of irradiated and fetal liver reconstituted mice with 3 μCi 89Sr/g body weight immediately and at 17 days after irradiation and reconstitution prevented recovery of the nucleated cell population, including B cells, in the bone marrow. In the spleen of such mice both nucleated cells and B cells reappeared at day 7 and 14 respectively. The B cell population in the spleen did not recover up to normal values during the experimental period of 45 days. It is concluded that B cell differentiation in lethally irradiated, fetal liver reconstituted mice can take place outside the bone marrow. The efficiency of this extra-medullary differentiation is discussed. The conclusion was drawn that mice with a 89Sr-induced bone marrow aplasia are able to generate B lymphocytes. Consequently the bone marrow microenvironment seems not to be obligate to the differentiation of B lymphocytes. The peripheral lymphoid organs of such mice were found to be unable to compensate completely for the absence of B lymphocyte production in the bone marrow.  相似文献   

5.
The recovery of the B-cell population was studied in irradiated and fetal liver-reconstituted mice. Since in irradiated and reconstituted mice the B-cell population in the spleen recovers much more rapidly than in the other lymphoid organs, we assessed the role of the spleen in the recovery of the B-cell compartment in the other organs. It was found that the absence of the spleen did not delay or diminish the recovery of the immunoglobulin (Ig)-bearing (B)-cell population in the bone marrow, lymph nodes, Peyer's patches, and peripheral blood. Throughout the recovery period the number of B lymphocytes in the lymphoid organs of splenectomized mice was even greater than in the same organs of sham-operated mice. B cells obtained from the bone marrow of splenectomized, irradiated, and reconstituted mice appeared to be fully immunocompetent, as shown by their ability to cooperate with thymocytes in an adoptive plaque-forming cell response to sheep red blood cells. The compensatory effect of the increased numbers of B cells in the bone marrow and peripheral lymphoid organs of splenectomized mice was reflected in the level of the serum immunoglobulins. Apart from a lower IgM concentration in the serum of splenectomized mice, no significant differences were found in IgG1, IgG2b, and IgA levels between splenectomized and sham-splenectomized mice. It is concluded that the spleen is not essential for both normal B-lymphocyte differentiation and maturation after irradiation and reconstitution.  相似文献   

6.
Cellular events during the development of thymic lymphomas in young B10.BR mice given leukemogenic split-dose irradiation were studied by examining the differentiation of functional T lymphocyte precursors in the regenerating thymus. It was found that leukemogenic radiation treatment resulted in a sustained depression of the level of thymic cytotoxic T lymphocyte precursors (CTLp) and of mixed lymphocyte reactivity of thymus cells when assessed between 1 and 4 mo after irradiation, in spite of the fact that the total number of thymocytes was restored to the normal level within 2 mo and continued to increase thereafter. In vitro mixing studies of normal thymocytes with thymus cells from split-dose irradiated mice provided no evidence for active suppression as a mechanism for this depressed activity. The ability of bone marrow cells from split-dose irradiated mice to regenerate the thymus and to differentiate into functional CTLp was examined by use of supralethally irradiated Thy-1 congenic recipients. Reconstitution of supralethally irradiated B10.BR Thy-1.2 mice with normal bone marrow from B10.BR Thy-1.1 mice resulted in the complete repopulation of host-thymus with donor-derived cells when assessed at 4 wk after reconstitution. Lymphocytes from the regenerating thymus of these animals were shown to contain high levels of CTLp which were donor-derived. On the other hand, when the recipient mice were reconstituted with bone marrow cells from donor mice which had been split-dose irradiated 1 mo earlier, regeneration of the recipient thymus was severely depressed when assessed at 4 wk to 3 mo after reconstitution. Although variable but small numbers of donor-derived Thy-1+ cells were detected, CTL activity for alloantigen could not be induced in these donor-derived cells. The results suggest that T cell precursors derived from split-dose irradiated donor mice were unable to undergo active proliferation and differentiation into functional CTLp. The significance of these findings on radiation-induced thymic leukemogenesis is discussed.  相似文献   

