首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Fibronectin alternative exon EIIIA is largely included in undifferentiated mesenchymal cells of the developing limb bud, whereas the exon is excluded in differentiated chondrocytes. Inclusion of exon EIIIA in chondrocytic cells is increased by overexpression of SRp40, and, to a lesser extent, SRp75, but not SRp55. RT-PCR analysis using real-time PCR revealed that the levels of the mRNAs for these three proteins did not vary significantly in chick chondrocytes versus mesenchymal cells of the developing limb bud. However, a variant spliced form of SRp40, termed, SRp40LF, is detected preferentially in chondrocytes and in chondrifying mesenchymal cells. Forced overexpression of SRp40 or SRp75, but not SRp55, enhanced chondrogenic differentiation of chick limb mesenchymal cells in a high-density micromass assay. Overexpression of SRp40LF, which produces a truncated form of SRp40, also was strongly pro-chondrogenic. In a HeLa cell-based assay, SRp40LF fails to substitute for SRp40 in mediating an increase in exon EIIIA inclusion, suggesting that the latter event is not essential for the pro-chondrogenic effect. These results demonstrate the ability of these highly conserved splicing factors to modulate chondrogenesis and are consistent with earlier results that implicated exon EIIIA-containing isoforms of fibronectin in formation of chondrogenic condensations.  相似文献   

2.
The cardiac troponin T pre-mRNA contains an exonic splicing enhancer that is required for inclusion of the alternative exon 5. Here we show that enhancer activity is exquisitely sensitive to changes in the sequence of a 9-nucleotide motif (GAGGAAGAA) even when its purine content is preserved. A series of mutations that increased or decreased the level of exon inclusion in vivo were used to correlate enhancer strength with RNA-protein interactions in vitro. Analyses involving UV cross-linking and immunoprecipitation indicated that only four (SRp30a, SRp40, SRp55, and SRp75) of six essential splicing factors known as SR proteins bind to the active enhancer RNA. Moreover, purified SRp40 and SRp55 activate splicing of exon 5 when added to a splicing-deficient S100 extract. Purified SRp30b did not stimulate splicing in S100 extracts, which is consistent with its failure to bind the enhancer RNA. In vitro competition of SR protein splicing activity and UV cross-linking demonstrated that the sequence determinants for SR protein binding were precisely coincident with the sequence determinants of enhancer strength. Thus, a subset of SR proteins interacts directly with the exonic enhancer to promote inclusion of a poorly defined alternative exon. Independent regulation of the levels of SR proteins may, therefore, contribute to the developmental regulation of exon inclusion.  相似文献   

3.
Insulin regulates alternative splicing of PKCbetaII mRNA by phosphorylation of SRp40 via a phosphatidylinositol 3-kinase pathway (Patel, N. A., Chalfant, C. E., Watson, J. E., Wyatt, J. R., Dean, N. M., Eichler, D. C., and Cooper, D. C. (2001) J. Biol. Chem. 276, 22648-22654). Transient transfection of constitutively active Akt2 kinase promotes PKCbetaII exon inclusion. Serine/arginine-rich (SR) RNA-binding proteins regulating the selection of alternatively spliced exons are potential substrates of Akt kinase because many of them contain RXRXX(S/T) motifs. Here we show that Akt2 kinase phosphorylated SRp40 in vivo and in vitro. Mutation of Ser86 on SRp40 blocked in vitro phosphorylation. In control Akt2(+/+) fibroblasts, insulin treatment increased the phosphorylation of endogenous SR proteins, but their phosphorylation state remained unaltered by insulin in fibroblasts from Akt2(-/-) mice. Levels of PKCbetaII protein were up-regulated by insulin in Akt2(+/+) cells; however, only very low levels of PKCbetaII were detected in Akt2(-/-) cells and did not change following insulin treatment. Endogenous PKCbetaI and -betaII mRNA levels in Akt2(+/+) and Akt2(-/-) gastrocnemius muscle tissues were compared using quantitative real time PCR. The results indicated a 54% decrease in the expression of PKCbetaII levels in Akt(-/-), whereas PKCbetaI levels remained unchanged in both samples. Further, transfection of Akt2(-/-) cells with a PKCbetaII splicing minigene revealed defective betaII exon inclusion. Co-transfection of the mutated SRp40 attenuated betaII exon inclusion. This study provides in vitro and in vivo evidence showing Akt2 kinase directly phosphorylated SRp40, thereby connecting the insulin, PI 3-kinase/Akt pathway with phosphorylation of a site on a nuclear splicing protein promoting exon inclusion. This model is upheld in Akt2-deficient mice with insulin resistance leading to diabetes mellitus.  相似文献   

