首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The three-dimensional structure of the membrane-bound form of the major coat protein of Pf1 bacteriophage was determined in phospholipid bilayers using orientation restraints derived from both solid-state and solution NMR experiments. In contrast to previous structures determined solely in detergent micelles, the structure in bilayers contains information about the spatial arrangement of the protein within the membrane, and thus provides insights to the bacteriophage assembly process from membrane-inserted to bacteriophage-associated protein. Comparisons between the membrane-bound form of the coat protein and the previously determined structural form found in filamentous bacteriophage particles demonstrate that it undergoes a significant structural rearrangement during the membrane-mediated virus assembly process. The rotation of the transmembrane helix (Q16-A46) around its long axis changes dramatically (by 160°) to obtain the proper alignment for packing in the virus particles. Furthermore, the N-terminal amphipathic helix (V2-G17) tilts away from the membrane surface and becomes parallel with the transmembrane helix to form one nearly continuous long helix. The spectra obtained in glass-aligned planar lipid bilayers, magnetically aligned lipid bilayers (bicelles), and isotropic lipid bicelles reflect the effects of backbone motions and enable the backbone dynamics of the N-terminal helix to be characterized. Only resonances from the mobile N-terminal helix and the C-terminus (A46) are observed in the solution NMR spectra of the protein in isotropic q > 1 bicelles, whereas only resonances from the immobile transmembrane helix are observed in the solid-state 1H/15N-separated local field spectra in magnetically aligned bicelles. The N-terminal helix and the hinge that connects it to the transmembrane helix are significantly more dynamic than the rest of the protein, thus facilitating structural rearrangement during bacteriophage assembly.  相似文献   

2.
The amphipathic antimicrobial peptide piscidin 1 was studied in magnetically aligned phospholipid bilayers by oriented-sample solid-state NMR spectroscopy. 31P NMR and double-resonance 1H/15N NMR experiments performed between 25°C and 61°C enabled the lipid headgroups as well as the peptide amide sites to be monitored over a range of temperatures. The α-helical peptide dramatically affects the phase behavior and structure of anionic bilayers but not those of zwitterionic bilayers. Piscidin 1 stabilizes anionic bilayers, which remain well aligned up to 61°C when piscidin 1 is on the membrane surface. Two-dimensional separated-local-field experiments show that the tilt angle of the peptide is 80 ± 5°, in agreement with previous results on mechanically aligned bilayers. The peptide undergoes fast rotational diffusion about the bilayer normal under these conditions, and these studies demonstrate that magnetically aligned bilayers are well suited for structural studies of amphipathic peptides.  相似文献   

3.
The opening and closing of voltage-gated potassium (Kv) channels are controlled by several conserved Arg residues in the S4 helix of the voltage-sensing domain. The interaction of these positively charged Arg residues with the lipid membrane has been of intense interest for understanding how membrane proteins fold to allow charged residues to insert into lipid bilayers against free-energy barriers. Using solid-state NMR, we have now determined the orientation and insertion depth of the S4 peptide of the KvAP channel in lipid bilayers. Two-dimensional 15N correlation experiments of macroscopically oriented S4 peptide in phospholipid bilayers revealed a tilt angle of 40° and two possible rotation angles differing by 180° around the helix axis. Remarkably, the tilt angle and one of the two rotation angles are identical to those of the S4 helix in the intact voltage-sensing domain, suggesting that interactions between the S4 segment and other helices of the voltage-sensing domain are not essential for the membrane topology of the S4 helix. 13C-31P distances between the S4 backbone and the lipid 31P indicate a ∼ 9 Å local thinning and 2 Å average thinning of the DMPC (1,2-dimyristoyl-sn-glycero-3-phosphochloline)/DMPG (1,2-dimyristoyl-sn-glycero-3-phosphatidylglycerol) bilayer, consistent with neutron diffraction data. Moreover, a short distance of 4.6 Å from the guanidinium Cζ of the second Arg to 31P indicates the existence of guanidinium phosphate hydrogen bonding and salt bridges. These data suggest that the structure of the Kv gating helix is mainly determined by protein-lipid interactions instead of interhelical protein-protein interactions, and the S4 amino acid sequence encodes sufficient information for the membrane topology of this crucial gating helix.  相似文献   

