首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To ensure error-free duplication of all (epi)genetic information once per cell cycle, DNA replication follows a cell type and developmental stage specific spatio-temporal program. Here, we analyze the spatio-temporal DNA replication progression in (un)differentiated mouse embryonic stem (mES) cells. Whereas telomeres replicate throughout S-phase, we observe mid S-phase replication of (peri)centromeric heterochromatin in mES cells, which switches to late S-phase replication upon differentiation. This replication timing reversal correlates with and depends on an increase in condensation and a decrease in acetylation of chromatin. We further find synchronous duplication of the Y chromosome, marking the end of S-phase, irrespectively of the pluripotency state. Using a combination of single-molecule and super-resolution microscopy, we measure molecular properties of the mES cell replicon, the number of replication foci active in parallel and their spatial clustering. We conclude that each replication nanofocus in mES cells corresponds to an individual replicon, with up to one quarter representing unidirectional forks. Furthermore, with molecular combing and genome-wide origin mapping analyses, we find that mES cells activate twice as many origins spaced at half the distance than somatic cells. Altogether, our results highlight fundamental developmental differences on progression of genome replication and origin activation in pluripotent cells.  相似文献   

2.
Licensing of replication origins is carefully regulated in a cell cycle to maintain genome integrity. Using an in vivo ubiquitination assay and temperature-sensitive cell lines we demonstrate that Cdt1 in mammalian cells is degraded through ubiquitin-dependent proteolysis in S-phase. siRNA experiments for Geminin indicate that Cdt1 is degraded in the absence of Geminin. The N terminus of Cdt1 is required for its nuclear localization, associates with cyclin A, but is dispensable for the association of Cdt1 with Geminin in cells. This region is responsible for proteolysis of Cdt1 in S-phase. On the other hand, the N terminus-truncated Cdt1 is stable in S-phase, and associates with the licensing inhibitor, Geminin. High level expression of this form of Cdt1 brings about cells having higher DNA content. Proteasome inhibitors stabilize Cdt1 in S-phase, and the protein is detected in the nucleus in a complex with Geminin. This form of Cdt1 associates with chromatin as tightly as that of G1-cells, when no Geminin is detected. Our data show that proteolysis and Geminin binding independently inactivate Cdt1 after the onset of S-phase to prevent re-replication.  相似文献   

3.
Induction of DNA synthesis in embryonic chick red cells has been examined during the first and second cell cycles after fusion with HeLa cells synchronized in different parts of G1 and S-phase. The data indicate that: (i) the younger the embryonic blood the more rapidly the red cells are induced into DNA synthesis; (ii) the greater the ratio of HeLa to chick nuclei in the heterokaryon, the more rapidly the induction occurs; (iii) DNA synthesis in the chick nucleus can continue after the HeLa nucleus has left S-phase and entered either G2 or mitosis; (iv) the induction potential of late S-phase HeLa is somewhat lower than that of early or mid S-phase cells; (v) less than 10% of the chick DNA is replicated during the first cycle after fusion and only a small proportion (15%) of the chick nuclei approach the 4C value of DNA during the second cycle after fusion; (vi) the newly synthesized DNA is associated either with the condensed regions of the nucleus or with the boundaries between condensed and non-condensed regions; (vii) the chick chromosomes at the first and second mitosis after fusion are in the form of PCC prematurely condensed chromosomes); they are never fully replicated and are often fragmentary; (viii) DNA synthesis in the chick nuclei is accompanied by an influx of protein (both G1 and S-phase protein) from the HeLa component of the heterokaryon.  相似文献   

4.
Five distinct patterns of DNA replication have been identified during S-phase in asynchronous and synchronous cultures of mammalian cells by conventional fluorescence microscopy, confocal laser scanning microscopy, and immunoelectron microscopy. During early S-phase, replicating DNA (as identified by 5-bromodeoxyuridine incorporation) appears to be distributed at sites throughout the nucleoplasm, excluding the nucleolus. In CHO cells, this pattern of replication peaks at 30 min into S-phase and is consistent with the localization of euchromatin. As S-phase continues, replication of euchromatin decreases and the peripheral regions of heterochromatin begin to replicate. This pattern of replication peaks at 2 h into S-phase. At 5 h, perinucleolar chromatin as well as peripheral areas of heterochromatin peak in replication. 7 h into S-phase interconnecting patches of electron-dense chromatin replicate. At the end of S-phase (9 h), replication occurs at a few large regions of electron-dense chromatin. Similar or identical patterns have been identified in a variety of mammalian cell types. The replication of specific chromosomal regions within the context of the BrdU-labeling patterns has been examined on an hourly basis in synchronized HeLa cells. Double labeling of DNA replication sites and chromosome-specific alpha-satellite DNA sequences indicates that the alpha-satellite DNA replicates during mid S-phase (characterized by the third pattern of replication) in a variety of human cell types. Our data demonstrates that specific DNA sequences replicate at spatially and temporally defined points during the cell cycle and supports a spatially dynamic model of DNA replication.  相似文献   