7.
C.B-17 scid (severe combined immunodeficiency disease) mice were used to evaluate the relationship of dendritic Thy-1+ epidermal cells (EC) to T lymphocytes (deficient in scid) and to NK cells (replete in scid). Epidermis from scid mice was deficient in dendritic Thy-1+ cells as determined by immunofluorescent staining of epidermal whole mounts. Similarly, epidermal cell suspensions from scid mice failed to proliferate in response to Con A, as compared with epidermal cell suspensions from C.B-17 control mice. Transplantation of normal bone marrow into scid mice reconstituted morphologically identifiable dendritic Thy-1+ EC in whole mounts, as well as Con A responsiveness of EC suspensions, thus indicating that the deficiency in dendritic Thy-1+ EC in scid mice is at the precursor level. These studies demonstrate that Thy-1+ EC are more closely related to T lymphocytes than to NK cells.  相似文献   

8.
The mechanisms behind the increased incidence of marrow graft failure in recipients that receive allogeneic marrow depleted of T cells were studied. Recipient mice were lethally irradiated and challenged with bone marrow cells (BMC) from C.B-17 +/+ (+/+) donors. Radioisotope 125IUdR incorporation was assessed 5 to 7 days after transfer to determine the extent of engraftment. Some groups received BMC in which the T cells were removed by treatment with antibody and C. In addition, some groups received BMC from T cell-deficient C.B-17 scid/scid (SCID) mice to determine the postulated need for donor T cells in hematopoiesis and engraftment. In a model system that distinguishes between possible host NK cell and radioresistant T cell-mediated rejection of marrow allografts, it was determined that the absence of donor T cells in a marrow graft does not affect engraftment in syngeneic recipients. However, both host NK cell and radioresistant T cell rejection was markedly enhanced when SCID BMC or BMC from C.B-17 +/+ donors that had T cells removed by antibody and complement were infused into irradiated allogeneic recipients. Furthermore, the addition of alloreactive thymocytes as a source of T cells could abrogate this increased susceptibility of the BMC to host rejection mechanisms. As determined by histology and 59Fe uptake, the addition of thymocytes resulted in enhanced erythropoiesis. These results suggest that the increased incidence of marrow graft failure when BMC depleted of T cells are used is a result of active rejection by host effector cells and that the adverse effect of marrow T cell depletion can be reversed by the addition of thymocytes.  相似文献   

9.
Lethally irradiated mice reconstituted with syngeneic bone marrow cells were grafted with allogeneic skin grafts 6-7 weeks after irradiation and reconstitution. Mice with intact thymuses rejected the grafts whereas the mice thymectomized before irradiation and reconstitution did not. Thymectomized irradiated mice (TIR mice) reconstituted with bone marrow cells from donors immune to the allografts rejected the grafts. Bone marrow cells from immunized donors, pretreated with Thy 1.2 antibody and C', did not confer immunity to TIR recipients. To determine the number of T lymphocytes necessary for the transfer of immunity by bone marrow cells from immunized donors, thymectomized irradiated mice were reconstituted with nonimmune bone marrow cells treated with Thy 1.2 antibody and C' and with various numbers of splenic T lymphocytes from nonimmune and immune donors. Allogeneic skin graft rejection was obtained with 10(6) nonimmune or 10(4) immune T cells. The effect of immune T cells was specific: i.e., immune T cells accelerated only rejection of the relevant skin grafts whereas against a third-party skin grafts acted as normal T lymphocytes.  相似文献   

