首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Zhang N  Chen R  Young N  Wishart D  Winter P  Weiner JH  Li L 《Proteomics》2007,7(4):484-493
Both organic solvent and surfactant have been used for dissolving membrane proteins for shotgun proteomics. In this work, two methods of protein solubilization, namely using 60% methanol or 1% SDS, to dissolve and analyze the inner membrane fraction of an Escherichia coli K12 cell lysate were compared. A total of 358 proteins (1417 unique peptides) from the methanol-solubilized protein mixture and 299 proteins (892 peptides) from the SDS-solubilized sample-were identified by using trypsin digestion and 2-D LC-ESI MS/MS. It was found that the methanol method detected more hydrophobic peptides, resulting in a greater number of proteins identified, than the SDS method. We found that 159 out of 358 proteins (44%) and 120 out of 299 proteins (40%) detected from the methanol- and SDS-solubilized samples, respectively, are integral membrane proteins. Among the 190 integral membrane proteins 70 were identified exclusively in the methanol-solubilized sample, 89 were identified by both methods, and only 31 proteins were exclusively identified by the SDS method. It is shown that the integral membrane proteins reflected the theoretical proteome for number of transmembrane helices, length, functional class, and topology, indicating there was no bias in the proteins identified.  相似文献   

2.
Abundant and hydrophilic nonmembrane proteins with isoelectric points below pH 8 are the predominant proteins identified in most proteomics projects. In yeast, however, low-abundance proteins make up 80% of the predicted proteome, approximately 50% have pl's above pH 8 and 30% of the yeast ORFs are predicted to encode membrane proteins with at least 1 trans-membrane span. By applying highly solubilizing reagents and isoelectric fractionation to a membrane fraction of yeast we have a purified and identified 780 protein isoforms, representing 323 gene products, including 28% low abundance proteins and 49% membrane or membrane associated proteins. More importantly, considering the frequency and importance of co- and post-translational modifications, the separation of protein isoforms is essential and two-dimensional electrophoresis remains the only technique which offers sufficient resolution to address this at a proteomic level.  相似文献   

3.
We have developed a proteomics technology featuring on-line three-dimensional liquid chromatography coupled to tandem mass spectrometry (3D LC-MS/MS). Using 3D LC-MS/MS, the yeast-soluble, urea-solubilized peripheral membrane and SDS-solubilized membrane protein samples collectively yielded 3019 unique yeast protein identifications with an average of 5.5 peptides per protein from the 6300-gene Saccharomyces Genome Database searched with SEQUEST. A single run of the urea-solubilized sample yielded 2255 unique protein identifications, suggesting high peak capacity and resolving power of 3D LC-MS/MS. After precipitation of SDS from the digested membrane protein sample, 3D LC-MS/MS allowed the analysis of membrane proteins. Among 1221 proteins containing two or more predicted transmembrane domains, 495 such proteins were identified. The improved yeast proteome data allowed the mapping of many metabolic pathways and functional categories. The 3D LC-MS/MS technology provides a suitable tool for global proteome discovery.  相似文献   

4.
ObjectivesSubcellular fractionation of whole cell lysates offers a means of simplifying protein mixtures, potentially permitting greater depth of proteomic analysis. Here we compare proteins identified from pancreatic duct cells (PaDC) following organelle enrichment to those identified from PaDC whole cell lysates to determine if the additional procedures of subcellular fractionation increase proteome coverage.MethodsWe used differential centrifugation to enrich for nuclear, mitochondrial, membrane, and cytosolic proteins. We then compared – via mass spectrometry-based analysis – the number of proteins identified from these four fractions with four biological replicates of PaDC whole cell lysates.ResultsWe identified similar numbers of proteins among all samples investigated. In total, 1658 non-redundant proteins were identified in the replicate samples, while 2196 were identified in the subcellular fractionation samples, corresponding to a 30% increase. Additionally, we noted that each organelle fraction was in fact enriched with proteins specific to the targeted organelle.ConclusionsSubcellular fractionation of PaDC resulted in greater proteome coverage compared to PaDC whole cell lysate analysis. Although more labor intensive and time consuming, subcellular fractionation provides greater proteome coverage, and enriches for compartmentalized sub-populations of proteins. Application of this subcellular fractionation strategy allows for a greater depth of proteomic analysis and thus a better understanding of the cellular mechanisms of pancreatic disease.  相似文献   