4.
The three-dimensional structure of the channel-forming trans-membrane domain of virus protein "u" (Vpu) of HIV-1 was determined by NMR spectroscopy in micelle and bilayer samples. Vpu(2-30+) is a 36-residue polypeptide that consists of residues 2-30 from the N terminus of Vpu and a six-residue "solubility tag" at its C terminus that facilitates the isolation, purification, and sample preparation of this highly hydrophobic minimal channel-forming domain. Nearly all of the resonances in the two-dimensional 1H/15N HSQC spectrum of uniformly 15N labeled Vpu(2-30+) in micelles are superimposable on those from the corresponding residues in the spectrum of full-length Vpu, which indicates that the structure of the trans-membrane domain is not strongly affected by the presence of the cytoplasmic domain at its C terminus. The two-dimensional 1H/15N PISEMA spectrum of Vpu(2-30+) in lipid bilayers aligned between glass plates has been fully resolved and assigned. The "wheel-like" pattern of resonances in the spectrum is characteristic of a slightly tilted membrane-spanning helix. Experiments were also performed on weakly aligned micelle samples to measure residual dipolar couplings and chemical shift anisotropies. The analysis of the PISA wheels and Dipolar Waves obtained from both weakly and completely aligned samples show that Vpu(2-30+) has a trans-membrane alpha-helix spanning residues 8-25 with an average tilt of 13 degrees. The helix is kinked slightly at Ile17, which results in tilts of 12 degrees for residues 8-16 and 15 degrees for residues 17-25. A structural fit to the experimental solid-state NMR data results in a three-dimensional structure with precision equivalent to an RMSD of 0.4 A. Vpu(2-30+) exists mainly as an oligomer on PFO-PAGE and forms ion-channels, a most frequent conductance of 96(+/- 6) pS in lipid bilayers. The structural features of the trans-membrane domain are determinants of the ion-channel activity that may be associated with the protein's role in facilitating the budding of new virus particles from infected cells.  相似文献   

5.
In order to investigate the compensation mechanism of a trans-membrane helix in response to hydrophobic mismatch, the tilt and rotation angles of the trans-membrane helix of Vpu aligned in lipid bilayers of various thickness were determined using orientation-dependent frequencies obtained from solid-state NMR experiments of aligned samples. A tilt angle of 18 degrees was observed in 18:1-O-PC/DOPG (9:1) lipid bilayers, which have a hydrophobic thickness that approximately matches the hydrophobic length of the trans-membrane helix of Vpu. Upon decreasing the hydrophobic thickness of lipid bilayers, no significant change in rotation angle was observed. However, the tilt angle increased systematically with increasing positive mismatch to 27 degrees in 14:0-O-PC/DMPG (9:1), 35 degrees in 12:0-O-PC/DLPG (9:1), and 51 degrees in 10:0 PC/10:0 PG (9:1) lipid bilayers, indicating that the change in tilt angle of the trans-membrane helix is a principal compensation mechanism for hydrophobic mismatch. In addition, the distinctive kink in the middle of the helix observed in 18:1 bilayers disappears in thinner bilayers. Although the opposite of what might be expected, this finding suggests that a helix kink may also be a part of the hydrophobic matching mechanism for trans-membrane helices.  相似文献   

