首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Susceptibility to severe lupus in MRL-Fas(lpr) mice requires not only the lpr mutation but also other predisposing genes. Using (MRL-Fas(lpr) x B6-Fas(lpr))F2 (where B6 represents C57BL/6) intercrosses that utilize the highly susceptible MRL and poorly susceptible B6 backgrounds, we previously mapped CFA-enhanced systemic lupus-like autoimmunity to four loci, named Lmb1-4, on chromosomes 4, 5, 7, and 10. In the current study, we generated and analyzed reciprocal interval congenic mice for susceptibility to CFA-enhanced autoimmunity at all four Lmb loci. Although all loci had at least a slight effect on lymphoproliferation, only Lmb3 demonstrated a major effect on lymphoproliferation and anti-chromatin Ab levels. Further characterization of Lmb3, primarily by comparing MRL-Fas(lpr) with MRL.B6-Lmb3 Fas(lpr) congenic mice, revealed that it also played a significant role in spontaneous lupus, modifying lymphoproliferation, IgG and autoantibody levels, kidney disease, and survival. The less susceptible B6 Lmb3 locus was associated with a marked reduction in numbers of CD4(+) and double-negative (CD4(-)CD8(-)) T cells, particularly in lymph nodes, as well as reduced T cell proliferation and enhanced T cell apoptosis, both in vivo and in vitro. IFN-gamma-producing CD4(+) T cells were also reduced in MRL.B6-Lmb3 Fas(lpr) mice. Further mapping using subinterval congenic mice placed Lmb3 in the telomeric portion of chromosome 7. Thus, Lmb3, primarily through its effects on CD4(+) and double-negative T cells, appears to be a highly penetrant lupus-modifying locus. Identification of the underlying genetic alteration responsible for this quantitative trait locus should provide new insights into lupus-modifying genes.  相似文献   

2.
MRL/lpr mice develop a spontaneous systemic lupus erythematosus-like autoimmune syndrome due to a dysfunctional Fas receptor, with contributions from other less well-defined genetic loci. The removal of B cells by genetic manipulation not only prevents autoantibody formation, but it also results in substantially reduced T cell activation and kidney inflammation. To determine whether B cell depletion by administration of Abs is effective in lupus mice with an intact immune system and established disease, we screened several B cell-specific mAbs and found that a combination of anti-CD79alpha and anti-CD79beta Abs was most effective at depleting B cells in vivo. Anti-CD79 therapy started at 4-5 mo of age in MRL/lpr mice significantly decreased B cells (B220(+)CD19(+)) in peripheral blood, bone marrow, and spleens. Treated mice also had a significant increase in the number of both double-negative T cells and naive CD4(+) T cells, and a decreased relative abundance of CD4(+) memory cells. Serum anti-chromatin IgG levels were significantly decreased compared with controls, whereas serum anti-dsDNA IgG, total IgG, or total IgM were unaffected. Overall, survival was improved with lower mean skin scores and significantly fewer focal inflammatory infiltrates in submandibular salivary glands and kidneys. Anti-CD79 mAbs show promise as a potential treatment for systemic lupus erythematosus and as a model for B cell depletion in vivo.  相似文献   

3.
B cells are required for both the expression of lupus nephritis and spontaneous T cell activation/memory cell accumulation in MRL-Faslpr mice (MRL/lpr). Autoimmunity in the MRL/lpr strain is the result of Fas-deficiency and multiple background genes; however, the precise roles of background genes vs Fas-deficiency have not been fully defined. Fas-deficiency (i.e., the lpr defect) is required in B cells for optimal autoantibody expression, raising the possibility that the central role for B cells in MRL/lpr mice may not extend to MRL/+ mice and, thus, to lupus models that do not depend on Fas-deficiency ("polygenic lupus"). To address this issue, B cell-deficient, Fas-intact MRL/+ mice (JHd-MRL/) were created; and disease was evaluated in aged animals (>9 mo). The JHd-MRL/+ animals did not develop nephritis or vasculitis at a time when the B cell-intact littermates had severe disease. In addition, while activated/memory CD4+ and CD8+ T cells accumulated in B cell-intact mice, such accumulation was substantially inhibited in the absence of B cells. This effect appeared to be restricted to the MRL strain because it was not seen in B cell-deficient BALB/c mice (JHd-BALB) of similar ages. The results indicate that B cells are essential in promoting systemic autoimmunity in a Fas-independent model. Therefore, B cells have an important role in pathogenesis, generalizable to lupus models that depend on multiple genes even when Fas expression is intact. The results provide further rationale for B cell suppression as therapy for systemic lupus erythematosus.  相似文献   

