首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 367 毫秒
1.
2.
Garden asparagus (Asparagus officinalis L.) is a dioecious species with male and female flowers on separate unisexual individuals. Since B- and C-functional MADS-box genes specify male and female reproductive organs, it is important to characterize these genes to clarify the mechanism of sex determination in monoecious and dioecious species. In this study, we isolated and characterized AODEF gene, a B-functional gene in the development of male and female flowers of A. officinalis. Southern hybridization identified a single copy of AODEF gene in asparagus genome. Northern blot analysis showed that this gene was specifically expressed in flower buds and not in vegetative tissues. In situ hybridization showed that during early hermaphrodite stages, AODEFgene was expressed in the inner tepal and stamen whorls (whorls 2 and 3, respectively), but not in the outer tepals (whorl 1), in both male and female flowers. In late unisexual developmental stages, the expression of AODEF gene was still detected in the inner tepals and stamens of male flowers, but the expression was reduced in whorls 2 and 3 of female flowers. Our results suggest that AODEF gene is probably not involved in tepal development in asparagus and that the expression of AODEF gene is probably controlled directly or indirectly by sex determination gene in the late developmental stages.  相似文献   

3.
The development of staminate and pistillate flowers in the dioecious tree species Pistacia vera L. (Anacardiaceae) was studied by scanning electron microscopy with the objective of determining organogenetic patterns and phenology of floral differentiation. Flower primordia are initiated similarly in trees of both sexes. Stamen and carpel primordia are initiated in both male and female flowers, and the phenology of organ initiation is essentially identical for flowers of both sexes. Vestigial stamen primordia arise at the flanks of pistillate flower apices at the same time functional stamens are initiated in the staminate flowers. Similarly, a vestigial carpel is initiated in staminate flowers at the same time the primary, functional carpel is initiated in pistillate flower primordia. Differences between the two sexes become apparent early in development as, in both cases, development of organs of the opposite sex becomes arrested at the primordial stage. Male flowers produce between four and six mature functional stamens and female flowers produce a gynoecium with one functional and two sterile carpels.  相似文献   

4.
栝楼不同性别花芽分化形态解剖特征观察   总被引:1,自引:0,他引:1  
采用体视显微镜、石蜡切片和树脂切片技术对栝楼(Trichosanthes kirilowii Maxim.)不同性别花芽分化发育时期的外部形态和内部解剖结构进行了观察。结果显示,栝楼花为雌雄异株,仅有雌花、雄花两种性别分化,且雄花的发育速度明显快于雌花的发育速度。栝楼雌雄花芽长0.2 mm左右已完成性别分化;栝楼雄花为单性花,分化过程可分为6个时期,整个发育过程仅见雄蕊原基的分化及生长。栝楼雌花为"两性花",分化过程可分为7个时期,存在雌蕊和雄蕊共同发育阶段,后期雄蕊发育败退。本研究明确了不同性别栝楼花芽发育发生的各个阶段、形态变化特点、外部形态变化特征以及雌雄花芽的分化差异,建立了雌雄花芽内部结构分化与外部形态之间相关性,为栝楼早期幼苗鉴定及性别分化研究提供了一定的参考。  相似文献   

5.
Asparagus officinalis is a dioecious plant. The flowers start to develop as hermaphrodites and later become unisexual. In female flowers the stamens degenerate, while in male flowers the ovary stops growing without degenerating. We have examined young asparagus flowers using SEM and optical microscopy in order to determine the exact moment of transition from hermaphroditic to unisexual development. We defined 13 stages of development, starting from flower primordia up to completely mature flowers and labelled them with numbers from -6 to 7. The first five stages are fully hermaphroditic: a difference between sexes becomes visible at stage — 1 when the style begins to develop in female flowers. Degeneration of stamens in female flowers starts somewhat later. At the stage of transition, some differences between sexes also appear in the bidimensional polypeptide pattern of flowers. RNase activity shows a distinct peak at this stage (in female flowers only), probably related to stamen degeneration.  相似文献   

6.

Premise

Characterizing the developmental processes in the transition from hermaphroditism to unisexuality is crucial for understanding floral evolution. Amaranthus palmeri, one of the most devastating weeds in the United States, is an emerging model system for studying a dioecious breeding system and understanding the biological traits of this invasive weed. The objectives of this study were to characterize phases of flower development in A. palmeri and compare organogenesis of flower development in female and male plants.

Methods

Flower buds from male and female plants were dissected for light microscopy. Segments of male and female inflorescences at different stages of development were cut longitudinally and visualized using scanning electron microscopy.

