首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
2.
Human consumption of soy-derived products has been limited by the presence of non-digestible oligosaccharides (NDO), such as the alpha-galactooligosaccharides raffinose and stachyose. Most mammals, including man, lack pancreatic alpha-galactosidase (alpha-Gal), which is necessary for the hydrolysis of these sugars. However, such NDO can be fermented by gas-producing microorganisms present in the cecum and large intestine, which in turn can induce flatulence and other gastrointestinal disorders in sensitive individuals. The use of microorganisms expressing alpha-Gal is a promising solution to the elimination of NDO before they reach the large intestine. In the present study, lactic acid bacteria engineered to degrade NDO have been constructed and are being used as a tool to evaluate this solution. The alpha-Gal structural genes from Lactobacillus plantarum ATCC8014 (previously characterized in our laboratory) and from guar have been cloned and expressed in Lactococcus lactis. The gene products were directed to different bacterial compartments to optimize their possible applications. The alpha-Gal-producing strains are being evaluated for their efficiency in degrading raffinose and stachyose: i) in soymilk fermentation when used as starters and ii) in situ in the upper gastrointestinal tract when administered to animals orally, as probiotic preparations. The expected outcomes and possible complications of this project are discussed.  相似文献   

3.
4.
5.
The classic strategy to achieve gene deletion variants is based on double-crossover integration of nonreplicating vectors into the genome. In addition, recombination systems such as Cre-lox have been used extensively, mainly for eukaryotic organisms. This study presents the construction of a Cre-lox-based system for multiple gene deletions in Lactobacillus plantarum that could be adapted for use on gram-positive bacteria. First, an effective mutagenesis vector (pNZ5319) was constructed that allows direct cloning of blunt-end PCR products representing homologous recombination target regions. Using this mutagenesis vector, double-crossover gene replacement mutants could be readily selected based on their antibiotic resistance phenotype. In the resulting mutants, the target gene is replaced by a lox66-P(32)-cat-lox71 cassette, where lox66 and lox71 are mutant variants of loxP and P(32)-cat is a chloramphenicol resistance cassette. The lox sites serve as recognition sites for the Cre enzyme, a protein that belongs to the integrase family of site-specific recombinases. Thus, transient Cre recombinase expression in double-crossover mutants leads to recombination of the lox66-P(32)-cat-lox71 cassette into a double-mutant loxP site, called lox72, which displays strongly reduced recognition by Cre. The effectiveness of the Cre-lox-based strategy for multiple gene deletions was demonstrated by construction of both single and double gene deletions at the melA and bsh1 loci on the chromosome of the gram-positive model organism Lactobacillus plantarum WCFS1. Furthermore, the efficiency of the Cre-lox-based system in multiple gene replacements was determined by successive mutagenesis of the genetically closely linked loci melA and lacS2 in L. plantarum WCFS1. The fact that 99.4% of the clones that were analyzed had undergone correct Cre-lox resolution emphasizes the suitability of the system described here for multiple gene replacement and deletion strategies in a single genetic background.  相似文献   

6.
7.
8.
9.
10.
11.
By the complementation of a yeast mutant defective in myo-inositol transport (Nikawa, J., Nagumo, T., and Yamashita, S. (1982) J. Bacteriol. 150, 441-446), we isolated two myo-inositol transporter genes, ITR1 and ITR2, from a yeast gene library. The ITR1 and ITR2 genes contained long open reading frames capable of encoding 584 and 612 amino acids with calculated relative molecular masses of 63,605 and 67,041, respectively. The sequence similarity between the ITR1 and ITR2 products was extremely high, suggesting that the two genes arose from a common ancestor. Both gene products show significant sequence homology with a superfamily of sugar transporters, including human HepG2 hepatoma/erythrocyte glucose transporter and Escherichia coli xylose transporter. Hydropathy analysis indicated that the ITR1 and ITR2 products are both hydrophobic and contain 12 putative membrane-spanning regions. Thus, yeast myo-inositol transporters could be classified into the sugar transporter superfamily. Gene disruption and tetrad analysis showed that yeast cells contain two separate myoinositol transporters. The ITR1 product was the major transporter and the ITR2 product the minor one in cells grown in minimum medium containing glucose. Northern blot analysis showed that ITR1 mRNA was much more abundant than ITR2 mRNA. The previously isolated myo-inositol transport mutant was determined to be defective in ITR1.  相似文献   

12.
Shewanella colwelliana D is a marine procaryote which produces a diffusible brown pigment that correlates with melA gene expression. Previously, melA had been cloned, sequenced, and expressed in Escherichia coli; however, the reaction product of MelA had not been identified. This report identifies that product as homogentisic acid, provides evidence that the pigment is homogentisic acid-melanin (pyomelanin), and suggests that MelA is p-hydroxyphenylpyruvate hydroxylase. This is the first report of pyomelanin in an obligate marine bacterium.  相似文献   

13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号