5.
Replication of nuclear DNA in eukaryotes presents a tremendous challenge, not only due to the size and complexity of the genome, but also because of the time constraint imposed by a limited duration of S phase during which the entire genome has to be duplicated accurately and only once per cell division cycle. A challenge of this magnitude can only be met by the close coupling of DNA precursor synthesis to replication. Prokaryotic systems provide evidence for multienzyme and multiprotein complexes involved in DNA precursor synthesis and DNA replication. In addition, fractionation of nuclear proteins from proliferating mammalian cells shows co-sedimentation of enzymes involved in DNA replication with those required for synthesis of deoxynucleoside triphosphates (dNTPs). Such complexes can be isolated only from cells that are in S phase, but not from cells in G(0)/G(1) phases of cell cycle. The kinetics of deoxynucleotide metabolism supporting DNA replication in intact and permeabilized cells reveals close coupling and allosteric interaction between the enzymes of dNTP synthesis and DNA replication. These interactions contribute to channeling and compartmentation of deoxynucleotides in the microvicinity of DNA replication. A multienzyme and multiprotein megacomplex with these unique properties is called "replitase." In this article, we summarize some of the relevant evidence to date that supports the concept of replitase in mammalian cells, which originated from the observations in Dr. Pardee's laboratory. In addition, we show that androgen receptor (AR), which plays a critical role in proliferation and viability of prostate cancer cells, is associated with replitase, and that identification of constituents of replitase in androgen-dependent versus androgen-independent prostate cancer cells may provide insights into androgen-regulated events that control proliferation of prostate cancer cells and potentially offer an effective strategy for the treatment of prostate cancer.  相似文献   

6.
Mitotic chromosome condensation is normally dependent on the previous completion of replication. Caffeine spectacularly deranges cell cycle controls after DNA polymerase inhibition or DNA damage; it induces the condensation, in cells that have not completed replication, of fragmented nuclear structures, analogous to the S-phase prematurely condensed chromosomes seen when replicating cells are fused with mitotic cells. Caffeine has been reported to induce S-phase condensation in cells where replication is arrested, by accelerating cell cycle progression as well as by uncoupling it from replication; for, in BHK or CHO hamster cells arrested in early S-phase and given caffeine, condensed chromosomes appear well before the normal time at which mitosis occurs in cells released from arrest. However, we have found that this apparent acceleration depends on the technique of synchrony and cell line employed. In other cells, and in synchronized hamster cells where the cycle has not been subjected to prolonged continual arrest, condensation in replication-arrested cells given caffeine occurs at the same time as normal mitosis in parallel populations where replication is allowed to proceed. This caffeine-induced condensation is therefore "premature" with respect to the chromatin structure of the S-phase nucleus, but not with respect to the timing of the normal cycle. Caffeine in replication-arrested cells thus overcomes the restriction on the formation of mitotic condensing factors that is normally imposed during DNA replication, but does not accelerate the timing of condensation unless cycle controls have previously been disturbed by synchronization procedures.  相似文献   

7.
8.
Origins of DNA replication must be regulated to ensure that the entire genome is replicated precisely once in each cell cycle. In human cells, this requires that tens of thousands of replication origins are activated exactly once per cell cycle. Failure to do so can lead to cell death or genome rearrangements such as those associated with cancer. Systems ensuring efficient initiation of replication, while also providing a robust block to re-initiation, play a crucial role in genome stability. In this review, I will discuss some of the strategies used by cells to ensure once per cell cycle replication and provide a quantitative framework to evaluate the relative importance and efficiency of individual pathways involved in this regulation.  相似文献   