6.
The transmembrane protein TatA is the pore forming unit of the twin-arginine translocase (Tat), which has the unique ability of transporting folded proteins across the cell membrane. This ATP-independent protein export pathway is a recently discovered alternative to the general secretory (Sec) system of bacteria. To obtain insight in the translocation mechanism, the structure and alignment in the membrane of the well-folded segments 2-45 of TatAd from Bacillus subtilis was studied here. Using solid-state NMR in bicelles containing anionic lipids, the topology and orientation of TatAd was determined in an environment mimicking the bacterial membrane. A wheel-like pattern, characteristic for a tilted transmembrane helix, was observed in 15N chemical shift /15N-1H dipolar coupling correlation NMR spectra. Analysis of this PISA wheel revealed a 14-16 residue long N-terminal membrane-spanning helix which is tilted by 17° with respect to the membrane normal. In addition, comparison of uniformly and selectively 15N-labeled TatA2-45 samples allowed determination of the helix polarity angle.  相似文献   

7.
Biological membranes are characterized by a high degree of dynamics. In order to understand the function of membrane proteins and even more of membrane-associated peptides, these motional aspects have to be taken into consideration. Solid-state NMR spectroscopy is a method of choice when characterizing topological equilibria, molecular motions, lateral and rotational diffusion as well as dynamic oligomerization equilibria within fluid phase lipid bilayers. Here we show and review examples where the 15N chemical shift anisotropy, dipolar interactions and the deuterium quadrupolar splittings have been used to analyze motions of peptides such as peptaibols, antimicrobial sequences, Vpu, phospholamban or other channel domains. In particular, simulations of 15N and 2H-solid-state NMR spectra are shown of helical domains in uniaxially oriented membranes when rotation around the membrane normal or the helix long axis occurs.  相似文献   

8.
Understanding the structure, folding, and interaction of membrane proteins requires experimental tools to quantify the association of transmembrane (TM) helices. Here, we introduce isothermal titration calorimetry (ITC) to measure integrin αIIbβ3 TM complex affinity, to study the consequences of helix–helix preorientation in lipid bilayers, and to examine protein-induced lipid reorganization. Phospholipid bicelles served as membrane mimics. The association of αIIbβ3 proceeded with a free energy change of − 4.61 ± 0.04 kcal/mol at bicelle conditions where the sampling of random helix–helix orientations leads to complex formation. At bicelle conditions that approach a true bilayer structure in effect, an entropy saving of > 1 kcal/mol was obtained from helix–helix preorientation. The magnitudes of enthalpy and entropy changes increased distinctly with bicelle dimensions, indicating long-range changes in bicelle lipid properties upon αIIbβ3 TM association. NMR spectroscopy confirmed ITC affinity measurements and revealed αIIbβ3 association and dissociation rates of 4500 ± 100 s− 1 and 2.1 ± 0.1 s− 1, respectively. Thus, ITC is able to provide comprehensive insight into the interaction of membrane proteins.  相似文献   

9.
Using x-ray diffraction and NMR spectroscopy, we present structural and material properties of phosphatidylserine (PS) bilayers that may account for the well documented implications of PS headgroups in cell activity. At 30 degrees C, the 18-carbon monounsaturated DOPS in the fluid state has a cross-sectional area of 65.3 A(2) which is remarkably smaller than the area 72.5 A(2) of the DOPC analog, despite the extra electrostatic repulsion expected for charged PS headgroups. Similarly, at 20 degrees C, the 14-carbon disaturated DMPS in the gel phase has an area of 40.8 A(2) vs. 48.1 A(2) for DMPC. This condensation of area suggests an extra attractive interaction, perhaps hydrogen bonding, between PS headgroups. Unlike zwitterionic lipids, stacks of PS bilayers swell indefinitely as water is added. Data obtained for osmotic pressure versus interbilayer water spacing for fluid phase DOPS are well fit by electrostatic interactions calculated for the Gouy-Chapman regime. It is shown that the electrostatic interactions completely dominate the fluctuational pressure. Nevertheless, the x-ray data definitively exhibit the effects of fluctuations in fluid phase DOPS. From our measurements of fluctuations, we obtain the product of the bilayer bending modulus K(C) and the smectic compression modulus B. At the same interbilayer separation, the interbilayer fluctuations are smaller in DOPS than for DOPC, showing that B and/or K(C) are larger. Complementing the x-ray data, (31)P-chemical shift anisotropy measured by NMR suggest that the DOPS headgroups are less sensitive to osmotic pressure than DOPC headgroups, which is consistent with a larger K(C) in DOPS. Quadrupolar splittings for D(2)O decay less rapidly with increasing water content for DOPS than for DOPC, indicating greater perturbation of interlamellar water and suggesting a greater interlamellar hydration force in DOPS. Our comparisons between bilayers of PS and PC lipids with the same chains and the same temperature enable us to focus on the effects of these headgroups on bilayer properties.  相似文献   

