首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Indole-3-acetic acid (IAA) labeled in its carboxyl group was metabolized by tobacco leaf discs (Nicotiana tabacum L. cv. Xanthi) into three metabolites, two of which were preliminarily characterized as a peptide and an ester-conjugated IAA. Reapplication of each of the three metabolites (at 10 μM) resulted in a marked stimulation of ethylene production and decarboxylation by the leaf discs. Similarly, these three IAA metab olites could induce elongation of wheat coleoptile segments, which was accompanied by decarboxylation. Both the exogenously supplied esteric and peptidic IAA conjugates were converted by the leaf discs into the same metabolites as free IAA. (1-14C)IAA, applied to an isolated epidermis tissue, was completely metabolized to the esteric and peptidic IAA conjugates. This epidermis tissue showed much higher ethylene production rates and lower decarboxylation rates than did the whole leaf disc. The results suggest that the participation of IAA conjugates in the regulation of various physiological processes depends on the release of free IAA, which is obtained by enzymatic hydrolysis of the conjugates in the tissue. The present study demonstrates biological activity of endogenous IAA conjugates that were synthesized by tobacco leaf discs in response to exogenously supplied IAA.  相似文献   

2.
Exogenously supplied indole-3-acetic acid (IAA) stimulated ethylene production in tobacco (Nicotiana glauca) leaf discs but not in those of sugar beet (Beta vulgaris L.). The stimulatory effect of IAA in tobacco was relatively small during the first 24 hours of incubation but became greater during the next 24 hours. It was found that leaf discs of these two species metabolized [1-14C]IAA quite differently. The rate of decarboxylation in sugar beet discs was much higher than in tobacco. The latter contained much less free IAA but a markedly higher level of IAA conjugates. The major conjugate in the sugar beet extracts was indole-3-acetylaspartic acid, whereas tobacco extracts contained mainly three polar IAA conjugates which were not found in the sugar beet extracts. The accumulation of the unidentified conjugates corresponded with the rise of ethylene production in the tobacco leaf discs. Reapplication of all the extracted IAA conjugates resulted in a great stimulation of ethylene production by tobacco leaf discs which was accompanied by decarboxylation of the IAA conjugates. The results suggest that in tobacco IAA-treated leaf discs the IAA conjugates could stimulate ethylene production by a slow release of free IAA. The inability of the exogenously supplied IAA to stimulate ethylene production in the sugar beet leaf discs was not due to a deficiency of free IAA within the tissue but rather to the lack of responsiveness of this tissue to IAA, probably because of an autoinhibitory mechanism existing in the sugar beet leaf discs.  相似文献   

3.
Various naturally occurring carbohydrates, applied at a concentration range of 1 to 100 mm, stimulated ethylene production for several days in indoleacetic acid (IAA)-treated or untreated tobacco (Nicotiana tabacum L. cv `Xanthi') leaf discs. The lag period for this sugar-stimulated ethylene production was 8 to 12 hours after excision in the untreated leaf discs, but less than 2 hours in the IAA-treated ones. Among the tested carbohydrates, 12 were found to increase synergistically ethylene production, with d-galactose, sucrose, and lactose being the most active; mannitol and l-glucose had no effect. The extent and duration of the increased ethylene production was dependent upon the type of sugar applied, the tissue's age, and the existence of both exogenous IAA and sugar in the medium. Sucrose appeared to elicit a continuous IAA effect for 48 hours, as expressed by increased ethylene production, even when IAA was removed from the medium after a 4-hour pulse. Sucrose stimulated both the uptake and decarboxylation of [1-14C]IAA, as well as the hydrolysis of the esteric and amide IAA conjugates formed in the tissue after application of free IAA. This gradual hydrolysis was accompanied by a further accumulation of a third IAA metabolite. Moreover, synthetic indole-3-acetyl-l-alanine increased ethylene production mainly with sucrose, and this effect was accompanied by its increased decarboxylation and turnover pattern suggesting that release of free IAA was involved. An esteric IAA conjugate, tentatively identified by GC retention time was found to be the major component (84%) of the naturally occurring IAA conjugates in tobacco leaves. Accordingly the sucrose-stimulated ethylene production in tobacco leaves can be ascribed mainly to the sucrose-stimulated hydrolysis of the esteric IAA conjugate.  相似文献   