10.
Two subpopulations of stem cells for T cell lineage   总被引:2,自引:0,他引:2  
An assay system for the stem cell that colonizes the thymus and differentiates into T cells was developed, and by using this assay system the existence of two subpopulations of stem cells for T cell lineage was clarified. Part-body-shielded and 900-R-irradiated C57BL/6 (H-2b, Thy-1.2) recipient mice, which do not require the transfer of pluripotent stem cells for their survival, were transferred with cells from B10 X Thy-1.1 (H-2b, Thy-1.1) donor mice. The reconstitution of the recipient's thymus lymphocytes was accomplished by stem cells in the donor cells and those spared in the shielded portion of the recipient that competitively colonize the thymus. Thus, the stem cell activity of donor cells can be evaluated by determining the proportion of donor-type (Thy-1.1+) cells in the recipient's thymus. Bone marrow cells were the most potent source of stem cells, the generation of donor-derived T cells being observed in two out of 14 recipients transferred with as few as 1.5 X 10(4) cells. The stem cell activity of spleen cells was estimated to be about 1% of that of bone marrow cells, and no activity was found in thymus cells. By contrast, when the stem cell activity was compared between spleen and bone marrow cells of whole-body-irradiated (800 R) C57BL/6 mice reconstituted with B10 X Thy-1.1 bone marrow cells by assaying in part-body-shielded and irradiated C57BL/6 mice, the activity of these two organs showed quite a different time course of development. Spleen cells showed a markedly high level of activity 7 days after the reconstitution, followed by a decline, whereas the activity of bone marrow cells was very low on day 7 and increased crosswise. The results strongly suggest that the stem cells for T cell lineage in the bone marrow comprise at least two subpopulations, spleen-seeking and bone marrow-seeking cells. Such patterns of compartmentalization of stem cells in the spleen and bone marrow of irradiated recipients completely conform to the general scheme of the relationship between restricted stem cells and less mature stem cells, including pluripotent stem cells, which became evident in other systems such as in the differentiation of spleen colony-forming cells or of stem cells for B cell lineage.  相似文献   

11.
Thymectomized, lethally irradiated mice reconstituted with normal bone marrow cells succumbed when challenged ip with rat Yoshida ascites sarcoma (YAS) cells 40 days after irradiation and reconstitution. In contrast, thymectomized irradiated mice reconstituted with bone marrow cells from YAS-immune donors rejected the subsequent tumor challenge. Pretreatment of the bone marrow cells from immune donors with anti-Thy 1.2 antiserum and complement completely abolished the transfer of anti-YAS resistance.Bone marrow cells from donors thymectomized 2 months before immunization enabled almost all recipients to reject YAS, but bone marrow cells from donors thymectomized 8 months before immunization protected only 50% of the recipients. Further analysis showed that mice thymectomized 8 months before immunization failed to generate anti-YAS antibody response, whereas the antibody response of mice thymectomized 2 months before immunization did not differ from that of non-thymectomized age-matched control mice. The data suggest that the immune reaction of mice against xenogeneic YAS requires long-lived T2 lymphocytes.  相似文献   

12.
Murine bone marrow (BM) cells regulate a variety of immune responses via an endogenous natural suppressor (NS) activity. We demonstrate that BM-derived NS activity resides in an enriched fraction of large, low-density cells which have a high proliferative rate. Complement-dependent lysis of BM cells by antibody directed against markers of Veto and NK/LAK cells had no effect on NS activity. The BM of SCID mice and their littermate C.B-17 possessed normal NS activity. Conversely, the BM of NK-deficient C57 beige mice displayed reduced NS activity as compared to normal C57 black mice. Long-term BM cultures (LTBMC) generated in medium containing supernatants of Con A-stimulated (CAS) rat spleen cells resulted in the emergence of a population of cells which possessed NS activity greater than that of fresh BM cells. The LTBMC were also potent effectors of NK activity, as compared to fresh BM, which had little NK activity. Thus, while NS, NK/LAK, and Veto cells are all nonspecific effectors of immune suppression, the exact relationship between them is not clear.  相似文献   

13.
14.
The effect of age on the regeneration of the B cell population was studied by cell transfer methods, using the allotype-congenic mouse strains BALB/c (Igha) and C.B-17 (Ighb) as donors of old and young bone marrow (BM) and spleen cells, and C.AL-20 (Igho) as recipients. This design allowed us to identify the origin of the sIgD+ B cells present in the recipients. It was found that in a simple cell transfer, BM cells or spleen cells of aged donors could reconstitute the peripheral B cell population of irradiated, thymectomized recipients essentially as effectively as could BM or spleen cells from young donors. However, when BM cells from aged donors and from young donors were mixed and were used to reconstitute a single recipient, the cells from the aged donor were less efficient than were the cells from the young donor. We found that sIgD+ B cells of young donor origin predominated in the peripheral B cell population of the recipient at 3 to 6 wk after cell transfer. In the BM of the recipients, however, there was no difference in the incidence of sIgD+ B cells derived from the young and the old donors. When recipients were reconstituted with a mixture of spleen cells from old and young mice, the sIgD+ cells of young donor allotype showed a tendency to predominate in the peripheral B cell population, although this predominance was not statistically significant. Under such competitive conditions, the spleen cells of aged donors were less efficient than the BM of aged donors in reconstituting the sIgD+ B cell population of the recipient's BM, but were more efficient in reconstituting the splenic sIgD+ cells. Thus, a subtle defect in the B cell precursor population of the BM and the spleen of aged mice has been demonstrated. The role of T cells in the generation of sIgD+ cells was also analyzed.  相似文献   