Results

Pistillate flowers have two to three styles, one ovary with one ovule, and five obtuse tepals. Staminate flowers have five stamens with five acute tepals. Floral development was classified into 10 stages. The distinction between the two flower types became apparent at stage four by the formation of stamen primordia in staminate flowers, which developed female and male reproductive organs initially, as contrasted to pistillate flowers, which produced carpel primordia only. In staminate flowers, the putative carpel primordia changed little in size and remained undeveloped.

Conclusions

Timing of inappropriate organ termination varies across the two sexes in A. palmeri. Our study suggests that the evolution of A. palmeri from a cosexual ancestral state to complete dioecy is still in progress since males exhibited transient hermaphroditism and females produced strictly pistillate flowers.  相似文献   

7.
Silene latifolia is a dioecious plant in which sex is determined by heteromorphic sex chromosomes. In female plants, stamen development is arrested before microspore mother cells are formed. In this study, we isolated four cDNAs (SlSKP1-1 to 4) encoding ASK1-like protein as expression markers to reveal when expression levels are reduced in arrested stamens of female flowers. Expression patterns of the SlSKP1 genes were analyzed by in-situ hybridization. We use the flower development classification of Grant et al. (in Plant J 6:471–480, 1994). SlSKP1 genes were highly expressed in primary parietal cells and primary sporogenous cells that develop into microspore mother cells in male flowers. Expression levels started to be reduced in the external stamens of the female flowers when stamen development was arrested at stage 7. Although microspore mother cells could not be developed in female flowers and SlSKP1 expression may be unnecessary in arrested stamens, SlSKP1 genes were still expressed in sporogenous cells of degenerated stamens at stage 8. Parietal cells stopped differentiating earlier than sporogenous cells in arrested stamens. These results suggest that not all types of cell are arrested simultaneously at a particular stage of stamen development during stamen suppression of S. latifolia.  相似文献   

8.
Spinacia oleracea (Chenopodiaceae) is a potential model system for studies of mechanisms of sex expression and environmental influences on gender in dioecious species. Development of the male and female flowers and inflorescences of spinach were studied to determine when the two sex types can be distinguished. We found that female inflorescence apices are significantly larger than those of the male. Flower primordia are similar in size prior to perianth initiation, but the male primordia develop at a faster rate. Another distinguishing feature at this early stage is the larger bract subtending the female primordium. The two flower types become readily distinguishable when the perianth initiates. Male flowers produce four sepals and four stamens in a spiral pattern in close succession. Female flowers produce two alternate perianth parts that enlarge somewhat before the gynoecium becomes visible. There are no traces of gynoecia in male flowers or of stamens in female flowers. We propose that plant sex type is determined before inflorescence development, prior to or at evocation.  相似文献   

9.
During the first stages of development, flowers of most dioecious species are hermaphroditic, with their transition to unisexual flowers being the result of the developmental arrest of one set of reproductive organs. In this work, we describe the development of male and female flowers of the dioecious wild grape species Vitis vinifera ssp. silvestris through scanning electron microscopy analysis and cytological observations, focusing our attention on the transition from bisexual to unisexual development. We divide floral development of the wild grape into eight stages. Differences between male and female flowers appear first at stage 6, when the style and stigma start to differentiate in female but not in male flowers. Cytological analysis of the slowly growing abortive pistil of male flowers shows that megagametophyte formation is, surprisingly, not inhibited. Instead of pistil abortion in the male flower, sexual determination is accomplished through programmed death of external nucellus cells and some layers of integumentary cells. Sterility of male structures in female flowers follows a different pattern, with microspore abnormalities evident from the time of their release from the tetrad. Sterile microspores and pollen grains in female flowers display an abnormal round shape, lacking colpi and possessing uniformly thickened cell walls that impede germination.  相似文献   