4.
Autoantibodies directed against dsDNA are found in patients with systemic lupus erythematosus as well as in mice functionally deficient in either Fas or Fas ligand (FasL) (lpr/lpr or gld/gld mice). Previously, an IgH chain transgene has been used to track anti-dsDNA B cells in both nonautoimmune BALB/c mice, in which autoreactive B cells are held in check, and MRL-lpr/lpr mice, in which autoantibodies are produced. In this study, we have isolated the Fas/FasL mutations away from the autoimmune-prone MRL background, and we show that anti-dsDNA B cells in Fas/FasL-deficient BALB/c mice are no longer follicularly excluded, and they produce autoantibodies. Strikingly, this is accompanied by alterations in the frequency and localization of dendritic cells as well as a global increase in CD4 T cell activation. Notably, as opposed to MRL-lpr/lpr mice, BALB-lpr/lpr mice show no appreciable kidney pathology. Thus, while some aspects of autoimmune pathology (e.g., nephritis) rely on the interaction of the MRL background with the lpr mutation, mutations in Fas/FasL alone are sufficient to alter the fate of anti-dsDNA B cells, dendritic cells, and T cells.  相似文献   

5.
MRL/MpJ-Fas(lpr/lpr)/J (MRL(lpr)) mice develop lupus-like disease manifestations in an IL-21-dependent manner. IL-21 is a pleiotropic cytokine that can influence the activation, differentiation, and expansion of B and T cell effector subsets. Notably, autoreactive CD4(+) T and B cells spontaneously accumulate in MRL(lpr) mice and mediate disease pathogenesis. We sought to identify the particular lymphocyte effector subsets regulated by IL-21 in the context of systemic autoimmunity and, thus, generated MRL(lpr) mice deficient in IL-21R (MRL(lpr).IL-21R(-/-)). Lymphadenopathy and splenomegaly, which are characteristic traits of the MRL(lpr) model were significantly reduced in the absence of IL-21R, suggesting that immune activation was likewise decreased. Indeed, spontaneous germinal center formation and plasma cell accumulation were absent in IL-21R-deficient MRL(lpr) mice. Correspondingly, we observed a significant reduction in autoantibody titers. Activated CD4(+) CD44(+) CD62L(lo) T cells also failed to accumulate, and CD4(+) Th cell differentiation was impaired, as evidenced by a significant reduction in CD4(+) T cells that produced the pronephritogenic cytokine IFN-γ. T extrafollicular helper cells are a recently described subset of activated CD4(+) T cells that function as the primary inducers of autoantibody production in MRL(lpr) mice. Importantly, we demonstrated that T extrafollicular helper cells are dependent on IL-21R for their generation. Together, our data highlighted the novel observation that IL-21 is a critical regulator of multiple pathogenic B and T cell effector subsets in MRL(lpr) mice.  相似文献   

6.
Self-reactive T cells are known to be eliminated by negative selection in the thymus or by the induction of tolerance in the periphery. However, developmental pathways that allow self-reactive T cells to inhabit the normal repertoire are not well-characterized. In this investigation, we made use of anti-small nuclear ribonucleoprotein particle (snRNP) Ig transgenic (Tg) mice (2-12 Tg) to demonstrate that autoreactive T cells can be detected and activated in both normal naive mice and autoimmune-prone MRL lpr/lpr mice. In contrast, autoreactive T cells of nonautoimmune Tg mice are tolerized by Tg B cells in the periphery. In adoptive transfer studies, autoreactive T cells from MRL lpr/lpr mice can stimulate autoantibody synthesis in nonautoimmune anti-snRNP Tg mice. Transferred CD4 T cells migrate to regions of the spleen proximal to the B cell follicles, suggesting that cognate B cell-T cell interactions are critical to the autoimmune response. Taken together, our studies suggest that anti-snRNP B cells are important APCs for T cell activation in autoimmune-prone mice. Additionally, we have demonstrated that anti-snRNP B cell anergy in nonautoimmune mice may be reversed by appropriate T cell help.  相似文献   

