首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Frankel LK  Cruz JA  Bricker TM 《Biochemistry》1999,38(43):14271-14278
The effects of the modification of carboxylate groups on the manganese-stabilizing protein of photosystem II were investigated. Carboxylate groups (including possibly the C-terminus) on the manganese-stabilizing protein were modified with glycine methyl ester in a reaction facilitated by 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide. The manganese-stabilizing protein that was modified while associated with NaCl-washed photosystem II membranes contained 1-2 modified carboxylates, whereas the protein that was modified while free in solution contained 4 modified carboxylates. Both types of modified protein could reconstitute oxygen evolution at high manganese-stabilizing protein to photosystem II reaction center ratios. However, the protein that had been modified in solution exhibited a dramatically altered binding affinity for photosystem II. No such alteration in binding affinity was observed for the protein that had been modified while associated with the photosystem. Mapping of the sites of modification was carried out by trypsin and Staphylococcus V8 protease digestion of the modified proteins and analysis by matrix-assisted laser desorption/ionization mass spectrometry. These studies indicated that the domains (157)D-(168)D and (212)E-(247)Q (C-terminus) are labeled only when the manganese-stabilizing protein is modified in solution. Modified carboxylates in these domains are responsible for the altered binding affinity of this protein for the photosystem.  相似文献   

2.
L K Frankel  T M Bricker 《Biochemistry》1992,31(45):11059-11064
The structural organization of photosystem II proteins has been investigated by use of the amino group-labeling reagent N-hydroxysuccinimidobiotin (NHS-biotin) and calcium chloride-washed photosystem II membranes. We have previously shown that the presence of the extrinsic, manganese-stabilizing protein on photosystem II membranes prevents the modification of lysyl residues located on the chlorophyll protein CPa-1 (CP-47) by NHS-biotin [Bricker, T. M., Odom, W. R., & Queirolo, C. B. (1988) FEBS Lett. 231, 111-117]. Upon removal of the manganese-stabilizing protein by calcium chloride-washing, CPa-1 can be specifically modified by treatment with NHS-biotin. Preparative quantities of biotinylated CPa-1 were subjected to chemical cleavage with cyanogen bromide. Two major biotinylated peptides were identified with apparent molecular masses of 11.8 and 15.7 kDa. N-terminal sequence analysis of these peptides indicated that the 11.8-kDa peptide was 232G-330M and that the 15.7-kDa peptide was 360P-508V. The 15.7-kDa CNBr peptide was subjected to limited tryptic digestion. The two smallest tryptic fragments identified migrated at apparent molecular masses of 9.1 (nonbiotinylated) and 7.5 kDa (biotinylated). N-terminal sequence analysis and examination of the predicted amino acid sequences of these peptides suggest that the 9.1-kDa fragment was 422R-508V and that the 7.5-kDa fragment was 360P-421A. These results strongly suggest that two NHS-biotinylated domains, 304K-321K and 389K-419K, become exposed on CPa-1 when the manganese-stabilizing protein is removed by CaCl2 treatment. Both of these domains lie in the large extrinsic loop E of CPa-1.  相似文献   

3.
PsbP is a membrane extrinsic subunit of Photosystem II (PS II), which is involved in retaining Ca2+ and Cl, two inorganic cofactors for the water-splitting reaction. In this study, we re-investigated the role of N-terminal region of PsbP on the basis of its three-dimensional structure. In previous paper [Ifuku and Sato (2002) Plant Cell Physiol 43: 1244–1249], a truncated PsbP lacking 19 N-terminal residues (Δ19) was found to bind to NaCl-washed PS II lacking PsbP and PsbQ without activation of oxygen evolution at all. Three-dimensional (3D) structure of PsbP suggests that deletion of 19 N-terminal residues would destabilize its protein structure, as indicated by the high sensitivity of Δ19 to trypsin digestion. Thus, a truncated PsbP lacking 15 N-terminal residues (Δ15), which retained core PsbP structure, was produced. Whereas Δ15 was resistant to trypsin digestion and bound to NaCl-washed PS II membranes, it did not show the activation of oxygen evolution. This result indicated that the interaction of 15-residue N-terminal flexible region of PsbP with PS II was important for Ca2+ and Cl retention in PS II, although the 15 N-terminal residues were not essential for the binding of PsbP to PS II. The possible N-terminal residues of PsbP that would be involved in this interaction are discussed.  相似文献   

