首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
The receptor activator of nuclear factor-kappaB ligand (RANKL), a member of the tumor necrosis factor family, is a transmembrane protein, which is known as an essential initiation factor of osteoclastogenesis. Previously, we identified three RANKL isoforms. RANKL1 was identical to the originally reported RANKL. RANKL2 had a shorter intracellular domain. RANKL3 did not have the intracellular or transmembrane domains and was suggested to act as a soluble form protein. Here, we show that RANKL forms homo- or heteromultimers. NIH3T3 cells transfected with RANKL1 or RANKL2 form mononuclear tartrate-resistant acid phosphatase-positive preosteoclasts in an in vitro osteoclastogenesis assay system. Coexpression of RANKL1 and RANKL2 induces multinucleated osteoclasts. RANKL3 has no effect on the formation of preosteoclasts or osteoclasts but significantly inhibits fusion of preosteoclasts when coexpressed with RANKL1 and RANKL2. These findings imply the presence of multiple multimeric structures of RANKL, which may regulate bone metabolism.  相似文献   

2.
Bone is continuously remodeled through resorption by osteoclasts and the subsequent synthesis of the bone matrix by osteoblasts. Cell-to-cell contact between osteoblasts and osteoclast precursors is required for osteoclast formation. RANKL (receptor activator of nuclear factor-kappaB ligand) expressed on osteoblastic cell membranes stimulates osteoclastogenesis, while osteoprotegerin (OPG) secreted by osteoblasts inhibits osteoclastogenesis. Although polyunsaturated fatty acids (PUFAs) have been implicated in bone homeostasis, the effects thereof on OPG and RANKL secretion have not been investigated. MC3T3-E1 osteoblasts were exposed to the n-6 PUFA arachidonic acid (AA) and the n-3 PUFA docosahexaenoic acid (DHA); furthermore, the bone-active hormone parathyroid hormone (PTH) and the effects thereof were tested on OPG and RANKL secretion. Prostaglandin E(2) (PGE(2)), a product of AA metabolism that was previously implicated in bone homeostasis, was included in the study. AA (5.0-20 microg/ml) inhibited OPG secretion by 25-30%, which was attenuated by pretreatment with the cyclooxygenase blocker indomethacin, suggesting that the inhibitory effect of AA on OPG could possibly be PGE(2)-mediated. MC3T3-E1 cells secreted very low basal levels of RANKL, but AA stimulated RANKL secretion, thereby decreasing the OPG/RANKL ratio. DHA suppressed OPG secretion to a smaller extent than AA. This could, however, be due to endogenous PGE(2) production. No RANKL could be detected after exposing the MC3T3-E1 cells to DHA. PTH did not affect OPG secretion, but stimulated RANKL secretion. This study demonstrates that AA and PTH reduce the OPG/RANKL ratio and may increase osteoclastogenesis. DHA, however, had no significant effect on OPG or RANKL in this model.  相似文献   

3.
The two osteoclastogenesis pathways, receptor activator nuclear factor (NF)-kappaB ligand (RANKL)-mediated and fusion regulatory protein-1 (FRP-1)-mediated osteoclastogenesis, have recently been reported. There were significant differences in differentiation and activation mechanisms between the two pathways. When monocytes were cultured with FRP-1 without adding M-CSF, essential for the RANKL system, TRAP-positive polykaryocyte formation occurred. FRP-1-mediated osteoclasts formed larger pits on mineralized calcium phosphate plates than RANKL+M-CSF-mediated osteoclasts did. Lacunae on dentin surfaces induced by FRP-1-mediated osteoclasts were inclined to be single and isolated. However, osteoclasts induced by RANKL+M-CSF made many connected pits on dentin surfaces as if they crawled on there. Interestingly, FRP-1 osteoclastogenesis was enhanced by M-CSF/IL-1alpha, while chemotactic behavior to the dentin slices was not effected. There were differences in pH and concentration of HCO3- at culture endpoint and in adherent feature to dentin surfaces. Our findings indicate there are two types of osteoclasts with distinct properties.  相似文献   