9.
A Aiyar  C Tyree    B Sugden 《The EMBO journal》1998,17(21):6394-6403
Plasmids containing oriP, the plasmid origin of Epstein-Barr virus (EBV), are replicated stably in human cells that express a single viral trans-acting factor, EBNA-1. Unlike plasmids of other viruses, but akin to human chromosomes, oriP plasmids are synthesized once per cell cycle, and are partitioned faithfully to daughter cells during mitosis. Although EBNA-1 binds multiple sites within oriP, its role in DNA synthesis and partitioning has been obscure. EBNA-1 lacks enzymatic activities that are present in the origin-binding proteins of other mammalian viruses, and does not interact with human cellular proteins that provide equivalent enzymatic functions. We demonstrate that plasmids with oriP or its constituent elements are synthesized efficiently in human cells in the absence of EBNA-1. Further, we show that human cells rapidly eliminate or destroy newly synthesized plasmids, and that both EBNA-1 and the family of repeats of oriP are required for oriP plasmids to escape this catastrophic loss. These findings indicate that EBV's plasmid replicon consists of genetic elements with distinct functions, multiple cis-acting elements that facilitate DNA synthesis and viral cis/trans elements that permit retention of replicated DNA in daughter cells. They also explain historical failures to identify mammalian origins of DNA synthesis as autonomously replicating sequences.  相似文献   

10.
Passage through mitosis resets cells for a new round of chromosomal DNA replication [1]. In late mitosis, the pre-replication complex - which includes the origin recognition complex (ORC), Cdc6 and the minichromosome maintenance (MCM) proteins - binds chromatin as a pre-requisite for DNA replication. S-phase-promoting cyclin-dependent kinases (Cdks) and the kinase Dbf4-Cdc7 then act to initiate replication. Before the onset of replication Cdc6 dissociates from chromatin. S-phase and M-phase Cdks block the formation of a new pre-replication complex, preventing DNA over-replication during the S, G2 and M phases of the cell cycle [1]. The nuclear membrane also contributes to limit genome replication to once per cell cycle [2]. Thus, at the end of M phase, nuclear membrane breakdown and the collapse of Cdk activity reset cells for a new round of chromosomal replication. We showed previously that protein kinase A (PKA) activity oscillates during the cell cycle in Xenopus egg extracts, peaking in late mitosis. The oscillations are induced by the M-phase-promoting Cdk [3] [4]. Here, we found that PKA oscillation was required for the following phase of DNA replication. PKA activity was needed from mitosis exit to the formation of the nuclear envelope. PKA was not required for the assembly of ORC2, Cdc6 and MCM3 onto chromatin. Inhibition of PKA activity, however, blocked the release of Cdc6 from chromatin and subsequent DNA replication. These data suggest that PKA activation in late M phase is required for the following S phase.  相似文献   

11.
We have tested the hypothesis which stipulates that only early-replicating genes are capable of expression. Within one cell type of Physarum - the plasmodium - we defined the temporal order of replication of 10 genes which were known to be variably expressed in 4 different developmental stages of the Physarum life cycle. Southern analysis of density-labeled, bromodesoxyuridine-substituted DNA reveals that 4 genes presumably inactive within the plasmodium, were not restricted to any temporal compartment of S-phase: 1 is replicated in early S-phase, 2 in mid S-phase and 1 in late S-phase. On the other hand, 4 out of 6 active genes analysed are duplicated early, with the first 30% of the genome. Surprisingly, the two others active genes are replicated late in S-phase. By gene-dosage analysis, based on quantitation of hybridization signals from early and late replicating genes throughout S-phase, we could pinpoint the replication of one of these two genes at a stage where 80-85% of the genome has duplicated. Our results demonstrate that late replication during S-phase does not preclude gene activity.  相似文献   