4.
Selective extraction-reconstitution experiments with the extrinsic Photosystem II polypeptides (33 kDa, 23 kDa and 17 kDa) have demonstrated that the manganese complex and the 33 kDa polypeptide are both necessary structural elements for the tight binding of the water soluble 17 and 23 kDa species. When the manganese complex is intact the 33 kDa protein interacts strongly with the rest of the photosynthetic complex. Destruction of the Mn-complex has two dramatic effects: i) The binding of the 33 kDa polypeptide is weaker, since it can be removed by exposure of the PS II system to 2 M NaCl, and ii) the 17 and 23 kDa species do not rebind to Mn-depleted Photosystem II membranes that retain the 33 kDa protein.Abbreviations Chl chlorophyll - HQ hydroquinone - MES 2(N-morpholino)ethanesulfonic acid - PS II Photosystem II - Tris 2-amino-2-hydroxymethylpropane-1,3-diol  相似文献   

5.
To determine the contribution of charged amino acids to binding with the photosystem II complex (PSII), the amino or carboxyl groups of the extrinsic 18 kDa protein were modified with N- succinimidyl propionate (NSP) or glycine methyl ester (GME) in the presence of a water-soluble carbodiimide, respectively. Based on isoelectric point shift, 4-10 and 10-14 amino groups were modified in the presence of 2 and 4 mM NSP, respectively. Similarly, 3-4 carboxyl groups were modified by reaction with 100 mM GME. Neutralization of negatively charged carboxyl groups with GME did not alter the binding activity of the extrinsic 18 kDa protein. However, the NSP-modified 18 kDa protein, in which the positively charged amino groups had been modified to uncharged methyl esters, failed to bind with the PSII membrane in the presence of the extrinsic 23 kDa protein. This defect can not be attributed to structural or conformational alterations imposed by chemical modification, as the fluorescence and circular dichroism spectra among native, GME- and NSP-modified extrinsic 18 kDa proteins were similar. Thus, we have concluded that the positive charges of lysyl residues in the extrinsic 18 kDa protein are important for its interaction with PSII membranes in the presence of the extrinsic 23 kDa protein. Furthermore, it was found that the negative charges of carboxyl groups of this protein did not participate in binding with the extrinsic 23 kDa protein associated with PSII membranes.  相似文献   