4.
The antagonistic effects of ethylene and Ag+ on the metabolism of [1-14C]indole-3-acetic acid (IAA) and on the rates of ethylene production were studied in tobacco leaf discs ( Nicotiana rustica var. Brasilia ). During the first 10 h of incubation, Ag+-pretreated leaf discs contained more free [14C]IAA than untreated ones due to decreased oxidative decarboxylation, and the discs also produced more ethylene. Exogenously supplied ethylene nullified these effects of Ag+. However, the most pronounced effect of Ag+ in increasing ethylene production, as well as the strongest antagonistic effect of exogenous ethylene, were found between 24 and 48 h of incubation. During this time span no effect on the level of free IAA and on its decarboxylation could be observed. It is suggested that ethylene exerted its autoinhibitory effect by a feedback control on the IAA-induced ethylene biosynthesis. Possible mechanisms for the autoinhibitory effect of ethylene are discussed.  相似文献   

5.
Evidence that indoleacetic acid (IAA) conjugates are metabolized via enzyme-catalyzed hydrolysis to free IAA and that their biological activities are related to the rates at which they are hydrolyzed by the tissue is presented. These conclusions are based on the following observations. Slow but continuous decarboxylation of the IAA moiety of IAA-l-alanine and IAA-glycine occurs when these conjugates are applied to pea (Pisum sativum L. cv. Alaska) stem segments. Inasmuch as IAA conjugates are protected from peroxidase-catalyzed oxidative decarboxylation, the conjugates are probably hydrolyzed and the freed IAA then further metabolized. Free IAA and IAA-l-alanine are converted, by pea stem tissue, into the same metabolites. The metabolism is enzymic, since conjugates of IAA with the d-isomers of the amino acids are inactive. Ethylene production induced by IAA-l-alanine and by IAA-glycine is correlated with their hydrolysis, as indicated by their decarboxylation and with the appearance or nonappearance of IAA metabolites in the tissues.  相似文献   

6.
The effects of indole-3-acetic acid (IAA) and four IAA conjugates, indoleacetylalanine (IAAla), indoleacetylaspartic acid (IAAsp), indoleacetylglycine (IAGly), and indoleacetylphenylalanine (IAPhe), on growth and morphogenesis in tomato leaf discs in vitro were examined. Free IAA stimulated root initiation in the absence of cytokinin and stimulated callus growth in the presence of 0.89 M benzylaminopurine (BAP). Free IAA also inhibited shoot initiation obtained with 8.9 M BAP. The activities of the IAA conjugates depended on the conjugating amino acid, the concentration of the conjugate, and the response being measured. IAAsp had little or no activity in promoting root initiation or callus growth or in inhibiting shoots, while IAPhe was similarly inactive except at the highest concentration tested (100 M). IAAla and IAGly were both very active in inhibiting shoots and promoting callus growth, but were much less active in stimulating rooting, except at 100 M, at which concentration they were as effective as free IAA. Thin-layer chromatography of the IAA conjugates revealed that IAAla, IAGly and IAPhe were largely stable to autoclaving, but that IAAsp underwent some hydrolysis to products identical with free IAA and aspartic acid. Pretreatment of seedlings with IAA, IAAla or IAGly altered the subsequent shoot initiation response from leaf discs on media with and without IAA.  相似文献   

7.
Riov J  Dror N  Goren R 《Plant physiology》1982,70(5):1265-1270
The effect of ethylene on [14C]indole-3-acetic acid (IAA) metabolism was investigated in defoliation sensitive leaf tissues of citrus (Citrus sinensis) and resistant leaf tissues of eucalyptus (Eucalyptus camaldulensis). IAA metabolites were fractionated into 80% ethanol-soluble, H2O-soluble, NaOH-soluble, and insoluble components. In citrus, pretreatment with 25 microliters per liter ethylene for 24 hours significantly increased the amount of ethanol- and H2O-extractable conjugates during the first hour of incubation in [14C]IAA and increased 3- to 4-fold the formation of NaOH-extractable conjugates during the entire 6-hour incubation period. However, induction of the IAA-aspartate conjugation system was inhibited by ethylene. In eucalyptus, ethylene pretreatment only slightly stimulated the formation of IAA metabolites. Increased formation of ethanol-extractable conjugates in ethylene-pretreated eucalyptus tissues was observed only after 6 hours of incubation. Chromatographic analysis indicated that the ethanol and H2O extracts of both species contained various low molecular weight conjugates, whereas in citrus leaf tissues high molecular weight conjugates accounted for most of the greater radioactivity detected in the NaOH extracts as a result of ethylene-pretreatment. It is suggested that ethylene may reduce the level of endogenous IAA in citrus leaf tissues by stimulating IAA conjugation.  相似文献   