10.
11.
White campion is a dioecious plant with heteromorphic X and Y sex chromosomes. In male plants, a filamentous structure replaces the pistil, while in female plants the stamens degenerate early in flower development. Asexual (asx) mutants, cumulating the two developmental defects that characterize the sexual dimorphism in this species, were produced by gamma ray irradiation of pollen and screening in the M1 generation. The mutants harbor a novel type of mutation affecting an early function in sporogenous/parietal cell differentiation within the anther. The function is called stamen-promoting function (SPF). The mutants are shown to result from interstitial deletions on the Y chromosome. We present evidence that such deletions tentatively cover the central domain on the (p)-arm of the Y chromosome (Y2 region). By comparing stamen development in wild-type female and asx mutant flowers we show that they share the same block in anther development, which results in the production of vestigial anthers. The data suggest that the SPF, a key function(s) controlling the sporogenous/parietal specialization in premeiotic anthers, is genuinely missing in females (XX constitution). We argue that this is the earliest function in the male program that is Y-linked and is likely responsible for "male dimorphism" (sexual dimorphism in the third floral whorl) in white campion. More generally, the reported results improve our knowledge of the structural and functional organization of the Y chromosome and favor the view that sex determination in this species results primarily from a trigger signal on the Y chromosome (Y1 region) that suppresses female development. The default state is therefore the ancestral hermaphroditic state.  相似文献   

12.
Investigation of gender specialization in plants has led to several theories on the evolution of sexual dimorphism: reproductive compensation, based on enhanced reproductive efficiency with gender specialization (flowers should be larger on dioecious plants); Bateman's Principle, based on sex-specific selection (display for pollinator attraction in males and seed set in females); and intersexual floral mimicry, based on mimicry of a reward-providing gender by a non-reward providing gender (reduced dimorphism in dioecious plants due to increased spatial separation of male and female flowers). These theories were evaluated in Ecballium elaterium, which contains two subspecies, elaterium (monoecious) and dioicum (dioecious). Our results show that flowers of the dioecious subspecies are larger and allocate more to reproductive organs than do flowers of the monoecious subspecies. Both subspecies are sexually dimorphic (male flowers larger than female flowers). Variance in flower size among populations is greater in the dioecious subspecies. Finally, there is sufficient genetic variation to enable ongoing response to selection; genetic correlation constraints on independent response of female and male flowers may be stronger in the monoecious subspecies. Our findings provide support for aspects of all three theories, suggesting that the evolution of floral dimorphism is based on a complex interplay of factors.  相似文献   

13.
The host-specific relationship between fig trees (Ficus) and their pollinator wasps (Agaonidae) is a classic case of obligate mutualism. Pollinators reproduce within highly specialised inflorescences (figs) of fig trees that depend on the pollinator offspring for the dispersal of their pollen. About half of all fig trees are functionally dioecious, with separate male and female plants responsible for separate sexual functions. Pollen and the fig wasps that disperse it are produced within male figs, whereas female figs produce only seeds. Figs vary greatly in size between different species, with female flower numbers varying from tens to many thousands. Within species, the number of female flowers present in each fig is potentially a major determinant of the numbers of pollinator offspring and seeds produced. We recorded variation in female flower numbers within male and female figs of the dioecious Ficus montana growing under controlled conditions, and assessed the sources and consequences of inflorescence size variation for the reproductive success of the plants and their pollinator (Kradibia tentacularis). Female flower numbers varied greatly within and between plants, as did the reproductive success of the plants, and their pollinators. The numbers of pollinator offspring in male figs and seeds in female figs were positively correlated with female flower numbers, but the numbers of male flowers and a parasitoid of the pollinator were not. The significant variation in flower number among figs produced by different individuals growing under uniform conditions indicates that there is a genetic influence on inflorescence size and that this character may be subject to selection.  相似文献   

14.
The evolution of dioecy in plants is expected to be followed by sex-specific selection, leading to sexual dimorphism. The extent of the response to selection depends on the genetic covariance structure between traits both within and between the sexes. Here I describe an investigation to determine phenotypic and genetic correlations between reproductive traits within cryptically dioecious Thalictrum pubescens and within morphologically dioecious T. dioicum. Females of T. pubescens produce flowers having stamens and pistils, appearing hermaphroditic. Genetic correlations were estimated as family-mean correlations among paternal half-sib families. Positive phenotypic and genetic correlations between parts of the same reproductive organs, as the anther and filament of the stamen, indicate developmental associations between these traits in both species. Negative genetic correlations were detected between pistil number and size of reproductive organs in T. dioicum and showed the same direction, but not significance, in T. pubescens. There was a negative phenotypic correlation between the number of stamens and the number of pistils within female flowers of T. pubescens. Within T. pubescens, there was a positive genetic correlation between the number of stamens in males and the number of pistils in females, indicating that floral evolution in males and females may not be independent in this species.  相似文献   