4.
We investigated here whether adiponectin can exhibit an inhibitory effect on tumor necrosis factor-alpha (TNF-alpha)- and receptor activator of nuclear factor-kappaB ligand (RANKL)-induced osteoclastogenesis by using RAW264 cell D clone with a high efficiency to form osteoclasts. Globular adiponectin (gAd) strongly inhibited TNF-alpha/RANKL-induced differentiation of osteoclasts by interfering with TNF receptor-associated factor 6 production and calcium signaling; consequently, the induction of nuclear factor of activated T cells c1 (NFATc1) was strongly inhibited. Moreover, we observed that inhibition of AMP-activated protein kinase abrogated gAd inhibition for TNF-alpha/RANKL-induced NFATc1 expression. Our data suggest that adiponectin acts as a potent regulator of bone resorption observed in diseases associated with cytokine activation.  相似文献   

5.
The effect of neuropeptide Y (NPY), a co-transmitter with noradrenaline in peripheral sympathetic nerve fibers, on the osteoclastogenesis in mouse bone marrow cell cultures treated with isoprenaline, a beta-adrenergic receptor (beta-AR) agonist, was examined. The mouse bone marrow cells constitutively expressed mRNAs for the NPY-Y1 receptor and beta2-AR. NPY inhibited the formation of osteoclast-like cells induced by isoprenaline but not that by 1alpha,25-dihydroxyvitamin D3 (1alpha,25(OH)2D3) or soluble receptor activator of nuclear factor-kappaB ligand (RANKL); and it suppressed the production of RANKL and cyclic AMP (cAMP) increased by isoprenaline but not those increased by 1alpha,25(OH)2D3. NPY also inhibited osteoclastogenesis induced by forskolin, an activator of adenylate cyclase; however, it did not inhibit that induced by exogenously supplied dibutyryl cAMP, a cell-permeable cAMP analog that activates cAMP-dependent protein kinase. These results demonstrate that NPY inhibited the isoprenaline-induced osteoclastogenesis by blocking the agonist-elicited increases in the production of cAMP and RANKL in mouse bone marrow cells, suggesting an interaction between NPY and beta-AR agonist in bone resorption.  相似文献   

6.
Organotin compounds, such as tributyltin (TBT) and triphenyltin (TPT), have been widely used in agriculture and industry. Although these compounds are known to have many toxic effects, including endocrine-disrupting effects, their effects on bone resorption are unknown. In this study, we investigated the effects of organotin compounds, such as monobutyltin (MBT), dibutyltin (DBT), TBT, and TPT, on osteoclast differentiation using mouse monocytic RAW264.7 cells. MBT and DBT had no effects, whereas TBT and TPT dose-dependently inhibited osteoclast differentiation at concentrations of 3-30 nM. Treatment with a retinoic acid receptor (RAR)-specific antagonist, Ro41-5253, restored the inhibition of osteoclastogenesis by TBT and TPT. TBT and TPT reduced receptor activator of nuclear factor-kappaB ligand (RANKL) induced nuclear factor of activated T cells (NFAT) c1 expression, and the reduction in NFATc1 expression was recovered by Ro41-5253. Our results suggest that TBT and TPT suppress osteoclastogenesis by inhibiting RANKL-induced NFATc1 expression via an RAR-dependent signaling pathway.  相似文献   

7.
8.
The prevailing view is that signaling machineries for the neurotransmitter GABA are also expressed by cells outside the CNS. In cultured murine calvarial osteoblasts, mRNA was constitutively expressed for both subunits 1 and 2 of metabotropic GABA(B) receptor (GABA(B)R), along with inhibition by the GABA(B)R agonist baclofen of cAMP formation, alkaline phosphatase (ALP) activity, and Ca(2+) accumulation. Moreover, baclofen significantly inhibited the transactivation of receptor activator of nuclear factor-κB ligand (RANKL) gene in a manner sensitive to a GABA(B)R antagonist, in addition to decreasing mRNA expression of bone morphogenetic protein-2 (BMP2), osteocalcin, and osterix. In osteoblastic MC3T3-E1 cells stably transfected with GABA(B)R1 subunit, significant reductions were seen in ALP activity and Ca(2+) accumulation, as well as mRNA expression of osteocalcin, osteopontin, and osterix. In cultured calvarial osteoblasts from GABA(B)R1-null mice exhibiting low bone mineral density in tibia and femur, by contrast, both ALP activity and Ca(2+) accumulation were significantly increased together with promoted expression of both mRNA and proteins for BMP2 and osterix. No significant change was seen in the number of multinucleated cells stained for tartrate-resistant acid phosphatase during the culture of osteoclasts prepared from GABA(B)R1-null mice, whereas a significant increase was seen in the number of tartrate-resistant acid phosphatase-positive multinucleated cells in co-culture of osteoclasts with osteoblasts isolated from GABA(B)R1-null mice. These results suggest that GABA(B)R is predominantly expressed by osteoblasts to negatively regulate osteoblastogenesis through down-regulation of BMP2 expression toward disturbance of osteoclastogenesis after down-regulation of RANKL expression in mouse bone.  相似文献   