4.
SR proteins have a characteristic C-terminal Ser/Arg-rich repeat (RS domain) of variable length and constitute a family of highly conserved nuclear phosphoproteins that can function as both essential and alternative pre-mRNA splicing factors. We have cloned a cDNA encoding a novel human SR protein designated SRp30c, which has an unusually short RS domain. We also cloned cDNAs encoding the human homologues of Drosophila SRp55/B52 and rat SRp40/HRS. Recombinant proteins expressed from these cDNAs are active in constitutive splicing, as shown by their ability to complement a HeLa cell S100 extract deficient in SR proteins. Additional cDNA clones reflect extensive alternative splicing of SRp40 and SRp55 pre-mRNAs. The predicted protein isoforms lack the C-terminal RS domain and might be involved in feedback regulatory loops. The ability of human SRp30c, SRp40 and SRp55 to modulate alternative splicing in vivo was compared with that of other SR proteins using a transient contransfection assay. The overexpression of individual SR proteins in HeLa cells affected the choice of alternative 5' splice sites of adenovirus E1A and/or human beta-thalassemia reporters. The resulting splicing patterns were characteristic for each SR protein. Consistent with the postulated importance of SR proteins in alternative splicing in vivo, we demonstrate complex changes in the levels of mRNAs encoding the above SR proteins upon T cell activation, concomitant with changes in the expression of alternatively spliced isoforms of CD44 and CD45.  相似文献   

5.
The fibronectin (FN) gene encodes multiple mRNAs through the process of alternative splicing, and production of certain isoforms is characteristic of a given cell type. Chondrocytes produce FNs that completely lack alternative exon EIIIA, and loss of inclusion of the exon is tightly linked to chondrogenic condensation of mesenchymal cells. The inclusion of a second exon, EIIIB, is high in embryonic cartilage, but declines with age. Multiple exons are omitted to produce the (V + C)-form that is highly specific for cartilage and chondrocytes. A rat chondrosarcoma cell line, RCS, was identified that preserves key features of the cartilage-specific splicing phenotype. RCS cells, which exclude exon EIIIA, and HeLa cells, which include exon EIIIA similar to mesenchymal cells, were used to assess the contribution of intron sequences flanking exon EIIIA to splicing regulation. Deletion of most of the intron downstream of the exon had little effect on splicing in either cell type. However, deletions within upstream intron 32-A reduced inclusion of the alternative exon in both cell types. The sequences involved lie more than 200 nucleotides away from the exon, but could not be localized to a single region by deletion mapping. These intronic sequences contribute to the efficiency of exon EIIIA recognition, but not to cell-type specific regulation. The normally inhibitory factor polypyrimidine tract binding protein promotes exon EIIIA inclusion in a manner that is partially dependent on the regulatory sequences within intron 32-A.  相似文献   

6.
Primary chicken mesenchymal cells from limb buds and vertebral chondrocytes have been used to study the changes that occur in alternative mRNA splicing of fibronectin exon EIIIA during chondrogenesis. The mesenchymal cell phenotype (exon EIIIA included) and chondrocyte phenotype (exon EIIIA excluded) were preserved in culture. Both primary cell types were transfected with an EIIIA minigene and alternative splicing was monitored by S1 protection assay. Differential cell-specific splicing of the reporter was observed. The roles of two regulatory elements, an exon splicing enhancer (ESE) and an exon splicing silencer (ESS) were examined. Both elements were required for EIIIA inclusion into mRNA in mesenchymal cells. Gel mobility shift assays revealed that both chondrocyte- and mesenchymal cell-derived nuclear extracts contained exon EIIIA binding factors, but the RNA binding factors present in the two cell types appeared to be distinct. The ESE and ESS appeared to cooperate in the formation of both cell type-specific complexes. These results suggest a model in which inhibitory factors enriched in chondrocytes compete with positive factors enriched in mesenchymal cells for binding to exon EIIIA, determining whether the exon is included.  相似文献   