5.
We report a global proteomic approach for analyzing brain tissue and for the first time a comprehensive characterization of the whole mouse brain proteome. Preparation of the whole brain sample incorporated a highly efficient cysteinyl-peptide enrichment (CPE) technique to complement a global enzymatic digestion method. Both the global and the cysteinyl-enriched peptide samples were analyzed by SCX fractionation coupled with reversed phase LC-MS/MS analysis. A total of 48,328 different peptides were confidently identified (>98% confidence level), covering 7792 nonredundant proteins ( approximately 34% of the predicted mouse proteome). A total of 1564 and 1859 proteins were identified exclusively from the cysteinyl-peptide and the global peptide samples, respectively, corresponding to 25% and 31% improvements in proteome coverage compared to analysis of only the global peptide or cysteinyl-peptide samples. The identified proteins provide a broad representation of the mouse proteome with little bias evident due to protein pI, molecular weight, and/or cellular localization. Approximately 26% of the identified proteins with gene ontology (GO) annotations were membrane proteins, with 1447 proteins predicted to have transmembrane domains, and many of the membrane proteins were found to be involved in transport and cell signaling. The MS/MS spectrum count information for the identified proteins was used to provide a measure of relative protein abundances. The mouse brain peptide/protein database generated from this study represents the most comprehensive proteome coverage for the mammalian brain to date, and the basis for future quantitative brain proteomic studies using mouse models. The proteomic approach presented here may have broad applications for rapid proteomic analyses of various mouse models of human brain diseases.  相似文献   

6.
This report describes an analysis of the red blood cell proteome by ion trap tandem mass spectrometry in line with liquid chromatography. Mature red blood cells lack all internal cell structures and consist of cytoplasm within a plasma membrane envelope. To maximize outcome, total red blood cell protein was divided into two fractions of membrane-associated proteins and cytoplasmic proteins. Both fractions were divided into subfractions, and proteins were identified in each fraction separately through tryptic digestion. Membrane protein digests were collected from externally exposed proteins, internally exposed proteins, "spectrin extract" mainly consisting of membrane skeleton proteins, and membrane proteins minus spectrin extract. Cytoplasmic proteins were divided into 21 fractions based on molecular mass by size exclusion chromatography. The tryptic peptides were separated by reverse-phase high-performance liquid chromatography and identified by ion trap tandem mass spectrometry. A total of 181 unique protein sequences were identified: 91 in the membrane fractions and 91 in the cytoplasmic fractions. Glyceraldehyde-3-phosphate dehydrogenase was identified with high sequence coverage in both membrane and cytoplasmic fractions. Identified proteins include membrane skeletal proteins, metabolic enzymes, transporters and channel proteins, adhesion proteins, hemoglobins, cellular defense proteins, proteins of the ubiquitin-proteasome system, G-proteins of the Ras family, kinases, chaperone proteins, proteases, translation initiation factors, and others. In addition to the known proteins, there were 43 proteins whose identification was not determined.  相似文献   

7.
Analysis of membrane proteins, particularly integral membrane proteins, still presents a great challenge due to their poor water solubility and low abundance though much effort has been devoted to the solubilization and enrichment of the protein class. In this paper, a two-phase, on-membrane digestion method was developed and applied in the analysis of rat liver membrane proteome. The two-phase system was constituted by mixing n-butanol and 25 mM NH4HCO3. Comparative experiments indicated that the proteins on membranes could be digested in the two-phase system more efficiently than in both 60% methanol and 25 mM NH4HCO3 solutions under the same conditions, thereby improving the identification of the membrane proteins. When the established two-phase system and CapLC-MS/MS was used to analyze rat liver membrane proteome, a total of 411 membrane proteins were identified, more than 80% of which were transmembrane proteins with 1-12 mapped transmembrane domains (TMDs). Because of its extraction and dissolution actions, the two-phase on-membrane digestion system we developed could efficiently improve the digestion and removal of adsorbed nonmembrane proteins, and remarkably increase the number and coverage of identified membrane proteins, particularly the transmembrane proteins. Using our procedure to identify a complementary protein set from all fractions of the two-phase system could achieve a higher coverage of the membrane proteome.  相似文献   