6.
W R Odom  T M Bricker 《Biochemistry》1992,31(24):5616-5620
The structural organization of photosystem II proteins has been investigated by use of the zero-length protein cross-linking reagent 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide and monoclonal and polyclonal antibody reagents. Photosystem II membranes were treated with 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide which cross-links amino groups to carboxyl groups which are in van der Waals contact. This treatment did not affect the oxygen evolution rates of these membranes and increased the retention of oxygen evolution after CaCl2 washing. Analysis of the proteins cross-linked by this treatment indicated that two cross-linked species with apparent molecular masses of 95 and 110 kDa were formed which cross-reacted with antibodies against both the 33-kDa manganese-stabilizing protein and the chlorophyll protein CPa-1. Cleavage of the 110-kDa cross-linked species with cyanogen bromide followed by N-terminal sequence analysis was used to identify the peptide fragments of CPa-1 and the manganese-stabilizing protein which were cross-linked. Two cyanogen bromide fragments were identified with apparent molecular masses of 50 and 25 kDa. N-Terminal sequence analysis of the 50-kDa cyanogen bromide fragment indicates that this consists of the C-terminal 16.7-kDa fragment of CPa-1 and the intact manganese-stabilizing protein. This strongly suggests that the manganese-stabilizing protein is cross-linked to the large extrinsic loop domain of CPa-1. N-Terminal analysis of the 25-kDa cyanogen bromide fragment indicates that this consists of the C-terminal 16.7-kDa peptide of CPa-1 and the N-terminal 8-kDa peptide of the manganese-stabilizing protein.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
To elucidate the domains on the extrinsic 23 kDa protein involved in electrostatic interaction with the extrinsic 33 kDa protein in spinach photosystem II, we modified amino or carboxyl groups of the 23 kDa protein to uncharged methyl ester groups with N-succinimidyl propionate or glycine methyl ester in the presence of a water-soluble carbodiimide, respectively. The N-succinimidyl propionate-modified 23 kDa protein did not bind to the 33 kDa protein associated with PSII membranes, whereas the glycine methyl ester-modified 23 kDa protein completely bound. This indicates that positive charges on the 23 kDa protein are important for electrostatic interaction with the 33 kDa protein associated with the PSII membranes. Mapping of the N-succinimidyl propionate-modified sites of the 23 kDa protein was performed using Staphylococcus V8 protease digestion of the modified protein followed by determination of the mass of the resultant peptide fragments with MALDI-TOF MS. The results showed that six domains (Lys11-Lys14, Lys27-Lys38, Lys40, Lys90-Lys96, Lys143-Lys152, Lys166-Lys174) were modified with N-succinimidyl propionate. In these domains, Lys11, Lys13, Lys33, Lys38, Lys143, Lys166, Lys170 and Lys174 were wholly conserved in the 23 kDa protein from 12 species of higher plants. These positively charged lysyl residues on the 23 kDa protein may be involved in electrostatic interactions with the negatively charged carboxyl groups on the 33 kDa protein, the latter has been suggested to be important for the 23 kDa binding [Bricker, T.M. & Frankel, L.K. (2003) Biochemistry42, 2056-2061].  相似文献   

8.
Previous investigations (Specht, S., Pistorius, E.K. and Schmid, G.H.: Photosynthesis Res. 13, 47–56, 1987) of Photosystem II membranes from tobacco (Nicotiana tabacum L. cv. John William's Broadleaf) which contain normally stacked thylakoid membranes and from two chlorophyll deficient tobacco mutants (Su/su and Su/su var. Aurea) which have low stacked or essentially unstacked thylakoids with occasional membrane doublings, have been extended by using monospecific antisera raised against the three extrinsic polypeptides of 33,21 and 16 kDa. The results show that all three peptides are synthesized as well in wild type tobacco as in the two mutants to about the same level and that they are present in thylakoid membranes of all three plants. However, in the mutants the 16 and 21 kDa peptides (but not the 33 kDa peptide) are easily lost during solubilization of Photosystem II membranes. In the absence of the 16 and 21 kDa peptide Photosystem II membranes from the mutants have a higher O2 evolving activity without addition of CaCl2 than the wild type Photosystem II membranes. On the other hand, after removal of the 33 kDa peptide no significant differences in the binding of Mn could be detected among the three plants. The results also show that reaction center complexes from wild type tobacco and the mutant Su/su are almost identical to the Triton-solubilized Photosystem II membranes from the mutant Su/su var. Aurea.Abbreviations PS photosystem - chl chlorophyll - LHCP light harvesting chlorophyll a/b protein complex - WT wild type - OEE1, OEE2 and OEE3 oxygen evolution enhancing complex of 29–36 kDa, 21–24 kDa and 16–18 kDa, respectively  相似文献   