8.
The sucrose-stimulated in vivo hydrolysis of indole-3-acetyl-l-alanine (IAAIa) in tobacco (Nicotiana tabacum L.) leaf discs was confirmed by in vitro analysis of an IAAIa-hydrolyzing enzyme isolated from the same tissue. The enzymic activity could be stimulated by either aging of the tissue or by application of external IAA or sucrose. A combination of the above three treatments yielded maximal activity.  相似文献   

9.
d-Galactose has been shown to have toxic and growth inhibitory effects in plants. When applied at levels of 50 millimolar to tobacco (Nicotiana tabacum L. cv Xanthi) leaf discs galactose caused a rapid increase in ethylene production during the first 2 days of incubation, followed by a rapid return to the basal level on the third day. This pattern of galactose-stimulated ethylene production was accompanied by increased formation of 1-aminocyclopropane-1-carboxylic acid (ACC), which accumulated without being metabolized to ethylene or to the ACC-conjugate. The inhibitory effect of galactose (50 millimolar) on the conversion of ACC of ethylene was relieved partially by d-glucose or sucrose (50 millimolar), and completely by CO2 (10%), which were shown to enhance this conversion by themselves. Consequently, application of galactose plus any one of these compounds increased ethylene production and decreased free ACC levels. The data suggest that galactose toxicity may result in both an increased ethylene production as well as in accumulation of free ACC in aged discs. The increased ethylene production rates and ACC levels may, in turn, play a role in the development of symptoms associated with galactose toxicity.  相似文献   

10.
Chilling-induced leaf abscission of ixora ( Ixora coccinea ) plants was almost completely inhibited by α -naphthaleneacetic acid (NAA), even in the presence of exogenous ethylene, which enhanced the chilling effect on leaf abscission. Chilling reduced free indoleacetic acid (IAA) content, quantified immediately after chilling, in the abscission zone (AZ) and leaf blade. Free IAA content in chilling-treated plants continued to decrease gradually with time after chilling. Application of the antioxidant butylated hydroxyanisole (BHA) before or after chilling not only prevented the post-chilling decline in free IAA content, but also restored free IAA level during 6–48 h of the post-chilling period almost to the control level. No significant effect of chilling on the endogenous content of ester- and amide-conjugates of IAA or the metabolism of exogenous labeled IAA were observed. Chilling enhanced the decarboxylation of IAA, particularly in the AZ tissue. Auxin transport capacity was significantly inhibited by chilling, and this effect was counteracted by BHA applied before chilling. The data indicate that chilling reduces free IAA content in the AZ, an effect that may lead to increased sensitivity to ethylene. The chilling-induced reduction in IAA content in the AZ seems to result, at least in part, from increased IAA decarboxylation and reduced auxin transport capacity. These processes seem to be triggered by the oxidative stress imposed on the tissues by chilling.  相似文献   

11.
Exogenous supply of spermine (Spm) markedly stimulated ethyleneevolution from intact soybean leaves of leaf discs, stronglyincreased the level of free 1-aminocyclopropane-1-carboxylicacid (ACC), and slightly stimulated ethylene forming-enzyme(EFE) activity Spm treatment also resulted in leaf epinastyand accelerated leaf senescence Ethylene stimulation was depressed,but not abolished, by light, and was suppressed by inhibitorsof ACC synthase and EFE activity Spermidine had a less pronouncedstimulatory effect on ethylene production whereas the diaminesputrescine and diaminopropane were without effect These resultscontrast with other reports indicating that di- and polyaminesinhibit ethylene biosynthesis in plants, and extend our previousresults on detached tobacco leaves exogenously treated withpolyamines Glycine max, ethylene, polyamines  相似文献   