8.
Via combined separation approaches, a total of 1399 proteins were identified, representing 47% of the Sulfolobus solfataricus P2 theoretical proteome. This includes 1323 proteins from the soluble fraction, 44 from the insoluble fraction and 32 from the extra-cellular or secreted fraction. We used conventional 2-dimensional gel electrophoresis (2-DE) for the soluble fraction, and shotgun proteomics for all three cell fractions (soluble, insoluble, and secreted). Two gel-based fractionation methods were explored for shotgun proteomics, namely: (i) protein separation utilizing 1-dimensional gel electrophoresis (1-DE) followed by peptide fractionation by iso-electric focusing (IEF), and (ii) protein and peptide fractionation both employing IEF. Results indicate that a 1D-IEF fractionation workflow with three replicate mass spectrometric analyses gave the best overall result for soluble protein identification. A greater than 50% increment in protein identification was achieved with three injections using LC-ESI-MS/MS. Protein and peptide fractionation efficiency; together with the filtration criteria are also discussed.  相似文献   

9.
Analysis of the mouse liver proteome using advanced mass spectrometry   总被引:3,自引:0,他引:3  
We report a large-scale analysis of mouse liver tissue comprising a novel fractionation approach and high-accuracy mass spectrometry techniques. Two fractions enriched for soluble and membrane proteins from 20 mg of frozen tissue were separated by one-dimensional electrophoresis followed by LC-MS/MS on the hybrid linear ion trap (LTQ)-Orbitrap mass spectrometer. Confident identification of 2210 proteins relied on at least two peptides. We combined this proteome with our previously reported organellar map (Foster et al. Cell 2006, 125, 187-199) to generate a very high confidence mouse liver proteome of 3244 proteins. The identified proteins represent the liver proteome with no discernible bias due to protein physicochemical properties, subcellular distribution, or biological function. Forty-seven percent of identified proteins were annotated as membrane-bound, and for 35.3%, transmembrane domains were predicted. For potential application in toxicology or clinical studies, we demonstrate that it is possible to consistently identify more than 1000 proteins in a single run.  相似文献   

10.
The proteomics of plasma membrane has brought to date only scarce and partial information on the actual protein repertoire. In this work, the plant plasma membrane proteome of Arabidopsis thaliana was investigated. A highly purified plasma membrane fraction was washed by NaCl and Na2CO3 salts, and the insoluble fractions were further analyzed by nano-LC-MS/MS. With 446 proteins identified, we hereby describe the largest plasma membrane proteome diversity reported so far. Half of the proteins were predicted to display transmembrane domains and/or to be anchored to the membrane, validating a posteriori the pertinence of the approach. A fine analysis highlighted two main specific and novel features. First, the main functional category is represented by a majority of as yet unreported signaling proteins, including 11% receptor-like kinases. Second, 16% of the identified proteins are predicted to be lipid-modified, specifically involving double lipid linkage through N-terminal myristoylation, S-palmitoylation, C-terminal prenylation, or glycosylphosphatidylinositol anchors. Thus, our approach led for the first time to the identification of a large number of peripheral proteins as part of the plasma membrane and allowed the functionality of the plasma membrane in the cell context to be reconsidered.  相似文献   

11.
Liu YC  Lin IH  Chung WJ  Hu WS  Ng WV  Lu CY  Huang TY  Shu HW  Hsiao KJ  Tsai SF  Chang CH  Lin CH 《PloS one》2012,7(4):e35304
Mycoplasma fermentans is a potent human pathogen which has been implicated in several diseases. Notably, its lipid-associated membrane proteins (LAMPs) play a role in immunomodulation and development of infection-associated inflammatory diseases. However, the systematic protein identification of pathogenic M. fermentans has not been reported. From our recent sequencing results of M. fermentans M64 isolated from human respiratory tract, its genome is around 1.1 Mb and encodes 1050 predicted protein-coding genes. In the present study, soluble proteome of M. fermentans was resolved and analyzed using two-dimensional gel electrophoresis. In addition, Triton X-114 extraction was carried out to enrich amphiphilic proteins including putative lipoproteins and membrane proteins. Subsequent mass spectrometric analyses of these proteins had identified a total of 181 M. fermentans ORFs. Further bioinformatics analysis of these ORFs encoding proteins with known or so far unknown orthologues among bacteria revealed that a total of 131 proteins are homologous to known proteins, 11 proteins are conserved hypothetical proteins, and the remaining 39 proteins are likely M. fermentans-specific proteins. Moreover, Triton X-114-enriched fraction was shown to activate NF-kB activity of raw264.7 macrophage and a total of 21 lipoproteins with predicted signal peptide were identified therefrom. Together, our work provides the first proteome reference map of M. fermentans as well as several putative virulence-associated proteins as diagnostic markers or vaccine candidates for further functional study of this human pathogen.  相似文献   