7.
Systemic lupus erythematosus is a chronic autoimmune disease characterized by loss of tolerance to self-Ags and activation of autoreactive T cells. Regulatory T (Treg) cells play a critical role in controlling the activation of autoreactive T cells. In this study, we investigated mechanisms of potential Treg cell defects in systemic lupus erythematosus using MRL-Fas(lpr/lpr) (MRL/lpr) and MRL-Fas(+/+) mouse models. We found a significant increase in CD4(+)CD25(+)Foxp3(+) Treg cells, albeit with an altered phenotype (CD62L(-)CD69(+)) and with a reduced suppressive capacity, in the lymphoid organs of MRL strains compared with non-autoimmune C3H/HeOuj mice. A search for mechanisms underlying the altered Treg cell phenotype in MRL/lpr mice led us to find a profound reduction in Dicer expression and an altered microRNA (miRNA, miR) profile in MRL/lpr Treg cells. Despite having a reduced level of Dicer, MRL/lpr Treg cells exhibited a significant overexpression of several miRNAs, including let-7a, let-7f, miR-16, miR-23a, miR-23b, miR-27a, and miR-155. Using computational approaches, we identified one of the upregulated miRNAs, miR-155, that can target CD62L and may thus confer the altered Treg cell phenotype in MRL/lpr mice. In fact, the induced overexpression of miR-155 in otherwise normal (C3H/HeOuj) Treg cells reduced their CD62L expression, which mimics the altered Treg cell phenotype in MRL/lpr mice. These data suggest a role of Dicer and miR-155 in regulating Treg cell phenotype. Furthermore, simultaneous appearance of Dicer insufficiency and miR-155 overexpression in diseased mice suggests a Dicer-independent alternative mechanism of miRNA regulation under inflammatory conditions.  相似文献   

8.
The long pentraxin PTX3 has multiple roles in innate immunity. For example, PTX3 regulates C1q binding to pathogens and dead cells and regulates their uptake by phagocytes. It also inhibits P-selectin-mediated recruitment of leukocytes. Both of these mechanisms are known to be involved in autoimmunity and autoimmune tissue injury, e.g. in systemic lupus erythematosus, but a contribution of PTX3 is hypothetical. To evaluate a potential immunoregulatory role of PTX3 in autoimmunity we crossed Ptx3-deficient mice with Fas-deficient (lpr) C57BL/6 (B6) mice with mild lupus-like autoimmunity. PTX3 was found to be increasingly expressed in kidneys and lungs of B6lpr along disease progression. Lack of PTX3 impaired the phagocytic uptake of apoptotic T cells into peritoneal macrophages and selectively expanded CD4/CD8 double negative T cells while other immune cell subsets and lupus autoantibody production remained unaffected. Lack of PTX3 also aggravated autoimmune lung disease, i.e. peribronchial and perivascular CD3+ T cell and macrophage infiltrates of B6lpr mice. In contrast, histomorphological and functional parameters of lupus nephritis remained unaffected by the Ptx3 genotype. Together, PTX3 specifically suppresses autoimmune lung disease that is associated with systemic lupus erythematosus. Vice versa, loss-of-function mutations in the Ptx3 gene might represent a genetic risk factor for pulmonary (but not renal) manifestations of systemic lupus or other autoimmune diseases.  相似文献   

