首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 104 毫秒
1.
2.
Fractionation of the mycobacillin-synthesizing enzyme system.   总被引:4,自引:4,他引:0       下载免费PDF全文
The mycobacillin-synthesizing enzyme system was highly purified by fractionation at 30-55% (NH4)2SO4 saturation. The enzyme concentrate on Sephadex G-200 gel chromatography was resolved into three distinct fragments. Each of the fragments on further purification by DEAE-cellulose ion-exchange chromatography behaved as a single-component system, as clearly indicated by the sharpness of the peaks in the elution diagram. None of the fragments alone nor any two of them in all possible combinations possessed mycobacillin-synthesizing activity, which was restored only when the three fragments were used together in the test system.  相似文献   

3.
Alpha-Chymotrypsin was light sensitized by acylating with cis-cinnamoyl ester, a substrate interconvertible to the trans form by ultraviolet (UV) light. The degree of acylation by this method was complete leaving no residual activity of the enzyme. Upon UV irradiation the inhibited enzyme regained about 70% of its original activity, thereby adding light-sensitiveness to the proteolytic enzyme. In seeking a photographic application of the light-sensitized enzyme, a pigmenting enzyme was incorporated with it. The coupled enzyme system was shown to exhibit a light signal in the form of dark pigment slurry.  相似文献   

4.
The vitamin K-dependent carboxylating system has been solubilized by Lubrol PX or Triton X-100 treatment of vitamin K-deficient rat liver microsomes. As obtained from vitamin K-deficient rat liver, this soluble preparation is dependent upon the in vitro addition of vitamin K1 for carboxylating activity. The enzyme system is complex and is dependent upon NADH and dithiothreitol for maximum activity. While detergents used to solubilize the enzyme complex do markedly inhibit the activity of the system, the solubilized system is still highly responsive to vitamin K addition and can be used for further study of the carboxylating enzyme system. The requirement for dithiothreitol and the inhibition by p-hydroxymercuribenzoate indicate the involvement of an --SH enzyme in the carboxylating system.  相似文献   

5.
A biosensor system for continuous flow determination of plural enzyme activities was prepared from the combination of two pyruvate sensors, a prereactor and a flow cell. This system was applied to the simultaneous determination of lactic dehydrogenase (LDH) and glutamic-pyruvic transaminase (GPT) activities in the same sample. These enzyme activities can be determined by measuring pyruvate produced by the enzyme reactions as follows. The amount of pyruvic acid can also be determined from the amount of oxygen consumed upon oxidation of pyruvic acid by pyruvate oxidase. (Formula: see text). Therefore, both of the detectors for the determination of lactic dehydrogenase and glutamic-pyruvic transaminase activities were prepared from the combination of a pyruvate oxidase membrane and an oxygen electrode. Pyruvate oxidase was covalently immobilized on a membrane prepared from cellulose triacetate. A linear relation was obtained between the output current and LDH or GPT activities in the range of 50 to 3,600 IU l-1 or 6 to 1,000 IU l-1, respectively. Each assay of these enzyme activities was completed within 15 min. The results obtained had a precision of ca. 4%. The sensor was stable for more than 25 days at 5 degrees C.  相似文献   

6.
7.
8.
9.
10.
The growth of the investigated Candida guilliermondii strain on n-alkanes induces an alkane-hydroxylating enzyme system, which consists of a cytochrome P-450 and a NADPH-dependent reductase. The cytochrome P-450 was purified to 4 nmoles per mg protein. Long-chain alkanes, preferably hexadecane to octadecane, are hydroxylated to the corresponding primary alcohol by this enzyme system. The substrate induces a type I spectrum, other compounds checked type II spectra.  相似文献   

11.
12.
Vitamin K is required in an enzymatic reaction which carboxylates glutamyl residues in a microsomal protein precursor of plasma prothrombin to form gamma-carboxyglutamic acid residues. The partial requirements of this microsomal, vitamin K-dependent carboxylase system have been determined. A requirement of the system for cytosolic factors appears to be due primarily to the presence of reduced pyridine nucleotides or a reduced pyridine nucleotide-generating system in the cytosol. The hydroquinone of vitamin K has been demonstrated to be the enzymatically active form of the vitamin. When vitamin K1 hydroquinone is added to the carboxylase system, no NAD(P)H is needed for maximum activity. The carboxylase activity is half-maximally stimulated by 0.25 mug of vitamin K1/ml in the presence of cytosolic components but requires at least 10 times as much vitamin when microsomes are incubated in a cytosol-free buffer. Menadione is inactive as a vitamin source in this system, and the carboxylase activity is inhibited by the 2-chloro analog of vitamin K1 and by Warfarin. The ATP analog, AMP-P(NH)P, inhibited the carboxylase activity, but a dependence on exogenous ATP or an ATP-generating system could not be demonstrated. Carboxylase activity was found to be dependent on an O2-containing gas phase, and upon the HCO3- concentration.  相似文献   

13.
A new mutation in Escherichia coli, designated gcvA1, that results in noninducible expression of both gcv and a gcvT-lacZ gene fusion was isolated. A plasmid carrying the wild-type gcvA gene complemented the mutation and restored glycine-inducible gcv and gcvT-lacZ gene expression. These results suggest that gcvA encodes a positive-acting regulatory protein that acts in trans to increase expression of gcv.  相似文献   