12.
Each of four amino acid conjugates of IAA was able to replacethe IAA requirement for xylogenesis in lettuce pith explants,when supplied at concentrations ten to 100 times those optimalfor IAA. Tracheary development induced by these conjugates tendedto be slightly slower and less in amount than with IAA, andthe tracheary strands shorter and less regular. Responses differedsomewhat among the four conjugates: IAA-D, L-aspartate gavedevelopment most like that with free IAA, and IAA-D, L-phenylalanineoften yielded the weakest tracheary development, while responsesto IAA-L-alanine and IAA-glycine were intermediate. The resultsare interpreted in terms of the ‘bound’ IAA conjugatesdiffusing into the pith explants and becoming xylogenic onlyon hydrolysis to ‘free’ IAA. As tracheary strandformation is believed to result from IAA fluxes, it seems thatthe free IAA also moved through the discs, presumably towardsthe surfaces where it degrades rapidly. Tracheary strand formationin these explants can be compared with vascular strand formationin the normal shoot tip, where IAA conjugates (auxin ‘precursors’)move acropetally and are hydrolysed to free IAA especially inthe young leaf primordia, we suggest, yielding local sourcesof IAA which may contribute both to the phyllotactic spacingof primordia and, moving basipetally, to the definition of theauxin pathways that develop as procambial strands behind individualleaf primordia. Lactuca sativa, lettuce, IAA conjugates, tracheary element differentiation, pith explants, xylem strands  相似文献   

13.
The stimulation of cell extension by ethylene and auxin in aquatic plants   总被引:1,自引:0,他引:1  
Elongation of the shoots of three aquatic plants (Hydrocharis morsus-ranae, Regnellidium diphyllum and Ranunculus sceleratus) is stimulated by treatment with ethylene or IAA. The effects of the two hormones are additive, and experiments with an ethylene biosynthesis inhibitor and silver ions indicate that the mechanisms by which ethylene and IAA stimulate growth may be different. Hydrocharis and Ranunculus leaf discs synthesize [14C]ethylene from [14C]methionine, but no [14C]ethylene is formed by Regnellidium, suggesting the existence of an alternative pathway of ethylene biosynthesis in the fern.Abbreviations IAA Indole-3-acetic acid - RBA 1,2-amino-4-(2-aminoethoxy)-trans-3-butenoic acid  相似文献   

14.
The interrelationship between ethylene and growth regulators in the senescence of romaine lettuce (Lactuca sativa L.) leaves was studied. Gibberellic acid (GA3), kinetin, and 3-indoleacetic acid (IAA) retarded chlorophyll loss from leaf discs which were floated on hormone solutions. Abscisic acid (ABA) and ethephon enhanced chlorophyll loss and antagonized the senescence-retarding effect of GA3 and kinetin. A high concentration of IAA (10–4 M) caused accelerated chlorophyll loss, whereas a similar concentration of kinetin neither retarded nor promoted chlorophyll loss. The ineffectiveness of IAA and kinetin at their supraoptimal concentrations in retarding leaf senescence was related to increased production of ethylene induced in the treated leaf discs. GA3 was the most effective in retarding chlorophyll loss and did not stimulate ethylene production at all. The senescence-enhancing effect of ABA was not mediated by ethylene. However, the moderately increased production of ethylene, induced by relatively high concentrations of ABA, could act synergistically with the latter to accelerate chlorophyll loss. It is proposed that the effectiveness of exogenously applied hormones, both in enhancing and retarding senescence, is greatly affected by the endogenous ethylene concentration of the treated plant tissue.Contribution from the Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel, No. 2571-E, 1988 series.  相似文献   

15.
Bound indoleacetic Acid in Avena coleoptiles   总被引:12,自引:12,他引:0       下载免费PDF全文
When C14 carboxyl indoleacetic acid (IAA) is transported through Avena coleoptile sections a fraction of the activity becomes bound. The nature of this bound IAA has been investigated. Upon extraction with solvents and chromatography a substance having the RF of IAA in 4 solvents was detected. No evidence could be found for the formation of indoleacetyl conjugates. In pea stem sections subjected to a similar experimental regime good evidence was obtained for the occurrence of conjugates. When IAA was supplied exogenously to coleoptile sections floating in solutions the occurrence of conjugates was shown to be dependent on the presence of the primary leaf. In its absence no conjugates could be detected.