9.
The 33-kDa manganese-stabilizing protein stabilizes the manganese cluster in the oxygen-evolving complex. There has been, however, a considerable amount of controversy concerning the stoichiometry of this photosystem II (PS II) component. In this paper, we have verified the extinction coefficient of the manganese-stabilizing protein by amino acid analysis, determined the manganese content of oxygen-evolving photosystem II membranes and reaction center complex using inductively coupled plasma spectrometry, and determined immunologically the amount of the manganese-stabilizing protein associated with photosystem II. Oxygen-evolving photosystem II membranes and reaction center complex preparations contained 258 +/- 11 and 67 +/- 3 chlorophyll, respectively, per tetranuclear manganese cluster. Immunoquantification of the manganese-stabilizing protein using mouse polyclonal antibodies on "Western blots" demonstrated the presence of 2.1 +/- 0.2 and 2.0 +/- 0.3 molecules of the manganese-stabilizing protein/tetranuclear manganese cluster in oxygen-evolving PS II membranes and highly purified PS II reaction center complex, respectively. Since the manganese-stabilizing protein co-migrated with the D2 protein in our electrophoretic system, accurate immunoquantification required the inclusion of CaCl2-washed PS II membrane proteins or reaction center complex proteins in the manganese-stabilizing protein standards to compensate for the possible masking effect of the D2 protein on the binding of the manganese-stabilizing protein to Immobilon-P membranes. Failure to include these additional protein components in the manganese-stabilizing protein standards leads to a marked underestimation of the amount of the manganese-stabilizing protein associated with these photosystem II preparations.  相似文献   

10.
The integrity of Photosystem II membranes isolated from chloroplast thylakoids is profoundly affected by the solute environment. Examples are given for stabilizing effects various solutes have on the binding of the 17 and 23 kDa extrinsic polypeptides under conditions conductive to their dissociation. It is concluded that these and many other solute effects on Photosystem II membranes can be accommodated readily in a concept developed by Timasheff and his coworkers according to which the responses of proteins to their solute environment are consequences of interaction preferences among the constituents of the solvent-protein-solute systems.Abbreviations Chl chlorophyll - MES 2-(N-morpholino)ethanesulfonic acid - MOPS (3-[N-morpholino]propanesulfonic acid) - PS II Photosystem II  相似文献   

11.
Photosystem II (PSII) catalyzes the oxidation of water during oxygenic photosynthesis. PSII is composed both of intrinsic subunits, such as D1, D2, and CP47, and extrinsic subunits, such as the manganese-stabilizing subunit (MSP). Previous work has shown that amines covalently bind to amino acid residues in the CP47, D1, and D2 subunits of plant and cyanobacterial PSII, and that these covalent reactions are prevented by the addition of chloride in plant preparations depleted of the 18- and 24-kDa extrinsic subunits. It has been proposed that these reactive groups are carbonyl-containing, post-translationally modified amino acid side chains (Ouellette, A. J. A., Anderson, L. B., and Barry, B. A. (1998) Proc. Natl. Acad. Sci. U. S. A. 95, 2204-2209 and Anderson, L. B., Ouellette, A. J. A., and Barry, B. A. (2000) J. Biol. Chem. 275, 4920-4927). To identify the amino acid binding site in the spinach D2 subunit, we have employed a biotin-amine labeling reagent, which can be used in conjunction with avidin affinity chromatography to purify biotinylated peptides from the PSII complex. Multidimensional chromato-graphic separation and multistage mass spectrometry localizes a novel post-translational modification in the D2 subunit to glutamate 303. We propose that this glutamate is activated for amine reaction by post-translational modification. Because the modified glutamate is located at a contact site between the D2 and manganese-stabilizing subunits, we suggest that the modification is important in vivo in stabilizing the interaction between these two PSII subunits. Consistent with this conclusion, mutations at the modified glutamate alter the steady-state rate of photosynthetic oxygen evolution.  相似文献   