9.
The epitopes recognized by pathogenic T cells in systemic autoimmune disease remain poorly defined. Certain MHC class II-bound self peptides from autoimmune MRL/lpr mice are not found in eluates from class II molecules of MHC-identical C3H mice. Eleven of 16 such peptides elicited lymph node cell and spleen cell T cell proliferation in both MRL/lpr (stimulation index = 2.03-5.01) and C3H mice (stimulation index = 2.03-3.75). IL-2 and IFN-gamma production were detected, but not IL-4. In contrast to what was seen after immunization, four self peptides induced spleen cell proliferation of T cells from naive MRL/lpr, but not from C3H and C57BL/6.H2(k), mice. These peptides were derived from RNA splicing factor SRp20, histone H2A, beta(2)-microglobulin, and MHC class II I-A(k)beta. The first three peptides were isolated from I-E(k) molecules and the last peptide was bound to I-A(k). T cell responses, evident as early as 1 mo of age, depended on MHC class II binding motifs and were inhibited by anti-MHC class II Abs. Thus, although immunization can evoke peripheral self-reactive T cells in normal mice, the presence in MRL/lpr mice of spontaneous T cells reactive to certain MHC-bound self peptides suggests that these T cells actively participate in systemic autoimmunity. Peptides eluted from self MHC class II molecules may yield important clues to T cell epitopes in systemic autoimmunity.  相似文献   

10.
Lupus-prone (MRLxC57BL/6) F(1) mice lacking gammadelta T cells show more severe lupus than their T cell-intact counterparts, suggesting that gammadelta T cells down-modulate murine lupus. To determine the mechanisms for this effect, we assessed the capacity of gammadelta T cell lines derived from spleens of alphabeta T cell-deficient MRL/Mp-Fas(lpr) (MRL/Fas(lpr)) mice to down-regulate anti-dsDNA production generated by CD4(+)alphabeta T helper cell lines and activated B cells from wild-type MRL/Fas(lpr) mice. One line, GD12 (gd TCR(+), CD4(-)CD8(-)), had the capacity to reduce anti-dsDNA production in a contact-dependent manner. GD12 also killed activated MRL/Fas(lpr) (H-2(k)) B cells, with less cytolysis of resting B cells than that generated by in comparison to cytokine-matched gammadelta T cell lines. In addition, GD12 also killed activated B cells derived from C57BL/6-Fas(lpr) (H-2(b)) or beta(2)-microglobulin (beta(2) M)-deficient MRL/Fas(lpr) mice, suggesting cytolysis was neither MHC- nor CD1-restricted. Killing by GD12 was inhibited by anti-TNFalpha and anti-TNF-R1, and partially blocked by anti-gd TCR Fab fragments, but not by anti-FasL, anti-TNF-R2 (p75) or concanamycin A. IL-10 produced by GD12 also partially inhibited alphabeta Th1-dependent but not alphabeta Th2-dependent autoantibody production. These findings prove that we have identtified a gammadelta T cell line that suppresses autoantibody synthesis by alphabeta T-B cell collaboration in vitro.  相似文献   

11.
When mutations that inactivate molecules that function in the immune system have been crossed to murine lupus strains, the result has generally been a uniform up-regulation or down-regulation of autoimmune disease in the end organs. In the current work we report an interesting dissociation of target organ disease in beta(2)-microglobulin (beta(2)m)-deficient MRL-Fas(lpr) (MRL/lpr) mice: lupus skin lesions are accelerated, whereas nephritis is ameliorated. beta(2)m deficiency affects the expression of classical and nonclassical MHC molecules and thus prevents the normal development of CD8- as well as CD1-dependent NK1(+) T cells. To further define the mechanism by which beta(2)m deficiency accelerates skin disease, we studied CD1-deficient MRL/lpr mice. These mice do not have accelerated skin disease, excluding a CD1 or NK1(+) T cell-dependent mechanism of beta(2)m deficiency. The data indicate that the regulation of systemic disease is not solely governed by regulation of initial activation of autoreactive lymphocytes in secondary lymphoid tissue, as this is equally relevant to renal and skin diseases. Rather, regulation of autoimmunity can also occur at the target organ level, explaining the divergence of disease in skin and kidney in beta(2)m-deficient mice.  相似文献   

