首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
Survival and proliferation of endothelial cells requires both growth factors and an appropriate extracellular matrix to which cells can attach. In the absence of either, endothelial cells rapidly undergo apoptosis. Thus, when human microvascular endothelial cells (HDMEC) are plated on a hydrophobic surface such as untreated polystyrene, they rapidly undergo apoptosis and die. The present study demonstrates that vascular permeability factor/vascular endothelial growth factor (VPF/VEGF), an endothelial cell-selective cytokine, inhibits apoptosis of HDMEC cultured on untreated polystyrene and induces these cells to adhere, spread, and proliferate. VPF/VEGF-induced HDMEC adhesion was time-dependent, requiredde novoprotein synthesis, and was inhibited by a soluble RGD peptide but not by an inhibitor of collagen synthesis. Under the conditions of these experiments, VPF/VEGF downregulated expression of collagen IV and fibronectin but did not change collagen I mRNA levels. VPF/VEGF-induced HDMEC adhesion was inhibited by antibodies to αvβ5 and vitronectin but not by antibodies to αvβ3. Other endothelial growth factors and cytokines such as bFGF, HGF, and TGFβ did not reproduce the VPF/VEGF effect. We suggest that VPF/VEGF induces endothelial cells to deposit a scaffolding (likely involving vitronectin) that allows them to attach to and proliferate on an otherwise nonsupportive surface (hydrophobic polystyrene) and in this manner serves as both a survival factor and a growth factor.  相似文献   

6.
7.
8.
Hypoxia, a strong inducer for vascular endothelial growth factor (VEGF)/vascular permeable factor (VPF) expression, regulates leukocyte infiltration through the up-regulation of adhesion molecules and chemokine release. To determine whether VEGF/VPF is directly involved in chemokine secretion, we analyzed its effects on chemokine expression in human brain microvascular endothelial cells (HBMECs) by using a human cytokine cDNA array kit. Cytokine array analysis revealed a significant increase in expression of monocyte chemoattractant protein-1 and the chemokine receptor CXCR4 in HBMECs, a result similar to that described previously in other endothelial cells. Interestingly, we also observed that VEGF/VPF induced interleukin-8 (IL-8) expression in HBMECs and that IL-8 mRNA was maximal after 1 h of VEGF/VPF treatment of the cells. Enzyme-linked immunosorbent assay data and immunoprecipitation analysis revealed that although VEGF/VPF induced IL-8 expression at the translational level in HBMECs, basic fibroblast growth factor failed to induce this protein expression within 12 h. VEGF/VPF increased IL-8 production in HBMECs through activation of nuclear factor-KB via calcium and phosphatidylinositol 3-kinase pathways, whereas the ERK pathway was not involved in this process. Supernatants of the VEGF/VPF-treated HBMECs significantly increased neutrophil migration across the HBMEC monolayer compared with those of the untreated control. Furthermore, addition of anti-IL-8 antibody blocked this increased migration, indicating that VEGF/VPF induced the functional expression of IL-8 protein in HBMECs. Taken together, these data demonstrate for the first time that VEGF/VPF induces IL-8 expression in HBMECs and contributes to leukocyte infiltration through the expression of chemokines, such as IL-8, in endothelial cells.  相似文献   

9.
10.
11.
12.
13.
14.
Vascular permeability factor (VPF) also known as vascular endothelial growth factor (VEGF), is a dimeric protein that affects endothelial cell (EC) and vascular functions including enhancement of microvascular permeability and stimulation of EC growth. To investigate the structural features of VPF/VEGF necessary for efficient dimerization, secretion, and biological activities, we employed site-directed mutagenesis with a Cos-1 cell expression system. Several cysteine residues essential for VPF dimerization were identified by mutation analysis of the Cys-25, Cys-56, and Cys-67 residues. Mutant VPF isoforms lacking either of these cysteines were secreted as monomers and were completely inactive in both vascular permeability and endothelial cell mitotic assays. VPF Cys-145 mutant protein was efficiently secreted as a glycosyaated, dimeric polypeptide, but had a reduction in biological activities. The site of N-linked glycosylation was directly identified as Asn-74, which, when mutated produced an inefficiently secreted dimeric protein without post-translational glycosylation, yet maintained full vascular permeability activity. Finally, we found that one VPF mutant isoform Cys-101 was not secreted and this mutant functioned as a dominant-negative suppressor of wild-type VPF secretion as demonstrated by co-expression assays in Cos-1 cells.  相似文献   

15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号