10.
Knowledge about the vertical movement of a protein with respect to the lipid bilayer plane is important to understand protein functionality in the biological membrane. In this work, the vertical displacement of bacteriophage M13 major coat protein in a lipid bilayer is used as a model system to study the molecular details of its anchoring mechanism in a homologue series of lipids with the same polar head group but different hydrophobic chain length. The major coat proteins were reconstituted into 14:1PC, 16:1PC, 18:1PC, 20:1PC, and 22:1PC bilayers, and the fluorescence spectra were measured of the intrinsic tryptophan at position 26 and BADAN attached to an introduced cysteine at position 46, located at the opposite ends of the transmembrane helix. The fluorescence maximum of tryptophan shifted for 700 cm-1 on going from 14:1PC to 22:1PC, the corresponding shift of the fluorescence maximum of BADAN at position 46 was approximately 10 times less (∼ 70 cm-1). Quenching of fluorescence with the spin label CAT 1 indicates that the tryptophan is becoming progressively inaccessible for the quencher with increasing bilayer thickness, whereas quenching of BADAN attached to the T46C mutant remained approximately unchanged. This supports the idea that the BADAN probe at position 46 remains at the same depth in the bilayer irrespective of its thickness and clearly indicates an asymmetrical nature of the protein dipping in the lipid bilayer. The anchoring strength at the C-terminal domain of the protein (provided by two phenylalanine residues together with four lysine residues) was estimated to be roughly 5 times larger than the anchoring strength of the N-terminal domain.  相似文献   

11.
The morphology of q = 0.5 fast-tumbling bicelles prepared with three different acyl chain lengths has been investigated by NMR. It is shown that bicelles prepared with DLPC (12 C) and DHPC are on average larger than those containing DMPC or DPPC (14 and 16 C) and DHPC, which may be due to a higher degree of mixing between DLPC and DHPC. The fast internal mobility of the lipids was determined from natural abundance carbon-13 relaxation. A similar dynamical behaviour of the phospholipids in the three different bicelles was observed, although the DPPC lipid acyl chain displayed a somewhat lower degree of mobility, as evidenced by higher generalized order parameters throughout the acyl chain. Carbon-13 relaxation was also used to determine the effect of different model transmembrane peptides, with flanking Lys residues, on the lipid dynamics in the three different bicelles. All peptides had the effect of increasing the order parameters for the DLPC lipid, while no effect was observed on the longer lipid chains. This effect may be explained by a mismatch between the hydrophobic length of the peptides and the DLPC lipid acyl chain.  相似文献   