12.
Interferon regulatory factor 5 (IRF5) polymorphisms are strongly associated with an increased risk of developing the autoimmune disease systemic lupus erythematosus. In mouse lupus models, IRF5-deficiency was shown to reduce disease severity consistent with an important role for IRF5 in disease pathogenesis. However these mouse studies were confounded by the recent demonstration that the IRF5 knockout mouse line contained a loss-of-function mutation in the dedicator of cytokinesis 2 (DOCK2) gene. As DOCK2 regulates lymphocyte trafficking and Toll-like receptor signaling, this raised the possibility that some of the protective effects attributed to IRF5 deficiency in the mouse lupus models may instead have been due to DOCK2 deficiency. We have therefore here evaluated the effect of IRF5-deficiency in the MRL/lpr mouse lupus model in the absence of the DOCK2 mutation. We find that IRF5-deficient (IRF5−/−) MRL/lpr mice develop much less severe disease than their IRF5-sufficient (IRF5+/+) littermates. Despite markedly lower serum levels of anti-nuclear autoantibodies and reduced total splenocyte and CD4+ T cell numbers, IRF5−/− MRL/lpr mice have similar numbers of all splenic B cell subsets compared to IRF5+/+ MRL/lpr mice, suggesting that IRF5 is not involved in B cell development up to the mature B cell stage. However, IRF5−/− MRL/lpr mice have greatly reduced numbers of spleen plasmablasts and bone marrow plasma cells. Serum levels of B lymphocyte stimulator (BLyS) were markedly elevated in the MRL/lpr mice but no effect of IRF5 on serum BLyS levels was seen. Overall our data demonstrate that IRF5 contributes to disease pathogenesis in the MRL/lpr lupus model and that this is due, at least in part, to the role of IRF5 in plasma cell formation. Our data also suggest that combined therapy targeting both IRF5 and BLyS might be a particularly effective therapeutic approach in lupus.  相似文献   

13.
We have examined usage of variable region gene families of the immunoglobulin heavy chain (VH gene family) in spleens of MRL/MpJ-1pr/lpr (MRL/lpr), (NZB x NZW)F1, and BXSB mice by Northern analysis using various VH probes, including the VHPAR gene which we cloned and identified as a gene encoding the heavy-chain variable region of antipoly(ADP-ribose) antibody. The amount of VHS107 family mRNA was almost constant for the same amount of splenic crude RNA in autoimmune-prone and normal mice, while concentrations of other family mRNAs were elevated in autoimmune-prone mice. For example, per splenic RNA the VHPAR family was expressed in MRL/lpr mice 10 times more than in their normal counterpart, MRL/MpJ-+/+ (MRL/+) mice. These results indicate the bias of VH gene usage in autoimmune-prone mice. Expression of the VHS107 family was depressed from an early life stage of MRL/lpr and male BXSB mice. Furthermore, the expression of IL-4 and IL-5 were quantitatively compared, as B cell differentiation factor was thought to be produced by abnormally proliferative T cells in lymph nodes of MRL/lpr mice. We could not, however, observe overproduction of IL-4 and IL-5 mRNA in the lymph nodes.  相似文献   

14.
MRL/MpJ-Fas(lpr) (MRL-Fas(lpr)) mice develop a spontaneous T cell and macrophage-dependent autoimmune disease that shares features with human lupus. Interactions via the programmed death 1/programmed death ligand 1 (PD-1/PD-L1) pathway down-regulate immune responses and provide a negative regulatory checkpoint in mediating tolerance and autoimmune disease. Therefore, we tested the hypothesis that the PD-1/PD-L1 pathway suppresses lupus nephritis and the systemic illness in MRL-Fas(lpr) mice. For this purpose, we compared kidney and systemic illness (lymph nodes, spleen, skin, lung, glands) in PD-L1 null (-/-) and PD-L1 intact (wild type, WT) MRL-Fas(lpr) mice. Unexpectedly, PD-L1(-/-);MRL-Fas(lpr) mice died as a result of autoimmune myocarditis and pneumonitis before developing renal disease or the systemic illness. Dense infiltrates, consisting of macrophage and T cells (CD8(+) > CD4(+)), were prominent throughout the heart (atria and ventricles) and localized specifically around vessels in the lung. In addition, once disease was evident, we detected heart specific autoantibodies in PD-L1(-/-);MRL-Fas(lpr) mice. This unique phenotype is dependent on MRL-specific background genes as PD-L1(-/-);MRL(+/+) mice lacking the Fas(lpr) mutation developed autoimmune myocarditis and pneumonitis. Notably, the transfer of PD-L1(-/-);MRL(+/+) bone marrow cells induced myocarditis and pneumonitis in WT;MRL(+/+) mice, despite a dramatic up-regulation of PD-L1 expression on endothelial cells in the heart and lung of WT;MRL(+/+) mice. Taken together, we suggest that PD-L1 expression is central to autoimmune heart and lung disease in lupus-susceptible (MRL) mice.  相似文献   

