首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Two skills critically important to all scientists are the ability to design good experiments and to troubleshoot experiments that do not yield the expected results. In spite of their importance, however, these skills are rarely taught as a part of the undergraduate science curriculum. This deficiency was addressed by creating an advanced biochemistry laboratory course that focuses on the development of experimental design and troubleshooting skills. The course provides students with the opportunity to design and evaluate their own experiments through semester-long independent projects that have a common theme (in this case, protein purification, but any theme could be used). Students plan their projects and carry through the experiments by consulting the primary research literature. The instructor provides minimal input in troubleshooting situations, instead allowing the student to think through and implement alternative solutions. A 2-year survey of the course revealed that students were often frustrated but felt the course significantly improved their experimental laboratory skills as well as introducing them to “real-world” laboratory experience. They further indicated that they preferred the approach used in this course to directed “cook-book” laboratory experiences.  相似文献   

2.
The Bernard Distinguished Lecturers are individuals who have a history of experience and expertise in teaching that impacts multiple levels of health science education. Dr. Joel Michael more than meets these criteria. Joel earned a BS in biology from CalTech and a PhD in physiology from MIT following which he vigorously pursued his fascination with the mammalian central nervous system under continuous National Institutes of Health funding for a 15-yr period. At the same time, he became increasingly involved in teaching physiology, with the computer being his bridge between laboratory science and classroom teaching. Soon after incorporating computers into his laboratory, he began developing computer-based learning resources for his students. Observing students using these resources to solve problems led to an interest in the learning process itself. This in turn led to a research and development program, funded by the Office of Naval Research (ONR), that applied artificial intelligence to develop smart computer tutors. The impact of problem solving on student learning became the defining theme of National Science Foundation (NSF)-supported research in health science education that gradually moved all of Dr. Michael's academic efforts from neurophysiology to physiology education by the early 1980's. More recently, Joel has been instrumental in developing and maintaining the Physiology Education Research Consortium, a group of physiology teachers from around the nation who collaborate on diverse projects designed to enhance learning of the life sciences. In addition to research in education and learning science, Dr. Michael has devoted much of his time to helping physiology teachers adopt modern approaches to helping students learn. He has organized and presented faculty development workshops at many national and international venues. The topics for these workshops have included computer-based education, active learning, problem-based learning, and the use of general models in teaching physiology.  相似文献   

3.
Students are relying on technology for learning more than ever, and educators need to adapt to facilitate student learning. High-fidelity patient simulators (HFPS) are usually reserved for the clinical years of medical education and are geared to improve clinical decision skills, teamwork, and patient safety. Finding ways to incorporate HFPS into preclinical medical education represents more of a challenge, and there is limited literature regarding its implementation. The main objective of this study was to implement a HFPS activity into a problem-based curriculum to enhance the learning of basic sciences. More specifically, the focus was to aid in student learning of cardiovascular function curves and help students develop heart failure treatment strategies based on basic cardiovascular physiology concepts. Pretests and posttests, along with student surveys, were used to determine student knowledge and perception of learning in two first-year medical school classes. There was an increase of 21% and 22% in the percentage of students achieving correct answers on a posttest compared with their pretest score. The median number of correct questions increased from pretest scores of 2 and 2.5 to posttest scores of 4 and 5 of a possible total of 6 in each respective year. Student survey data showed agreement that the activity aided in learning. This study suggests that a HFPS activity can be implemented during the preclinical years of medical education to address basic science concepts. Additionally, it suggests that student learning of cardiovascular function curves and heart failure strategies are facilitated.  相似文献   

4.
Laboratories are recognised as central in science education, allowing students to consolidate knowledge and master practical skills, however, their effectiveness has been questioned. Whilst laboratory practicals are useful for students’ learning of basic procedures, they have been shown to be less effective for developing conceptual understanding of the subject. Interactive lectures and bespoke digital resources were utilised in order to enhance theoretical understanding of laboratory practical molecular sessions, thus enabling students to take responsibility for and direct their own learning, encouraging inquiry-based learning. Providing easy to access additional learning resources offered students an opportunity to better prepare themselves for the laboratory, and consolidate their knowledge through subsequent review and self-testing in their own time. Grades before and after implementation of these active learning strategies were analysed to look at the impact on student learning and this study demonstrates that integrating these into a challenging practical biology course improved grades significantly with a concomitant increase in the number of ‘A’ grades attained. Feedback to evaluate use and perceptions of both interactive lectures and digital resources were also analysed. It has been shown here that these activities enhanced student experience and understanding of the course.  相似文献   