12.
A brief treatment at pH 3.0 of Photosystem II (PS II) membranescontaining two bound Ca2+ from rice resulted in strong suppressionof oxygen evolution concomitant with extraction of one Ca2+and the lost activity was restored on addition of 50 mM Ca2+.However, inactivation of oxygen evolution by low pH-treatmentof oxygen-evolving PS II complexes containing only one Ca2+from a rice chlorophyll b-deficient mutant was not associatedwith extraction of the bound Ca2+, although oxygen evolutionwas markedly enhanced by the addition of Ca2+ to the treatedcomplexes. Thus, the acid-inactivation of oxygen evolution cannotbe related to extraction of Ca2+. On the other hand, low pH-treatmentwas found to share the following common features with NaCl-treatmentwhich also causes a Ca2+-reversible inactivation of oxygen evolution.(1) Exposure of PS II membranes to pH 3.0 resulted in solubilizationof the 23 and 17 kDa extrinsic proteins, although the releasedproteins rebound to the membranes when pH was raised to 6.5.(2) There was an apparent heterogeneity in the binding affinityof Ca2+ effective in restoration of the oxygen-evolving activity.(3) Low pH-treated preparations required a higher concentrationof Ca2+ for the maximum reactivation of oxygen evolution thandid NaCl-washed preparations. This was also the case with Sr2+,which stimulated oxygen evolution of both low pH-treated andNaCl-washed PS II membranes to smaller extents. When the extrinsic23 and 17 kDa proteins had been removed, however, Ca2+ concentrationdependence of oxygen evolution in low pH-treated membranes becamesimilar to that in NaCl-washed PS II preparations and the changeswere largely reversed by rebinding of the two proteins. Theseresults strongly suggest that low pH-treatment and NaCl-washinvolve similar mechanisms of Ca2+-dependent reactivation. 1 Present address: Solar Energy Research Group, The Instituteof Physical and Chemical Research (RIKEN), Wako, Saitama, 351-01Japan (Received August 27, 1990; Accepted February 12, 1991)  相似文献   

13.
Selective solubilization of Photosystem II membranes with the non-ionic detergent octyl thioglucopyranoside has allowed the isolation of a PS II system which has been depleted of the 22 and 10 kDa polypeptides but retains all three extrinsic proteins (33, 23 and 17 kDa). The PS II membranes which have been depleted of the 22 and 10 kDa species show high rates of oxygen evolution activity, external calcium is not required for activity and the manganese complex is not destroyed by exogenous reductants. When we compared this system to control PS II membranes, we observed a minor modification of the reducing side, and a conversion of the high-potential to the low-potential form of cytochrome b 559.Abbreviations Chl- chlorophyll - DCBQ- 2,5-dichloro-p-benzoquinone - DCMU- 3-(3,4-dichlorophenyl)-1,1-dimethylurea - ESR- electron spin resonance - MES- 2-(N-morpholino)ethanesulfonic acid - OTG- octyl--d-thioglucopyranoside - PS II- Photosystem II - PEG- polyethylene glycol, Mr=6000 - Tris- 2-amino-2-hydroxyethylpropane-1,3-diol  相似文献   

14.
Approximately 20 protein subunits are associated with the PS II complex, not counting subunits of peripheral light-harvesting antenna complexes. However, it is not yet established which proteins specifically are involved in the water-oxidation process. Much evidence supports the concept that the D1/D2 reaction center heterodimer not only plays a central role in the primary photochemistry of Photosystem II, but also is involved in electron donation to P680 and in ligation of the manganese cluster. This evidence includes (a) the primary donor to P680 has been shown to be a redox-active tyrosyl residue (Tyr161) in the D1 protein, and (b) site-directed mutagenesis and computer-assisted modeling of the reaction center heterodimer have suggested several sites with a possible function in manganese ligation. These include Asp170, Gln165 and Gln189 of the D1 protein and Glu69 of the D2 protein as well as the C-terminal portion of the mature D1 protein. Also, hydrophilic loops of the chlorophyll-binding protein CP43 that are exposed at the inner thylakoid surface could be essential for the water-splitting process.In photosynthetic eukaryotes, three lumenal extrinsic proteins, PS II-O (33 kDa), PS II-P (23 kDa) and PS II-Q (16 kDa), influence the properties of the manganese cluster without being involved in the actual catalysis of water oxidation. The extrinsic proteins together may have multiple binding sites to the integral portion of PS II, which could be provided by the D1/D2 heterodimer and CP47. A major role for the PS II-O protein is to stabilize the manganese cluster. Most experimental evidence favors a connection of the PS II-P protein with binding of the Cl- and Ca2+ ions required for the water oxidation, while the PS II-Q protein seems to be associated only with the Cl- requirement. The two latter proteins are not present in PS II of prokaryotic organisms, where their functions may be replaced by a 10–12 kDa subunit and a newly discovered low-potential cytochrome c-550.Abbreviations PS II Photosystem II - PCC Pasteur Culture Collection  相似文献   