12.
Porcine circovirus is the only mammalian DNA virus so far known to contain a single-stranded circular genome (Tischer et al. (1982) Nature 295, 64-66). Replication of its small viral DNA (1.76 kb) appears to be dependent on cellular enzymes expressed during S-phase of the cell cycle (Tischer et al. (1987) Arch. Virol. 96, 39-57). In this paper we have exploited the porcine circovirus genome to probe for in vitro initiation and elongation of DNA replication by different preparations of calf thymus DNA polymerase alpha and delta as well as by a partially purified preparation from pig thymus. The results indicated that three different purification fractions of calf thymus DNA polymerase alpha and one from pig thymus initiate DNA synthesis at several sites on the porcine circovirus DNA. It appears that the sites at which DNA primase synthesizes primers are not entirely random. Subsequent DNA elongation by a highly purified DNA polymerase alpha holoenzyme which had been isolated by the criterion of replicating single-stranded M13 DNA (Ottiger et al. (1987) Nucleic Acids Res. 15, 4789-4807) is very efficient. Complete conversion to the double-stranded form is obtained in less than 1 min. When the DNA synthesis by DNA polymerase alpha is blocked with the DNA polymerase alpha specific monoclonal antibody SJK 132-20 after initiation by DNA primase, DNA polymerase delta can efficiently replicate from the primers. This in vitro DNA replication system may be used in analogy to the bacteriophage systems in E. coli to study initiation and elongation of DNA replication.  相似文献   

13.
In primary mammalian cells, DNA replication initiates in a small number of perinucleolar, lamin A/C-associated foci. During S-phase progression in proliferating cells, replication foci distribute to hundreds of sites throughout the nucleus. In contrast, we find that the limited perinucleolar replication sites persist throughout S phase as cells prepare to exit the cell cycle in response to contact inhibition, serum starvation, or replicative senescence. Proteins known to be involved in DNA synthesis, such as PCNA and DNA polymerase delta, are concentrated in perinucleolar foci throughout S phase under these conditions. Moreover, chromosomal loci are redirected toward the nucleolus and overlap with the perinucleolar replication foci in cells poised to undergo cell cycle exit. These same loci remain in the periphery of the nucleus during replication under highly proliferative conditions. These results suggest that mammalian cells undergo a large-scale reorganization of chromatin during the rounds of DNA replication that precede cell cycle exit.  相似文献   

14.
To maintain genetic stability, the entire mammalian genome must replicate only once per cell cycle. This is largely achieved by strictly regulating the stepwise formation of the pre-replication complex (pre-RC), followed by the activation of individual origins of DNA replication by Cdc7/Dbf4 kinase. However, the mechanism how Cdc7 itself is regulated in the context of cell cycle progression is poorly understood. Here we report that Cdc7 is phosphorylated by a Cdk1-dependent manner during prometaphase on multiple sites, resulting in its dissociation from origins. In contrast, Dbf4 is not removed from origins in prometaphase, nor is it degraded as cells exit mitosis. Our data thus demonstrates that constitutive phosphorylation of Cdc7 at Cdk1 recognition sites, but not the regulation of Dbf4, prevents the initiation of DNA replication in normally cycling cells and under conditions that promote re-replication in G2/M. As cells exit mitosis, PP1α associates with and dephosphorylates Cdc7. Together, our data support a model where Cdc7 (de)phosphorylation is the molecular switch for the activation and inactivation of DNA replication in mitosis, directly connecting Cdc7 and PP1α/Cdk1 to the regulation of once-per-cell cycle DNA replication in mammalian cells.  相似文献   

15.
Caulobacter crescentus exhibits cell-type-specific control of chromosome replication and DNA methylation. Asymmetric cell division yields a replicating stalked cell and a nonreplicating swarmer cell. The motile swarmer cell must differentiate into a sessile stalked cell in order to replicate and execute asymmetric cell division. This program of cell division implies that chromosome replication initiates in the stalked cell only once per cell cycle. DNA methylation is restricted to the predivisional cell stage, and since DNA synthesis produces an unmethylated nascent strand, late DNA methylation also implies that DNA near the replication origin remains hemimethylated longer than DNA located further away. In this report, both assumptions are tested with an engineered Tn5-based transposon, Tn5Omega-MP. This allows a sensitive Southern blot assay that measures fully methylated, hemimethylated, and unmethylated DNA duplexes. Tn5Omega-MP was placed at 11 sites around the chromosome and it was clearly demonstrated that Tn5Omega-MP DNA near the replication origin remained hemimethylated longer than DNA located further away. One Tn5Omega-MP placed near the replication origin revealed small but detectable amounts of unmethylated duplex DNA in replicating stalked cells. Extra DNA synthesis produces a second unmethylated nascent strand. Therefore, measurement of unmethylated DNA is a critical test of the "once and only once per cell cycle" rule of chromosome replication in C. crescentus. Fewer than 1 in 1,000 stalked cells prematurely initiate a second round of chromosome replication. The implications for very precise negative control of chromosome replication are discussed with respect to the bacterial cell cycle.  相似文献   