12.
Borrelia burgdorferi, the cause of Lyme disease, produces excessive amounts of membrane lipoproteins such as outer surface protein A (OspA) when grown in vitro, and consequently many low or moderately abundant proteins are underrepresented when cell lysates are examined by 2-DE. We analyzed the B. burgdorferi B31 proteome computationally and by IPG or modified NEPHGE after subcellular fractionation into membrane-associated and soluble proteins. The B. burgdorferi B31 theoretical proteome is comprised of 1623 proteins and has a mean pI of 8.36 and a median pI of 9.03 with 68% of the proteome possessing a pI >/=7.5. Separation of soluble proteins by IPG resulted in 205 individual spots and identification of 78 protein spots by MALDI-TOF MS. Separation by modified NEPHGE routinely resulted in approximately 185 soluble and 160 membrane protein spots with the identification of 88 individual protein spots combined by MALDI-TOF MS. Homologues to GroEL and aminopeptidase I were present in greater amounts in the membrane faction, with enolase at nearly equivalent amounts in the soluble and membrane fractions. Identification of proteins isolated and separated by such methods will enable future determination of proteome changes in membrane and soluble protein fractions as spirochetes adapt to their changing environments.  相似文献   

13.
To attain a comprehensive membrane proteome of two strains of Corynebacterium glutamicum (l-lysine-producing and the characterized model strains), both sample pretreatment and analysis methods were optimized. Isolated bacterial membranes were digested with trypsin/cyanogen bromide or trypsin/chymotrypsin, and a complementary protein set was identified using the multidimensional protein identification technology (MudPIT). Besides a distinct number of cytosolic or membrane-associated proteins, the combined data analysis from both digests yielded 326 integral membrane proteins ( approximately 50% of all predicted) covering membrane proteins both with small and large numbers of transmembrane helices. Also membrane proteins with a high GRAVY score were identified, and basic and acidic membrane proteins were evenly represented. A significant increase in hydrophobic peptides with distinctly higher sequence coverage of transmembrane regions was achieved by trypsin/chymotrypsin digestion in an organic solvent. The percentage of identified membrane proteins increased with protein size, yielding 80% of all membrane proteins above 60 kDa. Most prominently, almost all constituents of the respiratory chain and a high number of ATP-binding cassette transport systems were identified. This newly developed protocol is suitable for the quantitative comparison of membrane proteomes and will be especially useful for applications such as monitoring protein expression under different growth and fermentation conditions in bacteria such as C. glutamicum. Moreover with more than 50% coverage of all predicted membrane proteins (including the non-expressed species) this improved method has the potential for a close-to-complete coverage of membrane proteomes in general.  相似文献   

14.
Halobacterium sp. NRC-1 insoluble membrane and soluble cytoplasmic proteins were isolated by ultracentrifugation of whole cell lysate. Using an ion trap mass spectrometer equipped with a C18 trap electrospray ionization emitter/micro-liquid chromatography column, a number of trypsin-generated peptide tags from 426 unique proteins were identified. This represents approximately one-fifth of the theoretical proteome of Halobacterium. Of these, 232 proteins were found only in the soluble fraction, 165 were only in the insoluble membrane fraction, and 29 were in both fractions. There were 72 and 61% previously annotated proteins identified in the soluble and membrane protein fractions, respectively. Interestingly, 57 of previously unannotated proteins found only in Halobacterium NRC-1 were identified. Such proteins could be interesting targets for understanding unique physiology of Halobacterium NRC-1. A group of proteins involved in various metabolic pathways were identified among the expressed proteins, suggesting these pathways were active at the time the cells were collected. This data containing a list of expressed proteins, their cellular locations, and biological functions could be used in future studies to investigate the interaction of the genes and proteins in relation to genetic or environmental perturbations.  相似文献   