15.
scid mice lack detectable B and T lymphocytes; there are no typical pre-B cells as defined by c mu and surface markers in their bone marrow and their thymus contains only 1% of the normal number of cells. In these characters scid mice seem to lack lymphoid stem cells. However, some mice have detectable serum immunoglobulin and others develop thymomas; both observations indicate that the block in lymphoid development is not absolute. To determine whether scid mice have any B-cell precursors, we looked for pre-B cells by their ability to be transformed by Abelson murine leukemia virus (A-MuLV). Surprisingly, scid mice contain as many B-cell precursors transformable with A-MuLV as normal control mice. Cell-surface markers specific for pre-B and B cells were detected on the A-MuLV-transformed bone marrow cells of both scid and normal mice, indicating that the A-MuLV-transformed cells belong to the B lineage. Interestingly, the same surface markers were undetectable on nontransformed scid bone marrow cells. We conclude from these results that scid mice have normal numbers of early B-cell precursors but that their differentiation into functional B cells is severely impaired.  相似文献   

16.
Normal DBA/2 and autoimmune NZB mice were studied with regard to signals eliciting differentiation and division of bone marrow stem cells. Irradiated (NZB X DBA/2)F1 mice were repopulated with various combinations of T-depleted bone marrow from NZB and DBA/2 mice. In response to the repopulation signal of irradiation, recipients of autoimmune NZB marrow initially demonstrated expansion of LY-5+ lymphoid and hemopoietic cells, particularly of the B cell lineage. The greater the proportion of NZB marrow, the higher the percentage of lymphoid cells observed 2 wk post-repopulation. B cells (ThB-positive cells) were increased in disproportionate numbers in recipients of NZB marrow, even those that had received as little as 20% NZB bone marrow cells. However, by 2 mo, the initially observed increase in lymphoid cells in recipients of NZB marrow was no longer observed. Up to 6 mo post-repopulation, cytogenetic analysis revealed that irradiated recipients were repopulated in the same proportion of DBA/2: NZB as was in the injected marrow. Endogenous colony formation assays indicated that recipients of 100% NZB, 80% NZB, and 20% NZB marrow all had greater numbers of splenic endogenous colonies than did recipients of DBA/2 marrow alone. These studies indicated that autoimmune NZB marrow repopulated irradiated mice in the proportion in which it was injected, but there was a disproportionate early increase in cells of the B lineage as well as a disproportionate increase in splenic colony formation.  相似文献   

17.
We have studied the homing properties of B lymphocytes by using 51Cr-labeled lymphoid cells obtained from athymic, nu/nu mice, and animals made T-lymphocyte deficient by thymectomy and lethal irradiation followed by reconstitution with syngeneic bone marrow. Comparison was made to the patterns of distribution observed when cell preparations containing normal numbers of T and B lymphocytes were migrated. A small but significant percentage of labeled lymphocytes from lymph nodes, spleen, Peyer's Patches, and bone marrow of T-cell-deficient animals was shown to be lymph node seeking. Secondary transfers of lymph node cells from primary recipients caused enrichment of this lymph node-seeking population. Treatment of T-lymphocyte-deficient lymphoid cell preparations with neuraminidase reduced the percentages of cells homing to the lymph nodes. The data showed that B lymphocytes exhibit unique homing properties when injected into normal recipients. In addition, direct comparison of the homing patterns of B lymphocytes prepared from spleen and lymph nodes of athymic mice revealed differences suggesting that these lymphoid organs contained unique mixtures of at least two different kinds of B cell. The evidence supports the notion that the B-lymphocyte populations contain at least two subpopulations, one of which possesses the ability to home to lymph nodes.  相似文献   