16.
We have recently established a cell-free system from human cells that initiates semi-conservative DNA replication in nuclei isolated from cells which are synchronised in late G1 phase of the cell division cycle. We now investigate origin specificity of initiation using this system. New DNA replication foci are established upon incubation of late G1 phase nuclei in a cytosolic extract from proliferating human cells. The intranuclear sites of replication foci initiated in vitro coincide with the sites of earliest replicating DNA sequences, where DNA replication had been initiated in these nuclei in vivo upon entry into S phase of the previous cell cycle. In contrast, intranuclear sites that replicate later in S phase in vivo do not initiate in vitro. DNA replication initiates in this cell-free system site-specifically at the lamin B2 DNA replication origin, which is also activated in vivo upon release of mimosine-arrested late G1 phase cells into early S phase. In contrast, in the later replicating ribosomal DNA locus (rDNA) we neither detected replicating rDNA in the human in vitro initiation system nor upon entry of intact mimosine-arrested cells into S phase in vivo. As a control, replicating rDNA was detected in vivo after progression into mid S phase. These data indicate that early origin activity is faithfully recapitulated in the in vitro system and that late origins are not activated under these conditions, suggesting that early and late origins may be subject to different mechanisms of control.  相似文献   

17.
Using the harvesting method of synchronizing L cells, the relationship of RNA synthesis of DNA replication was studied by the use of selective inhibitors of RNA synthesis such as actinomycin D and chromomycin succinate. The synthesis of the early replicating DNA fraction is a process sensitive to the inhibition of RNA synthesis during the G1 period. The synthesis of early replicating DNA was inhibited by chromomycin succinate without affecting the initation of DNA synthesis. However, actinomycin D inhibited the synthesis of early replicating DNA and prevented the initiation of DNA synthesis in 50% of the synchronized cells. However, it was found that the continued synthesis of RNA during the S period is not essential for the synthesis of late replicating DNA. In addition to this specific response of DNA synthesis to the inhibitors of RNA synthesis, another function of early and late replicating DNA was determined relative to the cell viability. Cells synthesizing early replicating DNA were killed more efficiently by chromomycin than at other stages of the cell cycle. This indicates that the early replicating DNA unit plays a more important role in cell reproduction than the late replicating DNA unit.  相似文献   

18.
19.
Eukaryotes replicate DNA once and only once per cell cycle due to multiple, partially overlapping mechanisms efficiently preventing reinitiation. The consequences of reinitiation are unknown. Here we show that the induction of rereplication by mutations in components of the prereplicative complex (origin recognition complex [ORC], Cdc6, and minichromosome maintenance proteins) causes a cell cycle arrest with activated Rad53, a large-budded morphology, and an undivided nucleus. Combining a mutation disrupting the Clb5-Orc6 interaction (ORC6-rxl) and a mutation stabilizing Cdc6 (CDC6(Delta)NT) causes a cell cycle delay with a similar phenotype, although this background is only partially compromised for rereplication control and does not exhibit overreplication detectable by fluorescence-activated cell sorting. We conducted a systematic screen that identified genetic requirements for the viability of these cells. ORC6-rxl CDC6(Delta)NT cells depend heavily on genes required for the DNA damage response and for double-strand-break repair by homologous recombination. Our results implicate an Mre11-Mec1-dependent pathway in limiting the extent of rereplication.  相似文献   

20.
H-thymidine was injected into cytoplasm of the eggs taken at different intervals after fertilization and the eggs were fixed immediately thereafter. DNA synthesis was shown to begin in pronuclei when they are still in the marginal zones of cytoplasm, immediately after their formation. S-phase lasts 5-6 h in every pronucleus and is terminated at 1-2 h before the first cleavage division when the pronuclei are closely approached and located in the center of cytoplasm. At the end of S-phase late replicating heterochromatic regions are distinctly localized near the nuclear envelope and in pronuclei. Male and female pronuclei display asynchrony in the course of S-phase and differences in 3H-thymidine incorporation into chromatin. Structural features of the first cell cycle in mouse embryogenesis are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号