9.
Recent studies have reported that activin A enhances osteoclastogenesis in cultures of mouse bone marrow cells stimulated with receptor activator of nuclear factor-kappaB ligand (RANKL) and macrophage colony-stimulating factor (M-CSF). However, the exact mechanisms by which activin A functions during osteoclastogenesis are not clear. RANKL stimulation of RANK/TRAF6 signaling increases nuclear factor-kappaB (NFkappaB) nuclear translocation and activates the Akt/PKB cell survival pathway. Here we report that activin A alone activates IkappaB-alpha, and stimulates nuclear translocation of NFkappaB and receptor activator of nuclear factor-kappaB (RANK) expression for osteoclastogenesis, but not Akt/PKB survival signal transduction including BAD and mammalian target of rapamycin (mTOR) for survival in osteoclast precursors in vitro. Activin A alone failed to activate Akt, BAD, and mTOR by immunoblotting, and it also failed to prevent apoptosis in osteoclast precursors. While activin A activated IkappaB-alpha and induced nuclear translocation of phosphorylated-NFkappaB, and it also enhanced RANK expression in osteoclast precursors. Moreover, activin A enhanced RANKL- and M-CSF-stimulated nuclear translocation of NFkappaB. Our data suggest that activin A enhances osteoclastogenesis treated with RANKL and M-CSF via stimulation of RANK, thereby increasing the RANKL stimulation. Activin A alone activated the NFkappaB pathway, but not survival in osteoclast precursors in vitro, but it is, thus, insufficient as a sole stimulus to osteoclastogenesis.  相似文献   

10.

Introduction

Osteoclastogenesis plays an important role in the bone erosion of rheumatoid arthritis (RA). Recently, Notch receptors have been implicated in the development of osteoclasts. However, the responsible Notch ligands have not been identified yet. This study was undertaken to determine the role of individual Notch receptors and ligands in osteoclastogenesis.

Methods

Mouse bone marrow-derived macrophages or human peripheral blood monocytes were used as osteoclast precursors and cultured with receptor activator of nuclear factor-kappaB ligand (RANKL) and macrophage-colony stimulating factor (M-CSF) to induce osteoclasts. Osteoclasts were detected by tartrate-resistant acid phosphatase (TRAP) staining. K/BxN serum-induced arthritic mice and ovariectomized mice were treated with anti-mouse Delta-like 1 (Dll1) blocking monoclonal antibody (mAb).

Results

Blockade of a Notch ligand Dll1 with mAb inhibited osteoclastogenesis and, conversely, immobilized Dll1-Fc fusion protein enhanced it in both mice and humans. In contrast, blockade of a Notch ligand Jagged1 enhanced osteoclastogenesis and immobilized Jagged1-Fc suppressed it. Enhancement of osteoclastogenesis by agonistic anti-Notch2 mAb suggested that Dll1 promoted osteoclastogenesis via Notch2, while suppression by agonistic anti-Notch1 mAb suggested that Jagged1 suppressed osteoclastogenesis via Notch1. Inhibition of Notch signaling by a gamma-secretase inhibitor suppressed osteoclastogenesis, implying that Notch2/Dll1-mediated enhancement was dominant. Actually, blockade of Dll1 ameliorated arthritis induced by K/BxN serum transfer, reduced the number of osteoclasts in the affected joints and suppressed ovariectomy-induced bone loss.