7.
8.
Insulin regulates the inclusion of the exon encoding protein kinase C (PKC) betaII mRNA. In this report, we show that insulin regulates this exon inclusion (alternative splicing) via the phosphatidylinositol 3-kinase (PI 3-kinase) signaling pathway through the phosphorylation state of SRp40, a factor required for insulin-regulated splice site selection for PKCbetaII mRNA. By taking advantage of a well known inhibitor of PI 3-kinase, LY294002, we demonstrated that pretreatment of L6 myotubes with LY294002 blocked insulin-induced PKCbetaII exon inclusion as well as phosphorylation of SRp40. In the absence of LY294002, overexpression of SRp40 in L6 cells mimicked insulin-induced exon inclusion. When antisense oligonucleotides targeted to a putative SRp40-binding sequence in the betaII-betaI intron were transfected into L6 cells, insulin effects on splicing and glucose uptake were blocked. Taken together, these results demonstrate a role for SRp40 in insulin-mediated alternative splicing independent of changes in SRp40 concentration but dependent on serine phosphorylation of SRp40 via a PI 3-kinase signaling pathway. This switch in PKC isozyme expression is important for increases in the glucose transport effect of insulin. Significantly, insulin regulation of PKCbetaII exon inclusion occurred in the absence of cell growth and differentiation demonstrating that insulin-induced alternative splicing of PKCbetaII mRNA in L6 cells occurs in response to a metabolic change.  相似文献   

9.
Primary chicken mesenchymal cells from limb buds and vertebral chondrocytes have been used to study the changes that occur in alternative mRNA splicing of fibronectin exon EIIIA during chondrogenesis. The mesenchymal cell phenotype (exon EIIIA included) and chondrocyte phenotype (exon EIIIA excluded) were preserved in culture. Both primary cell types were transfected with an EIIIA minigene and alternative splicing was monitored by S1 protection assay. Differential cell‐specific splicing of the reporter was observed. The roles of two regulatory elements, an exon splicing enhancer (ESE) and an exon splicing silencer (ESS) were examined. Both elements were required for EIIIA inclusion into mRNA in mesenchymal cells. Gel mobility shift assays revealed that both chondrocyte‐ and mesenchymal cell‐derived nuclear extracts contained exon EIIIA binding factors, but the RNA binding factors present in the two cell types appeared to be distinct. The ESE and ESS appeared to cooperate in the formation of both cell type‐specific complexes. These results suggest a model in which inhibitory factors enriched in chondrocytes compete with positive factors enriched in mesenchymal cells for binding to exon EIIIA, determining whether the exon is included. J. Cell. Biochem. 76:341–351, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

10.
11.
Mutations that stimulate exon 10 inclusion into the human tau mRNA cause frontotemporal dementia with parkinsonism, associated with chromosome 17 (FTDP-17), and other tauopathies. This suggests that the ratio of exon 10 inclusion to exclusion in adult brain is one of the factors to determine biological functions of the tau protein. To investigate the underlying splicing mechanism and identify potential therapeutic targets for tauopathies, we generated a series of mini-gene constructs with intron deletions from the full length of tau exons 9-11 mini-gene construct. RT-PCR results demonstrate that there is a minimum distance requirement between exon 10 and 11 for correct splicing of the exon 10. In addition, SRp20, a member of serine-arginine (SR) protein family of splicing factors was found to facilitate exclusion of exon 10 in a dosage-dependent manner. Significantly, SRp20 also induced exon 10 skipping from pre-mRNAs containing mutations identified in FTDP-17 patients. Based on those results, we generated a cell-based system to measure inclusion to exclusion of exon 10 in the tau mRNA using the luciferase reporter. The firefly luciferase was fused into exon 11 in frame, and a stop code was also created in exon 10. Inclusion of exon 10 prevents luciferase expression, whereas exclusion of exon 10 generates luciferase activity. To minimize baseline luciferase expression, our reporter construct also contains a FTDP-17 mutation that increases exon 10 inclusion. We demonstrate that the splicing pattern of our reporter construct mimics that of endogenous tau gene. Co-transfection of SRp20 and SRp55, two SR proteins that promote exon 10 exclusion, increases production of luciferase. We conclude that this cell-based system can be used to identify biological substances that modulate exon 10 splicing.  相似文献   