5.
Quiz-based and collaborative teaching strategies have previously been found to be efficient for the improving meaningful learning of physiology during lectures. These approaches have, however, not been investigated during laboratory exercises. In the present study, we compared the impact of solving quizzes individually and in groups with conventional teaching on the immediate learning during a laboratory exercise. We implemented two quizzes in a mandatory 4-h laboratory exercise on baroreflex physiology. A total of 155 second-year medical students were randomized to solve quizzes individually (intervention group I, n = 57), in groups of three to four students (intervention group II, n = 56), or not to perform any quizzes (control; intervention group III, n = 42). After the laboratory exercise, all students completed an individual test, which encompassed two recall questions, two intermediate questions, and two integrated questions. The integrated questions were of moderate and advanced difficulty, respectively. Finally, students completed an evaluation form. Intervention group I reached the highest total test scores and proved best at answering the integrated question of advanced difficulty. Moreover, there was an overall difference between groups for student evaluations of the quality of the teaching, which was highest for intervention group II. In conclusion, solving quizzes individually during a laboratory exercise may enhance learning, whereas solving quizzes in groups is associated with higher student satisfaction.  相似文献   

6.
Because cell biology has rapidly increased in breadth and depth, instructors are challenged not only to provide undergraduate science students with a strong, up-to-date foundation of knowledge, but also to engage them in the scientific process. To these ends, revision of the Cell Biology Lab course at the University of Wisconsin-La Crosse was undertaken to allow student involvement in experimental design, emphasize data collection and analysis, make connections to the "big picture," and increase student interest in the field. Multiweek laboratory modules were developed as a method to establish an inquiry-based learning environment. Each module utilizes relevant techniques to investigate one or more questions within the context of a fictional story, and there is a progression during the semester from more instructor-guided to more open-ended student investigation. An assessment tool was developed to evaluate student attitudes regarding their lab experience. Analysis of five semesters of data strongly supports the module format as a successful model for inquiry education by increasing student interest and improving attitude toward learning. In addition, student performance on inquiry-based assignments improved over the course of each semester, suggesting an improvement in inquiry-related skills.  相似文献   

7.
Biodiversity is a complex, yet essential, concept for undergraduate students in ecology and other natural sciences to grasp. As beginner scientists, students must learn to recognize, describe, and interpret patterns of biodiversity across various spatial scales and understand their relationships with ecological processes and human influences. It is also increasingly important for undergraduate programs in ecology and related disciplines to provide students with experiences working with large ecological datasets to develop students’ data science skills and their ability to consider how ecological processes that operate at broader spatial scales (macroscale) affect local ecosystems. To support the goals of improving student understanding of macroscale ecology and biodiversity at multiple spatial scales, we formed an interdisciplinary team that included grant personnel, scientists, and faculty from ecology and spatial sciences to design a flexible learning activity to teach macroscale biodiversity concepts using large datasets from the National Ecological Observatory Network (NEON). We piloted this learning activity in six courses enrolling a total of 109 students, ranging from midlevel ecology and GIS/remote sensing courses, to upper‐level conservation biology. Using our classroom experiences and a pre/postassessment framework, we evaluated whether our learning activity resulted in increased student understanding of macroscale ecology and biodiversity concepts and increased familiarity with analysis techniques, software programs, and large spatio‐ecological datasets. Overall, results suggest that our learning activity improved student understanding of biological diversity, biodiversity metrics, and patterns of biodiversity across several spatial scales. Participating faculty reflected on what went well and what would benefit from changes, and we offer suggestions for implementation of the learning activity based on this feedback. This learning activity introduced students to macroscale ecology and built student skills in working with big data (i.e., large datasets) and performing basic quantitative analyses, skills that are essential for the next generation of ecologists.  相似文献   

8.
9.
Medicine is an applied science, interpreting evidence and applying it to real life by using clinical reasoning skills and experience. COPT (clinically oriented physiology teaching) was incorporated in physiology instruction aiming to relate the study of physiology to real-life problems, to generate enthusiasm and motivation for learning, and to demonstrate the vocational relevance of physiology among students by integrating clinical experience with teaching. COPT consisted of two elements: 1) critical-thinking questions (CTQ) and 2) clinical case studies. After a few topics were taught, CTQ and case studies were given as an assignment. Answers were discussed in the next class. Two exams, each of which contained CTQ and recall questions, were conducted, one before (exam 1) and one after (exam 2) the implementation of COPT. Analysis of student performance in the examinations revealed that the students did better in exam 2 (P < 0.0001). Feedback from students indicated that this method was useful and challenging.  相似文献   

10.
We developed an inquiry-based learning model to better stimulate undergraduate students' cognitive development of exercise physiology laboratory concepts. The course core is the two independent research projects that students, working in small groups, complete during the last 9 wk of the semester. Student groups develop their own research question and hypothesis, design the experiment, collect and analyze the data, and report their findings to the rest of the class using presentation software. To help with success of the research projects, students are taken through a series of guided-inquiry laboratory activities during the initial 6 wk of the semester to develop laboratory skills and an understanding of the scientific process. Observations of student behaviors reflected a high level of enthusiasm and engagement in laboratory activities. Surveys, journal entries, and interviews indicated that students felt empowered by having ownership in their projects, which may be the key reason for the success of this model.  相似文献   