14.
15.
16.
17.
The cellular autolytic reaction system in Streptococcus faecalis ATCC 9790 was analyzed for relative increases in reaction rates with increasing temperature by determination of Arrhenius activation energies (E). The systems examined were: (i) an isolated wall-enzyme complex in 0.01 M sodium phosphate, pH 6.9; (ii) exponential-phase cells suspended in 0.01 or o.3 M sodium phosphate pH 6.8, or in 0.04 M ammonium acetate, pH 6.8, (iii) growing cultures deprived of glucose or lysine; and (iv) cultures treated in growth media with the nonionic detergent, Triton X-100. For detergent-treated cells, E values were between 23.9 and 27.4 kcal/mol (ca. 100.1 to 174.7 kJ/mol) at concentrations of Triton X-100 between about 0.03 and 0.072 mg/ml. E values dropped sharply to 11.5 to 13.0 kcal/m-l (ca. 48.2 to 54.4 kJ/mol) at Triton X-100 concentrations of 0.12 mg/ml or higher. For the remaining systems, E values ranged from 16 to 20 kcal/mol (ca. 67.0 to 83.7 kJ/mol) (wall lysis, cellular autolysis in 0.01 M sodium phosphate or in 0.04 M ammonium acetate, and autolysis of glucose-starved cells) to 31 to 38 kcal/mol (ca 129.8 to 159.1 kJ/mol) (cellular autolysis in 0.3 M sodium phosphate or autolysis of lysine-starved cells). High concentrations of Triton X-100 appear to lower the E values below the 16 to 20 kcal/mol observed for the autolysis of isolated walls. This effect may be related to disruption by the detergent of a hydrophobic complex regulating cellular autolysis in vivo.  相似文献   

18.
The effects of various inhibitors of carnitine palmitoyltransferase I were examined in mitochondria from rat liver and skeletal muscle. Three types of inhibitors were used: malonyl-CoA (reversible), tetradecylglycidyl-CoA and three of its analogues (irreversible), and 2-bromopalmitoyl-CoA (essentially irreversible when added with carnitine). Competitive binding studies between labeled and unlabeled ligands together with electrophoretic analysis of sodium dodecyl sulfate-solubilized membranes revealed that in mitochondria from both tissues all of the inhibitors interacted with a single protein. While the binding capacity for inhibitors was similar in liver and muscle (6-8 pmol/mg of mitochondrial protein) the proteins involved were of different monomeric size (Mr 94,000 and 86,000, respectively). Treatment of mitochondria with the detergent, octyl glucoside, yielded a soluble form of carnitine palmitoyltransferase and residual membranes that were devoid of enzyme activity. The solubilized enzyme displayed the same activity regardless of whether carnitine palmitoyltransferase I of the original mitochondria had first been exposed to an irreversible inhibitor or destroyed by chymotrypsin. It eluted as a single activity peak through four purification steps. The final product from both liver and muscle migrated as single band on sodium dodecyl sulfate-polyacrylamide electrophoresis with Mr of approximately 80,000. The data are consistent with the following model. The inhibitor binding protein is carnitine palmitoyltransferase I itself (as opposed to a regulatory subunit). The hepatic monomer is larger than the muscle enzyme. Each inhibitor interacts via its thioester group at the palmitoyl-CoA binding site of the enzyme but also at a second locus that is probably different for each agent and dictated by the chemical substituent on carbon 2. Disruption of the mitochondrial inner membrane by octyl glucoside causes inactivation of carnitine palmitoyltransferase I while releasing carnitine palmitoyltransferase II in active form. The latter is readily purified, is a smaller protein than carnitine palmitoyltransferase I, and has the same molecular weight in liver and muscle. It is insensitive to inhibitors where on or off the mitochondrial membrane.  相似文献   

19.
20.
The enzymatic components of the rabbit pulmonary monooxygenase system, cytochromes P-450I and P-450II and NADPH-cytochrome P-450 reductase, are immunochemically distinct proteins. In pulmonary microsomes, the N-demethylation of benzphetamine, amino-pyrine, and ethylmorphine, and the O-deethylation of 7-ethoxycoumarin are dependent only on cytochrome P-450I, and the hydroxylation of coumarin is apparently catalyzed by both cytochromes. Cytochrome P-450II is immunochemically distinct from the major forms of hepatic cytochrome P-450 induced by phenobarbital or 3-methylcholanthrene, whereas cytochrome P-450I is indistinguishable from the former on the basis of physical and catalytic as well as immunochemical characteristics. Pulmonary and hepatic NADPH-cytochrome P-450 reductases also have identical physical, catalytic, and immunochemical properties. The lack of response of the lung monooxygenase system to phenobarbital, therefore, is apparently not due to an inability of the lung to synthesize the enzymes induced by phenobarbital in the liver. The relatively high proportion of cytochrome P-450I in the lung appears to be responsible for the higher rates (per nmol of P-450) of N-demethylation that have been observed in rabbit pulmonary as compared to hepatic microsomal fractions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号