12.
We are using the tissue-specific splicing of myosin phosphatase targeting subunit (MYPT1) as a model to investigate smooth muscle phenotypic diversity. We previously identified a U-rich intronic enhancer flanking the 5' splice site (IE1), and a bipartite exonic enhancer/suppressor, that regulate splicing of the MYPT1 central alternative exon. Here we show that T-cell inhibitor of apoptosis (TIA-1) and T-cell inhibitor of apoptosis-related (TIAR) proteins bind to the IE1. Co-transfection of TIA expression vectors with a MYPT1 mini-gene construct increase splicing of the central alternative exon. TIA proteins do not enhance splicing when the palindromic exonic splicing enhancer (ESE) is mutated, indicating that TIAs are necessary but not sufficient for splicing. The ESE specifically binds SRp55 and SRp20 proteins, supporting a model in which both SR and TIA proteins binding to their cis-elements are required for the recruitment of the splicing complex to a weak 5' splice site. Inactivation of TIA proteins in the DT40 cell line (TIA-1(-/-)TIAR(+/-)) reduced the splicing of the central alternative exon of the endogenous MYPT1 as well as stably transfected MYPT1 minigene constructs. Splicing of the MYPT1 3' alternative exon and the MLC(17) alternative exon were unaffected, suggesting that TIA proteins regulate a subset of smooth muscle/nonmuscle alternative splicing reactions. Finally, reduced RNA binding and reduced expression of the TIA and SR proteins in phasic (gizzard) smooth muscle around hatching coincided with the switch from exon inclusion to exon skipping, suggesting that loss of TIA and SR enhancer activity may play a role in the developmental switch in MYPT1 splicing.  相似文献   

13.
Human ras genes play central roles in coupling extracellular signals with complex intracellular networks controlling proliferation, differentiation, and apoptosis, among others processes. c-H-ras pre-mRNA can be alternatively processed into two mRNAs due to the inclusion or exclusion of the alternative exon IDX; this renders two proteins, p21H-Ras and p19H-RasIDX, which differ only at the carboxy terminus. Here, we have characterized some of the cis-acting sequences and trans-acting factors regulating IDX splicing. A downstream intronic silencer sequence (rasISS1), acting in concert with IDX, negatively regulates upstream intron splicing. This effect is mediated, at least in part, by the binding of hnRNP A1. Depletion and add-back experiments in nuclear extracts have confirmed hnRNP A1's inhibitory role in IDX splicing. Moreover, the addition of two SR proteins, SC35 and SRp40, can counteract this inhibition by strongly promoting the splicing of the upstream intron both in vivo and in vitro. Further, the RNA-dependent helicase p68 is also associated with both IDX and rasISS1 RNA, and suppression of p68 expression in HeLa cells by RNAi experiments results in a marked increase of IDX inclusion in the endogenous mRNA, suggesting a role for this protein in alternative splicing regulation.  相似文献   

14.
SRp38基因研究进展   总被引:1,自引:0,他引:1  
SR蛋白在前体mRNA可变剪接调控中发挥重要作用。可变剪接调节因子SRp38作为一种新近发现的具有神经及生殖组织特异性的SR蛋白,有典型的SR蛋白结构特征并能够调控GluR-B、TRK-C以及NCAML1等基因的可变剪接,但与其他SR蛋白不一致的是,SRp38可以在一定条件下(有丝分裂M期,热休克)抑制前体mRNA剪接,从而防止错误剪接的出现。SRp38的RRM结构域可以识别特殊的RNA序列并跟U1snRNP结合,而其RS结构域则参与调控前体mRNA剪接。SRp38的磷酸化状态可以影响其调控功能的发挥,在有丝分裂M期及热休克时,该蛋白质均呈去磷酸化状态。SRp38在爪蟾胚胎神经发育过程中发挥作用并且可以同TLS(translocation liposarcoma)蛋白相互作用,提示其可能通过调节前体mRNA可变剪接在神经系统的发育分化以及在肿瘤的发生中扮演角色。  相似文献   