11.
In this paper we discuss an activity through which students learn basic concepts in genetics by taking part in a police investigation game. The activity, which we have called Recal, immerses students in a scientific-based scenario in which they play a role of a scientific assessor. Players have to develop and use scientific reasoning and evidence-based decision-making to solve the given enigmas along the game. The activity aims to improve students’ knowledge of genetics and show them how genetic evidence can be applied in forensic science. The activity (known as ‘the Recal case’) uses a problem-based learning educational methodology. It is learner-centred and students play an active collaborative role. The methodology requires students to structure their knowledge, and develop their reasoning processes and self-directed learning skills. The activity has been developed for a range of audiences, including high school students, undergraduates engaged in pre-service teaching and adults of all ages. A case study has also been carried out with a group of 120 pre-service student teachers from the Universitat Rovira i Virgili (Tarragona, Spain) to check whether the coherence in the running of the game, whether its effectiveness as a learning activity and whether its dynamics and motivational aspects are acceptable.  相似文献   

12.
This article describes and assesses the effectiveness of a 3-yr, laboratory-based summer science program to improve the academic performance of inner-city high school students. The program was designed to gradually introduce such students to increasingly more rigorous laboratory experiences in an attempt to interest them in and model what "real" science is like. The students are also exposed to scientific seminars and university tours as well as English and mathematics workshops designed to help them analyze their laboratory data and prepare for their closing ceremony presentations. Qualitative and quantitative analysis of student performance in these programs indicates that participants not only learn the vocabulary, facts, and concepts of science, but also develop a better appreciation of what it is like to be a "real" scientist. In addition, the college-bound 3-yr graduates of this program appear to be better prepared to successfully academically compete with graduates of other high schools; they also report learning useful job-related life skills. Finally, the critical conceptual components of this program are discussed so that science educators interested in using this model can modify it to fit the individual resources and strengths of their particular setting.  相似文献   

13.
To help students develop successful strategies for learning how to learn and communicate complex information in cell biology, we developed a quarter-long cell biology class based on team projects. Each team researches a particular human disease and presents information about the cellular structure or process affected by the disease, the cellular and molecular biology of the disease, and recent research focused on understanding the cellular mechanisms of the disease process. To support effective teamwork and to help students develop collaboration skills useful for their future careers, we provide training in working in small groups. A final poster presentation, held in a public forum, summarizes what students have learned throughout the quarter. Although student satisfaction with the course is similar to that of standard lecture-based classes, a project-based class offers unique benefits to both the student and the instructor.  相似文献   

14.
This laboratory exercise uses a simple preparation and a straightforward protocol to illustrate many of the basic principles of vascular biology covered in an introductory physiology course. The design of this laboratory allows students to actively participate in an exercise demonstrating the regulation of arterial tone by endothelial and extrinsic factors. In addition, this hands-on laboratory allows students to gather data using well-known basic biomedical research techniques. Specifically, students are introduced to an isolated organ-chamber technique that is widely used to study cellular mechanisms of many tissues including vascular smooth muscle contraction and dilation. On the basis of student evaluations, participation in the experiments and interpreting data reinforce lecture materials on smooth muscle and endothelial cell function and illustrate mechanisms regulating vascular tone. Students come away with a greater understanding of vascular biology, a deeper appreciation of integrative physiology, and an understanding of the process of conducting tissue-chamber experiments.  相似文献   

15.
We previously examined how three approaches to directing students in a laboratory setting impacted their ability to repair a faulty mental model in respiratory physiology (Modell, HI, Michael JA, Adamson T, Goldberg J, Horwitz BA, Bruce DS, Hudson ML, Whitescarver SA, and Williams S. Adv Physiol Educ 23: 82-90, 2000). This study addresses issues raised by the results of that work. In one group, a written protocol directed students to predict what would happen to frequency and depth of breathing during exercise on a bicycle ergometer, run the experiment, and compare their results to their predictions ("predictor without verification"). In a "predictor with verification" group, students followed the same written protocol but were also required to show the instructor their predictions before running the experiment. Students in a third group reported their predictions verbally to an instructor immediately before exercise and reviewed their results with that instructor immediately after exercise ("instructor intervention group"). Results of this study were consistent with our earlier work. The predictor with verification and predictor without verification protocols yielded similar results. The instructor intervention protocol yielded higher success rates in repairing students' mental models. We subsequently assessed the efficacy of a prediction period at the beginning of the lab session and a wrap-up period at the end to compare predictions and results. This predict and wrap-up protocol was more effective than the predictor without verification protocol, but it was not as effective as the instructor intervention protocol. Although these results may reflect multiple factors impacting learning in the student laboratory, we believe that a major factor is a mismatch between students' approaches to learning and the intended learning outcomes of the experience.  相似文献   