15.
Autoantibody production and lymphadenopathy are common features of systemic autoimmune disease. Targeted or spontaneous mutations in the mouse germline have generated many autoimmune models with these features. Importantly, the models have provided evidence for the gene function in prevention of autoimmunity, suggesting an indispensable role for the gene in normal immune response and homeostasis. We describe here pathological and genetic characterizations of a new mutant strain of mice, the mutation of which spontaneously occurred in the Fas-deficient strain, MRL/Mp.Faslpr (MRL/lpr). MRL/lpr is known to stably exhibit systemic lupus erythematosus-like diseases. However, the mutant mice barely displayed autoimmune phenotypes, though the original defect in Fas expression was unchanged. Linkage analysis using (mutant MRL/lpr x C3H/lpr)F2 mice demonstrated a nucleotide insertion that caused loss of expression of small adaptor protein, signaling lymphocyte activation molecule (SLAM)-associated protein (SAP). SAP is known to be a downstream molecule of SLAM family receptors and to mediate the activation signal for tyrosine kinase Fyn. Recent studies have shown pleiotropic roles of SAP in T, B, and NK cell activations and NKT cell development. The present study will provide evidence for an essential role for SAP in the development of autoimmune diseases, autoantibodies, and lymphadenopathy in MRL/lpr lupus mice.  相似文献   

16.
Treatment of murine lupus with monoclonal anti-T cell antibody   总被引:14,自引:0,他引:14  
Three strains of autoimmune mice (MRL/lpr, NZB/NZW, and BXSB) were treated with repeated injections of rat monoclonal anti-T cell antibody (anti-Thy-1.2) in order to determine 1) the extent and duration of target cell depletion, 2) the effect of T cell depletion on the course of autoimmunity, and 3) the magnitude and consequences of the host immune response to the monoclonal antibody. Mice were treated with 6 mg of anti-Thy-1.2 every 2 wk beginning early in their disease. Treatment produced a substantial reduction in circulating T cells in all three strains. Therapy was beneficial in MRL/lpr mice. It reduced lymphadenopathy, lowered autoantibody concentrations, retarded renal disease, and prolonged life. In contrast, treatment did not improve autoimmunity in NZB/NZW mice, and it caused fatal anaphylaxis in BXSB mice. These findings demonstrate that monoclonal antilymphocyte antibodies can serve as specific probes to examine the cells that contribute to autoimmunity. Moreover, they illustrate the potential therapeutic value of monoclonal antilymphocyte antibodies when a pathogeneic cell subset can be identified. However, the same antibody may have a broad range of effects, from efficacy to severe toxicity, even in diseases that share clinical features.  相似文献   

17.
Autoantibodies directed against spliceosomal heterogeneous nuclear ribonucleoproteins (hnRNPs) are a typical feature of rheumatoid arthritis, systemic lupus erythematosus, and mixed-connective tissue disease. With the aim of investigating a potential pathogenic role of these Abs, we have studied the Ab response to A2/B1 hnRNPs in different murine models of lupus. The specificity of anti-A2/B1 Abs was tested with a series of 14 overlapping synthetic peptides covering the region 1-206 of A2 that contains most of the epitopes recognized by patients' Abs. A major epitope recognized very early during the course of the disease by Abs from most of MRL lpr/lpr mice but not from other lupus mice and from mice of different MHC haplotypes immunized against B1 was identified in residues 50-70. This peptide contains a highly conserved sequence RGFGFVTF also present in other hnRNPs and small nuclear ribonucleoproteins. Abs reacting with a second A2 epitope identified in residues 35-55 were detectable several weeks later, suggesting an intramolecular B cell epitope spreading during the course of the disease. We identified several T cell epitopes within the region 35-175 that generated an effective Th cell response with IL-2 and IFN-gamma secretion in nonautoimmune CBA/J mice sharing the same MHC haplotype H-2k as MRL/lpr mice. None of the peptides stimulated T cells primed in vivo with B1. Because Abs to peptide 50-70 were detected significantly earlier than Abs reacting with other A2 peptides and the protein itself, it is possible that within the protein, this segment contains residues playing an initiator role in the induction of the anti-A2/B1 and antispliceosome Ab response.  相似文献   