On grinding coleoptile sections and subsequent centrifugation at 240 × g the radioactivity was found to be in the tissue fraction as opposed to the supernatant. The radioactivity cannot be removed from the tissue by extraction with water, buffer solution or treatment with ribonuclease. It is readily removed by 10% urea, crystalline trypsin and chymotrypsin. It is therefore concluded that IAA becomes bound to a protein. Bound IAA does not appear to be able to cause growth in Avena coleoptile sections.

  相似文献   

16.
Cellulysin-induced ethylene production in tobacco (Nicotiana tabacum L.) leaf discs was enhanced several-fold by prior exposure of the leaf tissue to ethylene. This enhancement in the response of the tissue to Cellulysin increased rapidly during 4 and 8 hours of pretreatment with ethylene and resulted from greater conversion of methionine to ethylene. On treatment with Cellulysin, the content of 1-aminocyclopropane-1-carboxylic acid (ACC) in leaf discs not pretreated with ethylene markedly increased while that of the ethylene-pretreated tissue was only slightly higher than in the tissue incubated in the absence of Cellulysin. Ethylene-treated tissue, however, converted ACC to ethylene at a faster rate than air controls. These data indicate that ethylene stimulates Cellulysin-induced ethylene production by stimulating the conversion of ACC to ethylene. Data are also presented on a possible relation of this phenomenon to ethylene produced by the tobacco leaf upon interaction with its pathogen, Alternaria alternata.  相似文献   

17.
Supraoptimal concentrations of indoleacetic acid (IAA) stimulated ethylene production, which in turn appeared to oppose the senescence-retarding effect of IAA in tobacco leaf discs. Kinetin acted synergistically with IAA in stimulating ethylene production, but it inhibited senescence. Silver ion and CO(2), which are believed to block ethylene binding to its receptor sites, delayed senescence in terms of chlorophyll loss and stimulated ethylene production. Both effects of Ag(+) were considerably greater than those of CO(2). IAA, kinetin, CO(2), and Ag(+), combined, acted to increase ethylene production further. Although this combination increased ethylene production about 160-fold over that of the control, it inhibited senescence. Treatment with 25 mul/l of ethylene in the presence of IAA enhanced chlorophyll loss in leaf discs and inhibited by about 90% the conversion of l-[3,4-(14)C] methionine to (14)C(2)H(4) suggesting autoinhibition of ethylene production.The results suggest that ethylene biosynthesis in leaves is controlled by hormones, especially auxin, and possibly the rate of ethylene production depends, via a feedback control system, on the rates of ethylene binding at its receptor sites.  相似文献   

18.
Auxin-induced and 1-aminocyclopropane-1-carboxylic acid (ACC)-dependentethylene production in mung bean (Vigna radiata [L] Wilczek)hypocotyl sections, from which epidermis had been removed, wasinvestigated. Ethylene production in hypocotyl sections withoutepidermis was induced by treatment with IAA, and also occurredfrom exogenously supplied ACC in the presence of 0.2 M mannitol.Isolated epidermal strips alone failed to produce substantialamounts of ethylene in response to IAA or from exogenous ACC.3,4-[14C]-Methionone was incorporated into both ACC and ethylenein peeled sections treated with IAA, but not in the isolatedepidermal strips. Radioactive ACC, however, was detected inthe epidermal strips separated from the unpeeled sections previouslyfed with 3,4-[14C]-methionine in the presence of IAA. We concludethat the Site of auxin-induced ethylene production is not inthe epidermis, but in other hypocotyl cells, and that epidermalcells lack the activity which converts ACC to ethylene. (Received January 28, 1985; Accepted May 4, 1985)  相似文献   