Conclusions

The differential regulation of osteoclastogenesis by Notch2/Dll1 and Notch1/Jagged1 axes may be a novel target for amelioration of bone erosion in RA patients.  相似文献   

11.
Ryu J  Kim HJ  Chang EJ  Huang H  Banno Y  Kim HH 《The EMBO journal》2006,25(24):5840-5851
Sphingosine 1-phosphate (S1P), produced by sphingosine kinase (SPHK), acts both by intracellular and extracellular modes. We evaluated the role of SPHK1 and S1P in osteoclastogenesis using bone marrow-derived macrophage (BMM) single and BMM/osteoblast coculture systems. In BMM single cultures, the osteoclastogenic factor receptor activator of NF-kappaB ligand (RANKL) upregulated SPHK1 and increased S1P production and secretion. SPHK1 siRNA enhanced and SPHK1 overexpression attenuated osteoclastogenesis via modulation of p38 and ERK activities, and NFATc1 and c-Fos levels. Extracellular S1P had no effect in these cultures. These data suggest that intracellular S1P produced in response to RANKL forms a negative feedback loop in BMM single cultures. In contrast, S1P addition to BMM/osteoblast cocultures greatly increased osteoclastogenesis by increasing RANKL in osteoblasts via cyclooxygenase-2 and PGE(2) regulation. S1P also stimulated osteoblast migration and survival. The RANKL elevation and chemotactic effects were also observed with T cells. These results indicate that secreted S1P attracts and acts on osteoblasts and T cells to augment osteoclastogenesis. Taken together, S1P plays an important role in osteoclastogenesis regulation and in communication between osteoclasts and osteoblasts or T cells.  相似文献   

12.
13.
Osteoblasts or bone marrow stromal cells are required as supporting cells for the in vitro differentiation of osteoclasts from their progenitor cells. Soluble receptor activator of nuclear factor-kappaB ligand (RANKL) in the presence of macrophage colony-stimulating factor (M-CSF) is capable of replacing the supporting cells in promoting osteoclastogenesis. In the present study, using Balb/c-derived cultures, osteoclast formation in both systems-osteoblast/bone-marrow cell co-cultures and in RANKL-induced osteoclastogenesis-was inhibited by antibody to tumor necrosis factor-alpha (TNF-alpha), and was enhanced by the addition of this cytokine. TNF-alpha itself promoted osteoclastogenesis in the presence of M-CSF. However, even at high concentrations of TNF-alpha the efficiency of this activity was much lower than the osteoclastogenic activity of RANKL. RANKL increased the level of TNF-alpha mRNA and induced TNF-alpha release from osteoclast progenitors. Furthermore, antibody to p55 TNF-alpha receptors (TNF receptors-1) (but not to p75 TNF-alpha receptors (TNF receptors-2) inhibited effectively RANKL- (and TNF-alpha() induced osteoclastogenesis. Anti-TNF receptors-1 antibody failed to inhibit osteoclastogenesis in C57BL/6-derived cultures. Taken together, our data support the hypothesis that in Balb/c, but not in C57BL/6 (strains known to differ in inflammatory responses and cytokine modulation), TNF-alpha is an autocrine factor in osteoclasts, promoting their differentiation, and mediates, at least in part, RANKL's induction of osteoclastogenesis.  相似文献   

14.
Curcumin (diferuloylmethane), a pigment derived from turmeric, has anti-oxidant and anti-inflammatory activities. Accumulating evidence points to a biochemical link between increased oxidative stress and reduced bone density. Osteoclast formation was evaluated in co-cultures of bone marrow stromal cells (BMSC) and whole bone marrow cells (BMC). Expression of receptor activator of nuclear factor-kappaB ligand (RANKL) was analyzed at the mRNA and protein levels. Exposure to curcumin led to dose-dependent suppression of osteoclastogenesis in the coculture system, and to reduced expression of RANKL in IL-1alpha-stimulated BMSCs. Addition of RANKL abolished the inhibition of osteoclastogenesis by curcumin, whereas the addition of prostaglandin E2(PGE2) did not. The decreased osteoclastogenesis induced by curcumin may reduce bone loss and be of potential benefit in preventing and/or attenuating osteoporosis.  相似文献   