16.
Botanists benefit from a scientifically literate society and an interested and botanically literate student population, and we have opportunities to promote literacy in our classes. Unfortunately, scientific illiteracy exists, in part, because students are technologically advanced but lack intellectual curiosity and rigor. Botanical illiteracy results from several interacting factors, including a lack of interest in plants and infrequent exposure to plant science before students reach college. If scientific or botanical literacy is a goal, we must understand what literacy means and how we can help students reach that goal. A model of biological literacy recognizes four levels; students enter courses at the lowest level possessing misconceptions about concepts; however, misconceptions can be used to our advantage, especially by using concept inventories. Inquiry-based instruction is advocated for all science courses, and learning theory supports inquiry. Seven principles of learning inform recommendations about how botanists should teach, including using themes and "thinking botanically" to illustrate all biological concepts. Overall, consideration of the botanical content taught is less critical than the methods used to teach that content. If botanists emphasize thinking and process skills with an understanding of concepts, we will prepare scientifically literate students and citizens and benefit from our efforts.  相似文献   

17.
18.
Multimedia has the potential of providing bioscience education novel learning environments and pedagogy applications to foster student interest, involve students in the research process, advance critical thinking/problem-solving skills, and develop conceptual understanding of biological topics. Cancer Cell Biology, an interactive, multimedia, problem-based module, focuses on how mutations in protooncogenes and tumor suppressor genes can lead to uncontrolled cell proliferation by engaging students as research scientists/physicians with the task of diagnosing the molecular basis of tumor growth for a group of patients. The process of constructing the module, which was guided by scientist and student feedback/responses, is described. The completed module and insights gained from its development are presented as a potential "multimedia pedagogy" for the development of other multimedia science learning environments.  相似文献   

19.
ABSTRACT

This article describes a ten week long laboratory exercise designed for undergraduate students aimed at enhancing their understanding of physiological and biochemical responses of plants under dehydration stress. Hypothesis was built around previous reports which suggested that exogenous application of certain elicitors leads to transient alleviation of dehydration stress in plants. The chosen elicitors were Calcium and Sodium Nitroprusside (Nitric Oxide elicitor) which were tested on Rice plants under dehydration stress. The experiments were divided into four categories: 1. Water Status and Osmotic adjustment: relative water content (RWC) and Proline content 2. Oxidative Damage: Lipid peroxidation of membranes, electrolyte leakage, total peroxide level 3. Metabolic Health: photosynthesis pigments (chl a, b and carotenoids) and 4. Reactive oxygen species (ROS) scavenger enzymes: ascorbate peroxidase (Apx) and catalase (CaT) assays. The instructor along with the teaching assistants acted as a mentor by initially training the students in the required technical skills and then later guiding them through the course of the project. This curriculum embedded research exercise was designed to foster science process skills and develop integrative thinking for solving scientific problems by employing a hands-on approach in a plant physiology laboratory course.  相似文献   

20.
"新冠"疫情暴发凸显基因工程技术对社会经济的重大影响,基因工程离我们的生活越来越近。"新冠"疫情下,为了让学生更好地完成"基因工程"课程的居家学习,我们采用了基础知识微课自学(Small Private Online Course,SPOC)+案例应用课堂剖析(Tencent Instant Messenger,QQ)+管理拓展课后互助(QQ群)+疑难问题实时解答(QQ群)的跨学科教学模式开展在线教学,通过问题引入、真实情景剖析、跨学科拓展完成了课程基本原理和主要方法的教学,使学生掌握了基因研究的基本方法、基因表达流程、基因技术应用及安全管理相关的知识。通过思考新型冠状病毒肆虐情境下如何防控,帮助学生明晰了学习目的,提高了跨学科学习的兴趣;通过新型冠状病毒核酸检测的真实情景问题和组织实施由目标设计过程、确定方法、学习课程知识,进而掌握不同学科知识应用技能的跨学科教学活动,提高了学生将基因操作技能与专业技能融合解决实际问题的能力。教学实践证明,基础自学+案例剖析+互助拓展+实时答疑的跨学科在线教学模式,可以顺利完成课程教学任务并获得与传统课堂教学等同的效果;分析案例识别问题→设计方案解析过程→确定方法归属学科→学习知识获得技能→建立方案实现目标的跨学科教学方法,既让学生获得了专业技能与基因操作技能协同解决实际问题的经验,又培养了学生的跨学科思维和整合能力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号