19.
Campell BR  Town CD 《Plant physiology》1991,97(3):1166-1173
γ-Radiation-induced tumors of Arabidopsis thaliana L. have been produced as a novel approach to isolation of genes that regulate plant development. Tumors excised from irradiated plants are hormone autonomous in culture and have been maintained on hormone-free medium for up to 4 years. Five tumor tissue lines having different morphologies and growth rates were analyzed for auxin, cytokinin, and 1-aminocyclopropane-1-carboxylic acid (ACC) content, ethylene production, and response to exogenous growth regulators. Normal tissues and two crown gall tissue lines were analyzed for comparison. Rosettes and whole seedlings each contained approximately 30 nanograms· (gram fresh weight)−1 free indoleacetic acid (IAA), 150 nanograms· (gram fresh weight)−1 ester-conjugated IAA, and 10 to 20 micrograms· (gram fresh weight)−1 amide-conjugated IAA. The crown gall lines contained similar amounts of free and ester-conjugated IAA but less amide conjugates. Whereas three of the radiation-induced tumor lines had IAA profiles similar to normal tissues, one line had 10- to 100-fold more free IAA and three- to 10-fold less amide-conjugated IAA. The fifth line had normal free IAA levels but more conjugated IAA than control tissues. Whole seedlings contained approximately 2 nanograms· (gram fresh weight)−1 of both zeatin riboside and isopentenyladenosine. The crown gall lines had 100- to 1000-fold higher levels of each cytokinin. In contrast, the three radiation-induced tumor lines analyzed contained cytokinin levels similar to the control tissue. The radiation-induced tumor tissues produced very little ethylene, although each contained relatively high levels of ACC. Normal callus contained similar amounts of ACC but produced several times more ethylene than the radiation-induced tumor lines. Each of the radiation-induced tumor tissues displayed a unique set of responses to exogenously supplied growth regulators. Only one tumor line showed the same response as normal callus to both auxin and cytokinin feeding. In some cases, one or more tumor lines showed increased sensitivity to certain growth substances. In other cases, growth regulator feeding had no significant effect on tumor tissue growth. Morphology of the radiation-induced tumor tissues generally did not correlate with auxin to cytokinin ratio in the expected manner. The results suggest that a different primary genetic event led to the formation of each tumor and that growth and differentiation in the tumor tissue lines are uncoupled from the normal hormonal controls.  相似文献   

20.
The rate of decarboxylation of [1′-14C]indole-3-acetic acid (IAA) infiltrated into tomato (Lycopersicon esculentum Mill.) pericarp discs was much more rapid in green than in breaker and pink tissues. Studies were carried out in order to determine whether the decarboxylative catabolism occurring in the green pericarp discs was associated with ripening or was a consequence of wound-induced peroxidase activity and/or ethylene production. After a 2-h lag, the decarboxylative capacity of the green pericarp discs increased exponentially during a 24-h incubation period. This increase was accompanied by increases in IAA-oxidase activity in cell-free preparations from the intercellular space and cut surface of the discs. Although higher IAA-oxidase activity was detected in extracts from the tissue residue, which comprises mainly intracellular peroxidases, this activity did not increase during the 24-h incubation period. Analysis of the cell-free preparations by isoelectric focusing revealed the major component in all samples was a highly anionic peroxidase (pI=3.5) the levels of which did not increase during incubation. However, the intercellular and cut-surface preparations contained additional anionic and cationic peroxidases which increased in parallel with the increases in both the IAA-oxidase activity of the preparations and the decarboxylative capacity of the green pericarp discs from which they were derived. Treatment of green discs with the ethylene-biosynthesis inhibitors aminooxyacetic acid and CoCl2, inhibited the development of an enhanced capacity to decarboxylate [1′-14C]IAA but the inhibition was not counteracted by exogenous ethylene. Another ethylene-biosynthesis inhibitor, aminoethoxyvinyl glycine, also reduced ethylene levels but did not affect IAA decarboxylation, indicating that the decarboxylation was not a consequence of wound-induced ethylene production. The data obtained thus demonstrate that the enhanced capacity to decarboxylate [1′-14C]IAA that develops in green tomato pericarp discs following excision is not associated with ripening but instead is attributable to a wound-induced increase in anionic and cationic peroxidase activity in the intercellular fluid and at the cut surface of the excised tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号