15.
The proteome of Haemophilus influenzae strain Rd KW20 was analyzed by liquid chromatography (LC) coupled with ion trap tandem mass spectrometry (MS/MS). This approach does not require a gel electrophoresis step and provides a rapidly developed snapshot of the proteome. In order to gain insight into the central metabolism of H. influenzae, cells were grown microaerobically and anaerobically in a rich medium and soluble and membrane proteins of strain Rd KW20 were proteolyzed with trypsin and directly examined by LC-MS/MS. Several different experimental and computational approaches were utilized to optimize the proteome coverage and to ensure statistically valid protein identification. Approximately 25% of all predicted proteins (open reading frames) of H. influenzae strain Rd KW20 were identified with high confidence, as their component peptides were unambiguously assigned to tandem mass spectra. Approximately 80% of the predicted ribosomal proteins were identified with high confidence, compared to the 33% of the predicted ribosomal proteins detected by previous two-dimensional gel electrophoresis studies. The results obtained in this study are generally consistent with those obtained from computational genome analysis, two-dimensional gel electrophoresis, and whole-genome transposon mutagenesis studies. At least 15 genes originally annotated as conserved hypothetical were found to encode expressed proteins. Two more proteins, previously annotated as predicted coding regions, were detected with high confidence; these proteins also have close homologs in related bacteria. The direct proteomics approach to studying protein expression in vivo reported here is a powerful method that is applicable to proteome analysis of any (micro)organism.  相似文献   

16.
17.
18.
An increasing number of proteomic strategies rely on liquid chromatography-tandem mass spectrometry (LC-MS/MS) to detect and identify constituent peptides of enzymatically digested proteins obtained from various organisms and cell types. However, sample preparation methods for isolating membrane proteins typically involve the use of detergents and chaotropes that often interfere with chromatographic separation and/or electrospray ionization. To address this problem, a sample preparation method combining carbonate extraction, surfactant-free organic solvent-assisted solubilization, and proteolysis was developed and demonstrated to target the membrane subproteome of Deinococcus radiodurans. Out of 503 proteins identified, 135 were recognized as hydrophobic on the basis of their calculated hydropathy values (GRAVY index), corresponding to coverage of 15% of the predicted hydrophobic proteome. Using the PSORT algorithm, 53 of the proteins identified were classified as integral outer membrane proteins and 215 were classified as integral cytoplasmic membrane proteins. All identified integral cytoplasmic membrane proteins had from 1 to 16 mapped transmembrane domains (TMDs), and 65% of those containing four or more mapped TMDs were identified by at least one hydrophobic membrane spanning peptide. The extensive coverage of the membrane subproteome (24%) by identification of highly hydrophobic proteins containing multiple TMDs validates the efficacy of the described sample preparation technique to isolate and solubilize hydrophobic integral membrane proteins from complex protein mixtures.  相似文献   

19.
This study describes the identification of outer membrane proteins (OMPs) of the bacterial pathogen Pasteurella multocida and an analysis of how the expression of these proteins changes during infection of the natural host. We analysed the sarcosine-insoluble membrane fractions, which are highly enriched for OMPs, from bacteria grown under a range of conditions. Initially, the OMP-containing fractions were resolved by 2-DE and the proteins identified by MALDI-TOF MS. In addition, the OMP-containing fractions were separated by 1-D SDS-PAGE and protein identifications were made using nano LC MS/MS. Using these two methods a total of 35 proteins was identified from samples obtained from organisms grown in rich culture medium. Six of the proteins were identified only by 2-DE MALDI-TOF MS, whilst 17 proteins were identified only by 1-D LC MS/MS. We then analysed the OMPs from P. multocida which had been isolated from the bloodstream of infected chickens (a natural host) or grown in iron-depleted medium. Three proteins were found to be significantly up-regulated during growth in vivo and one of these (Pm0803) was also up-regulated during growth in iron-depleted medium. After bioinformatic analysis of the protein matches, it was predicted that over one third of the combined OMPs predicted by the bioinformatics sub-cellular localisation tools PSORTB and Proteome Analyst, had been identified during this study. This is the first comprehensive proteomic analysis of the P. multocida outer membrane and the first proteomic analysis of how a bacterial pathogen modifies its outer membrane proteome during infection.  相似文献   

20.
Nucleolar and nuclear envelope proteins of the yeast Saccharomyces cerevisiae   总被引:24,自引:0,他引:24  
We have developed a fast and reliable purification protocol to obtain yeast nuclei in intact and pure form and in a reasonable yield. The purified nuclei appear homogeneous at the light and electron microscopic level, are highly enriched in the nuclear marker histone H2B and devoid of mitochondrial, vacuolar and cytosolic marker proteins. On sodium dodecyl sulfate (SDS)-polyacrylamide gels, the nuclear fraction contains unique proteins which distinguishes them from the major yeast subcellular fractions. Yeast nuclei were separated by detergent/salt extraction into soluble, insoluble and membrane fractions. Antibodies raised against subnuclear fractions lead to the identification of an integral nuclear membrane protein and a high-abundance 38-kDa protein which is located in the yeast nucleolus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号