15.
Incubation of a membrane preparation enriched in Photosystem Two (PSII) at alkaline pH inhibited the water-splitting reactions in two distinct steps. Up to pH 8.5 the inhibition was reversible, whereas at higher alkalinities it was irreversible. It was shown that the reversible phase correlated with loss and rebinding of the 23 kDa extrinsic polypeptide. However, after mild alkaline treatments a partial recovery was possible without the binding of the 23 kDa polypeptide when the assay was at the optimal pH of 6.5 and in a medium containing excess Cl-. The irreversible phase was found to be closely linked with the removal of the 33 kDa extrinsic protein of PSII. Treatments with pH values above 8.5 not only caused the 33 kDa protein to be displaced from the PSII-enriched membranes, but also resulted in an irreversible modification of the binding sites such that the extrinsic 33 kDa protein could not reassociate with PSII when the pH was lowered to 6.5. The results obtained with these more extreme alkaline pH treatments support the notion that the 23 kDa protein cannot bind to PSII unless the 33 kDa protein is already bound. The differential effect of pH on the removal of the 23 kDa and 33 kDa proteins contrasted with the data of Kuwabara & Murata [(1983) Plant Cell Physiol. 24, 741-747], but this discrepancy was accounted for by the use of glycerol in the incubation media.  相似文献   

16.
A highly purified oxygen evolving Photosystem II core complex was isolated from PS II membranes solubilized with the non-ionic detergent n-octyl--D-thioglucoside. The three extrinsic proteins (33, 23 and 17 kDa) were functionally bound to the PS II core complex. Selective extraction of the 22, 10 kDa, CP 26 and CP 29 proteins demonstrated that these species are not involved in the binding of the extrinsic proteins (33, 23 and 17 kDa) or the DCMU sensitivity of the Photosystem II complex.Abbreviations Chl chlorophyll - DCBQ 2,6-dichloro-p-benzoquinone - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - LHC light-harvesting complex - MES 2-(N-morpholino)ethanesulfonic acid - OGP n-octyl--d-glucoside - OTG n-octyl--d-thioglucoside - PAGE polyacrylamide gel electrophoresis - PS II Photosystem II - SDS sodium dodecyl sulfate  相似文献   

17.
Yu H  Xu X  Britt RD 《Biochemistry》2006,45(10):3404-3411
An earlier study shows that a 30 min incubation of spinach PS II submembrane fragments at pH 6.3 in the presence of 10 microM HgCl(2) induces a 40% depletion of the 33 kDa protein without the apparent release of the 17 and 23 kDa proteins [Bernier, M., and Carpentier, R. (1995) FEBS Lett. 360, 251-254]. Here we report that the photosystem II 33 kDa extrinsic protein is fully removed by HgCl(2) added at micromolar and higher concentrations (0.25, 20, and 50 microM), with the 17 and 23 kDa extrinsic proteins and other intrinsic proteins remaining bound to the reaction center. The data presented here put in doubt the "regulatory cap" model of PS II, which follows the OEC-33 kDa-23 kDa-17 kDa binding order, as these results directly demonstrate that the 33 kDa protein can be removed without affecting the binding of the 23 and 17 kDa proteins to the intrinsic subunits of PS II. This suggests that each extrinsic protein may possess its own binding site on PS II. A possible mechanism for HgCl(2) upon the release of the 33 kDa protein is discussed.  相似文献   