18.
Systemic lupus erythematosus and its preclinical lupus-prone mouse models are autoimmune disorders involving the production of pathogenic autoantibodies. Genetic predisposition to systemic lupus erythematosus results in B cell hyperactivity, survival of self-reactive B cells, and differentiation to autoantibody-secreting plasma cells (PCs). These corrupt B cell responses are, in part, controlled by excess levels of the cytokine BAFF that normally maintains B cell homeostasis and self-tolerance through limited production. B cell maturation Ag (BCMA) is a receptor for BAFF that, under nonautoimmune conditions, is important for sustaining enduring Ab protection by mediating survival of long-lived PCs but is not required for B cell maturation and homeostasis. Through analysis of two different lupus-prone mouse models deficient in BCMA, we identify BCMA as an important factor in regulating peripheral B cell expansion, differentiation, and survival. We demonstrate that a BCMA deficiency combined with the lpr mutation or the murine lupus susceptibility locus Nba2 causes dramatic B cell and PC lymphoproliferation, accelerated autoantibody production, and early lethality. This study unexpectedly reveals that BCMA works to control B cell homeostasis and self-tolerance in systemic autoimmunity.  相似文献   

19.
T cell autoimmunity in Ig transgenic mice.   总被引:2,自引:0,他引:2  
Autoantibodies directed at a diverse group of proteins of the U1/Sm ribonucleoprotein (snRNP) are characteristic of systemic lupus erythematosus and are found in the MRL murine model of this disease. This study examines the role of transgenic B lymphocytes in the regulation of autoreactive T cells to the snRNP autoantigen. Transgenic mice were developed bearing an Ig heavy chain gene specific for the D protein component of murine snRNP. B lymphocytes in these mice are neither deleted nor anergic and are of an immature (heat-stable Aghigh) phenotype. T lymphocytes from anti-snRNP transgenic mice were examined using a recombinant form of the D protein of the murine snRNP complex. Our results revealed that transgenic anti-snRNP B cell APCs stimulated CD4 T cells from wild-type C57BL/6 and MRL lpr/lpr mice, while nonspecific APCs failed to stimulate CD4 T cells. This study demonstrates that autoreactive T cells are not deleted from wild-type mice, although their activation is facilitated by autoantigen-specific APCs. The snRNP-reactive T cells in C57BL/6 transgenic mice are tolerized, in contrast to those T cells from MRL lpr/lpr transgenic mice. These studies implicate a role for autoreactive B lymphocytes in the in vivo activation and/or diversification of autoreactive T cells.  相似文献   

20.
To determine the regulation of B cells specific for the ribonucleoprotein Sm, a target of the immune system in human and mouse lupus, we have generated mice carrying an anti-Sm H chain transgene (2-12H). Anti-Sm B cells in nonautoimmune 2-12H-transgenic (Tg) mice are functional, but, in the absence of immunization, circulating anti-Sm Ab levels are not different from those of non-Tg mice. In this report, we compare the regulation of anti-Sm B cells in nonautoimmune and autoimmune MRL/Mp-lpr/lpr (MRL/lpr) and bcl-2-22-Tg mice. Activation markers are elevated on splenic and peritoneal anti-Sm B cells of both nonautoimmune and autoimmune genetic backgrounds indicating Ag encounter. Although tolerance to Sm is maintained in 2-12H/bcl-2-22-Tg mice, it is lost in 2-12H-Tg MRL/lpr mice, as the transgene accelerates and increases the prevalence of the anti-Sm response. The 2-12H-Tg MRL/lpr mice have transitional anti-Sm B cells in the spleen similar to nonautoimmune mice. However, in contrast to nonautoimmune mice, there are few if any peritoneal anti-Sm B-1 cells. These data suggest that a defect in B-1 differentiation may be a factor in the loss of tolerance to Sm and provide insight into the low prevalence of the anti-Sm response in lupus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号