15.
Fibronectin (FN) isoform expression is altered during chondrocyte commitment and maturation, with cartilage favoring expression of FN isoforms that includes the type II repeat extra domain B (EDB) but excludes extra domain A (EDA). We and others have hypothesized that the regulated splicing of FN mRNAs is necessary for the progression of chondrogenesis. To test this, we treated the pre-chondrogenic cell line ATDC5 with transforming growth factor-beta1, which has been shown to modulate expression of the EDA and EDB exons, as well as the late markers of chondrocyte maturation; it also slightly accelerates the early acquisition of a sulfated proteoglycan matrix without affecting cell proliferation. When chondrocytes are treated with TGF-beta1, the EDA exon is preferentially excluded at all times whereas the EDB exon is relatively depleted at early times. This regulated alternative splicing of FN correlates with the regulation of alternative splicing of SRp40, a splicing factor facilitating inclusion of the EDA exon. To determine if overexpression of the SRp40 isoforms altered FN and FN EDA organization, cDNAs encoding these isoforms were overexpressed in ATDC5 cells. Overexpression of the long-form of SRp40 yielded an FN organization similar to TGF-beta1 treatment; whereas overexpression of the short form of SRp40 (which facilitates EDA inclusion) increased formation of long-thick FN fibrils. Therefore, we conclude that the effects of TGF-beta1 on FN splicing during chondrogenesis may be largely dependent on its effect on SRp40 isoform expression.  相似文献   

16.
SC35 belongs to the family of SR proteins that regulate alternative splicing in a concentration-dependent manner in vitro and in vivo. We previously reported that SC35 is expressed through alternatively spliced mRNAs with differing 3' untranslated sequences and stabilities. Here, we show that overexpression of SC35 in HeLa cells results in a significant decrease of endogenous SC35 mRNA levels along with changes in the relative abundance of SC35 alternatively spliced mRNAs. Remarkably, SC35 leads to both an exon inclusion and an intron excision in the 3' untranslated region of its mRNAs. In vitro splicing experiments performed with recombinant SR proteins demonstrate that SC35, but not ASF/SF2 or 9G8, specifically activates these alternative splicing events. Interestingly, the resulting mRNA is very unstable and we present evidence that mRNA surveillance is likely to be involved in this instability. SC35 therefore constitutes the first example of a splicing factor that controls its own expression through activation of splicing events leading to expression of unstable mRNA.  相似文献   

17.
18.
19.
SR proteins are essential splicing factors involved in the use of both constitutive and alternative exons. We previously showed that the SR proteins SRp20 and ASF/SF2 have antagonistic activities on SRp20 pre-mRNA splicing. SRp20 activates exon 4 recognition in its pre-mRNA, whereas ASF/SF2 inhibits this recognition. In experiments aimed at testing the specificity of SRp20 and ASF/SF2 for exon 4 splicing regulation, we show here that this specificity lies in the RNA binding domains of SRp20 and ASF/SF2 and not in the RS domains. Surprisingly, a deletion of 14 amino acids at the end of ASF/SF2-RBD2 converts ASF/SF2 from an inhibitor to an activator of exon 4 splicing. We found that ASF3 also inhibits exon 4 recognition, thus acting similarly to ASF/SF2, while SC35 activates a cryptic 5' splice site downstream of exon 3 and, in doing so, represses exon 4 use. In contrast, Tra2 and the SR proteins 9G8 and SRp40 do not appear to affect exon 4 splicing.  相似文献   

20.
The calcitonin/calcitonin gene-related peptide (CGRP) pre-mRNA is alternatively processed in a tissue-specific manner leading to the production of calcitonin mRNA in thyroid C cells and CGRP mRNA in neurons. Sequences in the human calcitonin-specific fourth exon function as an exonic splice enhancer (ESE) which is required for incorporation of exon 4 into calcitonin mRNA. Deletion of these sequences from the rat calcitonin/CGRP gene was reported to have no effect on calcitonin splicing. We demonstrate that sequences in the rat calcitonin/CGRP fourth exon act as an ESE. In addition, we observed that three proteins in HeLa nuclear extract, of apparent molecular weights of 40, 55 and 85 kDa, specifically interact with the exon 4 ESE. The 40-kDa protein is human transformer 2beta (hTra2beta), a homolog of the Drosophila splice regulator transformer 2. hTra2beta is required for calcitonin splicing in vitro, one of the first biological functions identified for hTra2beta. The 55-kDa protein is SRp55, a member of the SR family of phosphoproteins. Binding of SRp55 to an ESE required for calcitonin mRNA splicing suggests that the different levels of SRp55 present in different cell types may regulate calcitonin/CGRP alternative splicing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号