15.
Chronic inflammation associated with bone tissues often destructs bones, which is essentially performed by osteoclasts in the presence of immunoregulatory molecules. Hence, regulating osteoclastogenesis is crucial to develop therapeutics for bone-destructive inflammatory diseases. It is believed that reactive oxygen species (ROS) are involved in receptor activator of NF-κB (RANK) ligand (RANKL)-induced osteoclast differentiation, and, therefore, glutathione (GSH), the most abundant endogenous antioxidant, suppresses osteoclast differentiation and bone resorption by RANKL. Interestingly, GSH also contributes to inflammatory responses, and the effects of GSH on osteoclast differentiation and bone destruction under inflammatory conditions have not yet been determined. Here, we investigated how GSH affects inflammatory cytokine-stimulated osteoclast differentiation in vitro and in a mouse model of inflammatory bone destruction. We found that GSH significantly promoted TNFα-stimulated osteoclast formation, while an inhibitor of GSH synthesis, buthionine sulfoximine, suppressed it. GSH facilitated the nuclear localisation of the nuclear factor of activated T cells c1 (NFATc1) protein, a master regulator of osteoclastogenesis, as well as the expression of osteoclast marker genes in a dose-dependent manner. N-acetylcysteine, a substrate of GSH synthesis, also stimulated osteoclast formation and NFATc1 nuclear localisation. GSH did not suppress cell death after osteoclast differentiation. In mouse calvaria injected with lipopolysaccharide, GSH treatment resulted in a fivefold increase in the osteolytic lesion area. These results indicate that GSH accelerates osteoclast differentiation and inflammatory bone destruction, suggesting GSH appears to be an important molecule in the mechanisms responsible for inflammatory bone destruction by osteoclasts.  相似文献   

16.
Tumor necrosis factor-α (TNF) enhances osteoclast formation and activity leading to bone loss in various pathological conditions, but its precise role in osteoclastogenesis remains controversial. Although several groups showed that TNF can promote osteoclastogenesis independently of the receptor activator of NF-κB (RANK) ligand (RANKL), others demonstrated that TNF-mediated osteoclastogenesis needs permissive levels of RANKL. Here, we independently reveal that although TNF cannot stimulate osteoclastogenesis on bone slices, it can induce the formation of functional osteoclasts on bone slices in the presence of permissive levels of RANKL or from bone marrow macrophages (BMMs) pretreated by RANKL. TNF can still promote the formation of functional osteoclasts 2 days after transient RANKL pretreatment. These data have confirmed that TNF-mediated osteoclastogenesis requires priming of BMMs by RANKL. Moreover, we investigated the molecular mechanism underlying the dependence of TNF-mediated osteoclastogenesis on RANKL. RANK, the receptor for RANKL, contains an IVVY535–538 motif that has been shown to play a vital role in osteoclastogenesis by committing BMMs to the osteoclast lineage. We show that TNF-induced osteoclastogenesis depends on RANKL to commit BMMs to the osteoclast lineage and RANKL regulates the lineage commitment through the IVVY motif. Mechanistically, the IVVY motif controls the lineage commitment by reprogramming osteoclast genes into an inducible state in which they can be activated by TNF. Our findings not only provide important mechanistic insights into the action of RANKL in TNF-mediated osteoclastogenesis but also establish that the IVVY motif may serve as an attractive therapeutic target for bone loss in various bone disorders.  相似文献   

17.
18.
Osteoprotegerin (OPG) is a decoy receptor for receptor activator of nuclear factor kappaB ligand (RANKL), an inducer of osteoclastogenesis via its receptor RANK. We recently demonstrated that OPG also exerts a direct effect in osteoclasts by regulating protease expression. Herein, we showed that OPG-induced pro-matrix metalloproteinase-9 activity was abolished by ras/MAPK inhibitors in purified osteoclasts. OPG induced the phosphorylation of p38 and ERK1/2 in RAW264.7 cells. Only p38 activation was totally abolished by a blocking anti-RANKL antibody or an excess of RANKL. Surface plasmon resonance experiments revealed that RANK, RANKL and OPG are able to form a tertiary complex. These results suggested a potential formation of a tertiary complex RANK-RANKL-OPG on osteoclasts. Thus, OPG is not only a soluble decoy receptor for RANKL but must be also considered as a direct effector of osteoclast functions.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号