12.
The M2 proton channel of influenza A is the target of the antiviral drugs amantadine and rimantadine, whose effectiveness has been abolished by a single-site mutation of Ser31 to Asn in the transmembrane domain of the protein. Recent high-resolution structures of the M2 transmembrane domain obtained from detergent-solubilized protein in solution and crystal environments gave conflicting drug binding sites. We present magic-angle-spinning solid-state NMR results of Ser31 and a number of other residues in the M2 transmembrane peptide (M2TMP) bound to lipid bilayers. Comparison of the spectra of the membrane-bound apo and complexed M2TMP indicates that Ser31 is the site of the largest chemical shift perturbation by amantadine. The chemical shift constraints lead to a monomer structure with a small kink of the helical axis at Gly34. A tetramer model is then constructed using the helix tilt angle and several interhelical distances previously measured on unoriented bilayer samples. This tetramer model differs from the solution and crystal structures in terms of the openness of the N-terminus of the channel, the constriction at Ser31, and the side-chain conformations of Trp41, a residue important for channel gating. Moreover, the tetramer model suggests that Ser31 may interact with amantadine amine via hydrogen bonding. While the apo and drug-bound M2TMP have similar average structures, the complexed peptide has much narrower linewidths at physiological temperature, indicating drug-induced changes of the protein dynamics in the membrane. Further, at low temperature, several residues show narrower lines in the complexed peptide than the apo peptide, indicating that amantadine binding reduces the conformational heterogeneity of specific residues. The differences of the current solid-state NMR structure of the bilayer-bound M2TMP from the detergent-based M2 structures suggest that the M2 conformation is sensitive to the environment, and care must be taken when interpreting structural findings from non-bilayer samples.  相似文献   

13.
The influence of a mammalian sterol cholesterol and a plant sterol β-sitosterol on the structural parameters and hydration of bilayers in unilamellar vesicles made of monounsaturated diacylphosphatidylcholines (diCn:1PC, n = 14-22 is the even number of acyl chain carbons) was studied at 30 °C using small-angle neutron scattering (SANS). Recently published advanced model of lipid bilayer as a three-strip structure was used with a triangular shape of polar head group probability distribution (Ku?erka et al., Models to analyze small-angle neutron scattering from unilamellar lipid vesicles, Physical Review E 69 (2004) Art. No. 051903). It was found that 33 mol% of both sterols increased the thickness of diCn:1PC bilayers with n = 18-22 similarly. β-sitosterol increased the thickness of diC14:1PC and diC16:1PC bilayers a little more than cholesterol. Both sterols increased the surface area per unit cell by cca 12 Å2 and the number of water molecules located in the head group region by cca 4 molecules, irrespective to the acyl chain length of diCn:1PC. The structural difference in the side chain between cholesterol and β-sitosterol plays a negligible role in influencing the structural parameters of bilayers studied.  相似文献   

14.
Bacteriophage M13 major coat protein was reconstituted in different nonmatching binary lipid mixtures composed of 14:1PC and 22:1PC lipid bilayers. Challenged by this lose-lose situation of hydrophobic mismatch, the protein-lipid interactions are monitored by CD and site-directed spin-label electron spin resonance spectroscopy of spin-labeled site-specific single cysteine mutants located in the C-terminal protein domain embedded in the hydrophobic core of the membrane (I39C) and at the lipid-water interface (T46C). The CD spectra indicate an overall α-helical conformation irrespective of the composition of the binary lipid mixture. Spin-labeled protein mutant I39C senses the phase transition in 22:1PC, in contrast to spin-labeled protein mutant T46C, which is not affected by the transition. The results of both CD and electron spin resonance spectroscopy clearly indicate that the protein preferentially partitions into the shorter 14:1PC both above and below the gel-to-liquid crystalline phase transition temperature of 22:1PC. This preference is related to the protein tilt angle and energy penalty the protein has to pay in the thicker 22:1PC. Given the fact that in Escherichia coli, which is the host for M13 bacteriophage, it is easier to find shorter 14 carbon acyl chains than longer 22 carbon acyl chains, the choice the M13 coat protein makes seems to be evolutionary justified.  相似文献   