18.
Gregor W  Cinco RM  Yu H  Yachandra VK  Britt RD 《Biochemistry》2005,44(24):8817-8825
The 33 kDa manganese-stabilizing extrinsic protein binds to the lumenal side of photosystem II (PS II) close to the Mn(4)Ca cluster of the oxygen-evolving complex, where it limits access of small molecules to the metal site. Our previous finding that the removal of this protein did not alter the magnetic coupling regime within the manganese cluster, measured by electron spin-echo envelope modulation [Gregor, W., and Britt, R. D. (2000) Photosynth. Res. 65, 175-185], prompted us to examine whether this accessibility control is also true for substrate water, using the same pulsed EPR technique. Comparing the deuteron modulation of the S(2)-state multiline signal of PS II membranes, equilibrated with deuterated water (D(2)O) after removal or retention of the 33 kDa protein, we observed no change in the number and the distance of deuterons magnetically coupled to manganese, indicating that the number and distance of water molecules bound to the manganese cluster are independent of bound 33 kDa protein in the S(1) state, in which the sample was poised prior to cryogenic illumination. A simple modulation depth analysis revealed a distance of 2.5-2.6 A between the closest deuteron and manganese. These results are in agreement with our refined X-ray absorption analysis. The manganese K-edge positions, reflecting their oxidation states, and the extended X-ray absorption fine structure amplitudes and distances between the manganese ions and their oxygen and nitrogen ligands (1.8, 2.7, and 3.3-3.4 A) were independent of bound 33 kDa protein.  相似文献   

19.
Li ZL  Burnap RL 《Biochemistry》2001,40(34):10350-10359
Mutations D1-R64E, D1-R64Q, and D1-R64V in the putative calcium-binding lumenal interhelical a-b loop of the photosystem II (PSII) D1 protein were characterized in terms of impact on growth, extrinsic protein binding, photoactivation, and properties of the H(2)O-oxidation complex. The D1-R64E charge reversal mutation greatly weakened the binding of the extrinsic manganese-stabilizing protein (MSP) and, to a considerably lesser extent, weakened the binding of cytochrome c(550) (c550). Both D1-R64Q and D1-R64E exhibited an increased requirement for Ca(2+) in the cell growth medium. Bare platinum electrode measurements of O(2)-evolving membranes showed a retarded appearance of O(2) following single turn-over flashes, especially in the case of the D1-R64E mutant. The D1-R64E mutant also had a pronounced tendency to lose O(2) evolution activity in the dark and exhibited an increased relative quantum yield of photoactivation, which are characteristics shared by mutants that lack extrinsic proteins. S(2) and S(3) decay measurements in the isolated membranes indicate that D1-R64E and D1-R64Q have faster decays of these higher S-states as compared to the wild-type. However, fluorescence decay in the presence of DCMU, which monitors primarily Q(A)(-) charge recombination with PSII donors, showed somewhat slower decays. Taken together, the fluorescence and S-state decay indicate that the midpoint of either Q(B)(-) has been modified to be more negative in the mutants or that a recombination path presumably involving either Q(B)(-) or Y(D) has become kinetically more accessible.  相似文献   

20.
35Cl-NMR studies are presented here for spinach Photosystem II membranes inhibited by hydroxylamine (to remove Mn), Tris (to remove Mn and 18, 24 and 33 kDa polypeptides), and salt-washing (to remove 18 and 24 kDa; and 33 kDa polypeptides). Removal of Mn affects the 35Cl-NMR binding curve only slightly, indicating that not all of the bound Mn is directly required for Cl-binding. Removal of both Mn and extrinsic polypeptides eliminates almost all of the Cl-specific binding observable by NMR. Removal of the extrinsic 18 and 24 kDa polypeptides drastically changes the 35Cl-NMR binding pattern; this effect is partially restored by the addition of 2 mM CaSO4, and, to a lesser extent, by the partial rebinding of the polypeptides. Existence of Cl binding to the intrinsic polypeptides (e.g., D1/D2), with a peak at 0.5 mM Cl, is shown in samples lacking 18, 24 and 33 kDa polypeptides. Thus, both intrinsic (i.e., on the D1/D2 membrane protein) and extrinsic (i.e., on the 33 kDa protein) binding sites for Cl are suggested to exist.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号