18.
Various doses of estriol (E3) were given to mice intraperitoneally, immediately after lethal irradiation and marrow reconstitution. The assessment of the plaque-forming cell (PFC) response to sheep erythrocytes in the spleen and the histological assessment of lymphoid tissues were carried out 30 days later. The effects appeared to be dose-dependent and resulted in a marked suppression of the PFC response. The depletion of lymphocytes was dramatic and dose-dependent in the thymus, and in the thymus-dependent and in the thymus independent areas of the peripheral lymphoid tissues. These results suggest that E3 acts on the differentiation of stem or precursor cells toweard both the populations of T and B lymphocytes. Although E3, given on day 7 after irradiation and marrow reconstitution, suppressed the lymphoid regeneration and PFC response markedly, E3 given on day 14 had no effect. On day 7 the majority of regenerating lymphoid tissues were large pyroninophilic cells and on day 14, small lymphocytes. These results suggest that the precursor or immature lymphocytes are sensitive to E3, while mature lymphocytes are resistant. Lymphoid regeneration and PFC response were retarded in mice irradiated and reconstituted with bone marrow cells from donors pretreated with E3. These results suggest that E3 acts on the stem or precursor cells capable to differentiate in the direction of lymphoid populations and reduce their number in the bone marrow.  相似文献   

19.
This study demonstrates cell lineage-specific resistance to engraftment involving lymphocytes but not erythrocytes by the spontaneously autoimmune MRL/lpr mouse strain. In these experiments, MRL/lpr mice were lethally irradiated (1000 R) and reconstituted with normal A-Thy bone marrow stem cells. Periodic analysis from 6 wk to 6 mo posttransplantation demonstrated that the T and B cells of these chimeras were derived from the MRL/lpr host. However, in the same A-Thy----MRL/lpr chimeras, erythrocyte repopulation was completely of A-Thy donor origin. In contrast, control MRL/+ (congenic mice that differ from MRL/lpr at the lpr locus and do not develop accelerated autoimmune disease) recipients were successfully repopulated in both the lymphoid and erythroid compartments by the A-Thy donor cells.  相似文献   

20.
Thy-1-bone marrow (BM) cells from C57BL/6 (B6) mice were transferred into thymectomized or non-thymectomized syngeneic B6----B6, allogeneic B6----C3H or semiallogeneic B6----(B6 X C3H)F1, irradiated mice, after which bacterial substances (bacillus Calmette Guérin [BCG] or Bordetella pertussis [Bp]) were administered within 3 days. The regulation of reactivity toward the host environment, i.e., autoresponsiveness in B6----B6 and allotolerance in B6---C3H, was investigated by monitoring a graft-vs-host (GvH)-like wasting syndrome, as well as the in vitro responsiveness of spleen cells from the reconstituted mice in a mixed leukocyte culture/cell-mediated lysis (MLC/CML) assay. The BCG-treated B6----B6 recipients developed a wasting syndrome and MLC/CML reactivity toward syngeneic target cells within 7 wk. This was never observed in BCG-treated but otherwise normal (i.e., nonreconstituted) mice, nor was it seen in any bone marrow chimeras that had been left without BCG treatment, irrespective of host/donor combination or thymectomy. The development of wasting syndrome as well as autoreactivity in BCG-treated B6----B6 mice could be prevented by thymectomizing the recipients before reconstitution or co-cultivating the donor BM cells with syngeneic spleen cells before reconstitution of nonthymectomized recipients. In the allogeneic or semiallogeneic combinations, the BCG treatment resulted in a wasting syndrome and CML/MLC reactivity toward C3H or (C3H X B6)F1 host-derived cells irrespective of thymic presence or absence. No breakdown of allotolerance, however, was retarded in the thymectomized mice, and it could be prevented by co-cultivation of donor BM cells with splenocytes of recipient genotype only if the cells were used to reconstitute thymectomized recipients. The breakdown of allotolerance in B6----C3H chimera was never accompanied by autoreactivity against B6 target cells. It is concluded that induction of autoreactivity and GvH in BCG-treated syngeneic BM chimeras, probably reflecting the breakdown of autotolerance, is strictly thymus dependent. In contrast, induction of anti-host reactivity in BCG-treated allogeneic chimeras may occur in the absence of a thymus and without concomitant autoreactivity, suggesting two independent levels of controls: one that is thymus dependent for the breakdown of auto- as well as allotolerance, and one that is thymus independent, unique for the breakdown of allotolerance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号