15.
The membrane location of two fragments in two different K+-channels, the KvAP (from Aeropyrum pernix) and the HsapBK (human) corresponding to the putative “paddle” domains, has been investigated by CD, fluorescence and NMR spectroscopy. Both domains interact with q = 0.5 phospholipid bicelles, DHPC micelles and with POPC vesicles. CD spectra demonstrate that both peptides become largely helical in the presence of phospholipid bicelles. Fluorescence quenching studies using soluble acrylamide or lipid-attached doxyl-groups show that the arginine-rich domains are located within the bilayered region in phospholipid bicelles. Nuclear magnetic relaxation parameters, T1 and 13C-1H NOE, for DMPC in DMPC/DHPC bicelles and for DHPC in micelles showed that the lipid acyl chains in the bicelles become less flexible in the presence of either of the fragments. An even more pronounced effect is seen on the glycerol carbons. 2H NMR spectra of magnetically aligned bicelles showed that the peptide derived from KvAP had no or little effect on bilayer order, while the peptide derived from HsapBK had the effect of lowering the order of the bilayer. The present study demonstrates that the fragments derived from the full-length proteins interact with the bilayered interior of model membranes, and that they affect both the local mobility and lipid order of model membrane systems.  相似文献   

16.
The structure of the membrane anchor domain (VpuMA) of the HIV-1-specific accessory protein Vpu has been investigated in solution and in lipid bilayers by homonuclear two-dimensional and solid-state nuclear magnetic resonance spectroscopy, respectively. Simulated annealing calculations, using the nuclear Overhauser enhancement data for the soluble synthetic peptide Vpu1-39 (positions Met-1-Asp-39) in an aqueous 2,2,2-trifluoroethanol (TFE) solution, afford a compact well-defined U-shaped structure comprised of an initial turn (residues 1-6) followed by a linker (7-9) and a short helix on the N-terminal side (10-16) and a further longer helix on the C-terminal side (22-36). The side chains of the two aromatic residues (Trp-22 and Tyr-29) in the longer helix are directed toward the center of the molecule around which the hydrophobic core of the folded VpuMA is positioned. As the observed solution structure is inconsistent with the formation of ion-conductive membrane pores defined previously for VpuMA in planar lipid bilayers, the isolated VpuMA domain as peptide Vpu1-27 was investigated in oriented phospholipid bilayers by proton-decoupled 15N cross polarization solid-state NMR spectroscopy. The line widths and chemical shift data of three selectively 15N-labeled peptides are consistent with a transmembrane alignment of a helical polypeptide. Chemical shift tensor calculations imply that the data sets are compatible with a model in which the nascent helices of the folded solution structure reassemble to form a more regular linear alpha-helix that lies parallel to the bilayer normal with a tilt angle of 相似文献   

17.
Interaction of bovine myelin basic protein and its constituent charge isomers (C1-C3) with phospholipid bilayers was studied using solid-state NMR experiments on model membranes. 31P NMR experiments on multilamellar vesicles and mechanically aligned bilayers were used to measure the degree of protein-induced disorder in the lipid headgroup region while 2H NMR data provided the disorder caused by the protein in the hydrophobic core of the bilayers. Our results suggest that MBP and its charge isomers neither fragment nor significantly disrupt DMPC, POPC, POPC:POPG, and POPE bilayers. These results demonstrate that the MBP-induced fragmentation of POPC bilayers is due to the freeze-thaw cycles used in the preparation of multilamellar vesicles and not due to intrinsic protein-lipid interactions.  相似文献   

18.
To gain further insight into the antimicrobial activities of cationic linear peptides, we investigated the topology of each of two peptides, PGLa and magainin 2, in oriented phospholipid bilayers in the presence and absence of the other peptide and as a function of the membrane lipid composition. Whereas proton-decoupled 15N solid-state NMR spectroscopy indicates that magainin 2 exhibits stable in-plane alignments under all conditions investigated, PGLa adopts a number of different membrane topologies with considerable variations in tilt angle. Hydrophobic thickness is an important parameter that modulates the alignment of PGLa. In equimolar mixtures of PGLa and magainin 2, the former adopts transmembrane orientations in dimyristoyl-, but not 1-palmitoyl-2-oleoyl-, phospholipid bilayers, whereas magainin 2 remains associated with the surface in all cases. These results have important consequences for the mechanistic models explaining synergistic activities of the peptide mixtures and will be discussed. The ensemble of data suggests that the thinning of the dimyristoyl membranes caused by magainin 2 tips the topological equilibrium of PGLa toward a membrane-inserted configuration. Therefore, lipid-mediated interactions play a fundamental role in determining the topology of membrane peptides and proteins and thereby, possibly, in regulating their activities as well.  相似文献   