15.
Comparative studies are made on floral morphology and anatomy of female and male flowers of Pittosporum tobira. The two types of flower differ little from each other in structure at the early stage of floral development, but appear dimorphic towards anthesis. The male flower becomes cryptically bisexual, although its pistil is slender compared to that of the female flower. The stigmas of the male flower are receptive and can induce pollen germination. The structure of the style in the male flower is identical to that in the female flower. Ovules are produced on the protruded parietal placenta in the male flower, but their development is arrested at the stage of the 4–nucleate embryo sac. The female flower is clearly unisexual, with obviously aborted and sagittate anthers. Its pistil is rather plump and can produce darkish red seeds immersed in sticky pulp. The male and female flowers are similar in vascular anatomy. A conspicuous difference between the two types of flower lies in the stamens. Variation of sexual organs in the genus Pittosporum is reviewed. We assume that the flowers of Pittosporum are derived from the hermaphrodite-flowered ancestor and the female flower has become unisexual through partial reduction of sexual organs at a faster rate than the male flower.  相似文献   

16.
Woonyoungia septentrionalis (Dandy) Law is aceae. The floral morphology and structure of the species a dioecious species with unisexual flowers in Magnoliare conspicuously different from other species and are important to the study of floral phylogeny in this family. The floral anatomy and ontogeny were investigated to evaluate the systematic position of W. septentrionalis, using scanning electron microscopy and light microscopy. All of the floral organs are initiated acropetally and spirally. The carpels are of conduplicated type without the differentiation of stigma and style. The degenerated stamens in the female flowers have the same structures as the normal stamens at the earlier developmental stages, but they do not undergo successive development and eventually degenerate. The male floral apex was observed to have the remnants of carpels in a few investigated samples. As the bisexual flower features could be traced both in the male and female flowers in W. septentrionalis, it suggests that the flower sex in Magnoliaceae tends toward unisexual. As well as the unisexual flowers, the reduced tepals and carpels and concrescence of carpels conform to the specialized tendency in Magnoliaceae, which confirms the derived position of W. septentrionalis in this family. As the initiation pattern of floral parts of W. septentrionalis is very similar to other species in this family, it needs further investigation and especially comparison with species in Kmeria to evaluate the separation of Woonyoungia.  相似文献   

17.
The production of unisexual flowers has evolved numerous times in dioecious and monoecious plant taxa. Based on repeated evolutionary origins, a great variety of developmental and genetic mechanisms underlying unisexual flower development is predicted. Here, we comprehensively review the modes of development of unisexual flowers, test potential correlations with sexual system, and end with a synthesis of the genetics and hormonal regulation of plant sex determination. We find that the stage of organ abortion in male and female flowers is temporally correlated within species and also confirm that the arrest of development does not tend to occur preferentially at a particular stage, or via a common process.  相似文献   

18.
The development of the unisexual male and female flowers of Zea mays from bisexual initials in both tassels and ears has been reinvestigated with SEM and TEM. The early stages of spikelet branch primordia, spikelet initiation, and early flower development are similar in both flowers, though differences in rates of growth of glumes, lemmas, and palea were detected. In both tassel and ear flowers, a pair of stamens arises opposite the lemmas and a third stamen initiates later at right angles to the first pair but from a point on the meristem below its insertion. Gynoecia develop on both tassel and ear flowers first as a ridge which overgrows the apical meristem giving rise to the stylar canal and the elongate silk. Male flowers arise in the tassel through selective vacuolation and abortion of the cells of the early gynoecium. The single female flower in each ear spikelet arises through the vacuolation and abortion of stamens in the upper flower and the repression of growth of and the eventual regression of the lower flower in each spikelet. The significance of these selective organ abortions for practical applications is discussed.  相似文献   

19.
20.
Reproduction can have a high resource cost. It has been suggested that greater investments in sexual reproduction by female dioecious plants leads to a lower rate of vegetative growth in females than in males. In this study, we investigated sexual dimorphism in biomass allocation and genet growth of the dioecious clonal shrub, northern prickly ash (Xanthoxylum americanum). The allocation of biomass over the course of one growing season to reproductive tissue, leaves, and growth of aboveground first-year wood, was compared in 18 clones growing in fields and six clones in woods in southeastern Wisconsin during 1985 and 1986. In addition, the number of shoots per clone, and weight of nonfirst-year wood (accumulated biomass) above- and below-ground were estimated. In open field sites, male clones allocated more biomass to new wood and less to reproduction than females, although males allocated more to flowers alone. Accordingly, male clones had significantly more shoots and more accumulated biomass both above- and below-ground than female clones. In the woods, where fruit set was near zero, there were few significant differences between male and female clones in either biomass allocation or accumulated biomass. These results support the hypothesis that the high resource investment in fruit production by females reduces their vegetative growth relative to males.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号