19.
The specific volumes of six 1,2-diacylphosphatidylcholines with monounsaturated acyl chains (diCn:1PC, n=14-24 is the even number of acyl chain carbons) in fluid bilayers in multilamellar vesicles dispersed in H(2)O were determined by the vibrating tube densitometry as a function of temperature. From the data obtained with diCn:1PC (n=14-22) vesicles in combination with the densitometric data from Tristram-Nagle et al. [Tristram-Nagle, S., Petrache, H.I., Nagle, J.F., 1998. Structure and interactions of fully hydrated dioleoylphosphatidylcholine bilayers. Biophys. J. 75, 917-925.] and Koenig and Gawrisch [Koenig, B.W., Gawrisch, K., 2005. Specific volumes of unsaturated phosphatidylcholines in the liquid crystalline lamellar phase. Biochim. Biophys. Acta 1715, 65-70.], the component volumes of phosphatidylcholines in fully hydrated fluid bilayers at 30 degrees C were obtained. The volume of the acyl chain CH and CH(2) group is V(CH)=22.30 A(3) and V(CH2) =A(3), respectively. The volume of the headgroup including the glyceryl and acyl carbonyls, V(H), and the ratio of acyl chain methyl and methylene group volumes, r=V(CH3):V(CH2) are linearly interdependent: V(H)=a-br, where a=434.41 A(3) and b=-55.36 A(3) at 30 degrees C. From the temperature dependencies of component volumes, their isobaric thermal expansivities (alpha(X)=V(X)(-1)(partial differential V(X)/ partial differential T) where X=CH(2), CH, or H were calculated: alpha(CH2)=118.4x10(-5)K(-1), alpha(CH)=71.0x10(-5)K(-1), alpha(H)=7.9x10(-5)K(-1) (for r=2) and alpha(H)=9.6x10(-5)K(-1) (for r=1.9). The specific volume of diC24:1PC changes at the main gel-fluid phase transition temperature, t(m)=26.7 degrees C, by 0.0621 ml/g, its specific volume is 0.9561 and 1.02634 ml/g at 20 and 30 degrees C, respectively, and its isobaric thermal expansivity alpha=68.7x10(-5) and 109.2x10(-5)K(-1) below and above t(m), respectively. The component volumes and thermal expansivities obtained can be used for the interpretation of X-ray and neutron scattering and diffraction experiments and for the guiding and testing molecular dynamics simulations of phosphatidylcholine bilayers in the fluid state.  相似文献   

20.
Wild-type phospholamban (WT-PLB) is a pentameric transmembrane protein that regulates the cardiac cycle (contraction and relaxation). From a physiological prospective, unphosphorylated WT-PLB inhibits sarcoplasmic reticulum ATPase activity; whereas, its phosphorylated form relieves the inhibition in a mechanism that is not completely understood. In this study, site-specifically 15N-Ala-11- and 15N-Leu-7-labeled WT-PLB and the corresponding phosphorylated forms (P-PLB) were incorporated into 1,2-dioleoyl-sn-glycero-3-phosphocholine/2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPC/DOPE) mechanically oriented lipid bilayers. The aligned 15N-labeled Ala-11 and Leu-7 WT-PLB samples show 15N resonance peaks at approximately 71 ppm and 75 ppm, respectively, while the corresponding phosphorylated forms P-PLB show 15N peaks at 92 ppm and 99 ppm, respectively. These 15N chemical shift changes upon phosphorylation are significant and in agreement with previous reports, which indicate that phosphorylation of WT-PLB at Ser-16 alters the structural properties of the cytoplasmic domain with respect to the lipid bilayers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号