首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nitrate-nitrogen retention in wetlands in the Mississippi River Basin   总被引:1,自引:0,他引:1  
《Ecological Engineering》2005,24(4):267-278
Nitrate-nitrogen retention as a result of river water diversions is compared in experimental wetland basins in Ohio for 18 wetland-years (9 years × 2 wetland basins) and a large wetland complex in Louisiana (1 wetland basin × 4 years). The Ohio wetlands had an average nitrate-nitrogen retention of 39 g-N m−2 year−1, while the Louisiana wetland had a slightly higher retention of 46 g-N m−2 year−1 for a similar loading rate area. When annual nitrate retention data from these sites are combined with 26 additional wetland-years of data from other wetland sites in the Basin Mississippi River (Ohio, Illinois, and Louisiana), a robust regression model of nitrate retention versus nitrate loading is developed. The model provides an estimate of 22,000 km2 of wetland creation and restoration needed in the Mississippi River Basin to remove 40% of the nitrogen estimated to discharge into the Gulf of Mexico from the river basin. This estimated wetland restoration is 65 times the published net gain of wetlands in the entire USA over the past 10 years as enforced by the Clean Water Act and is four times the cumulative total of the USDA Wetland Reserve Program wetland protection and restoration activity for the entire USA.  相似文献   

2.
An ecological and hydrologic restoration of the Mississippi–Ohio–Missouri (MOM) Basin in the United States is proposed as the solution to the reccurring hypoxic conditions in the Gulf of Mexico. Nitrate–nitrogen is the cause of this eutrophication in the Gulf and its source is mainly due to increased fertilizer use in the American Midwest. In that same Midwest, the land has also been artificially drained and 80–90% of the original wetlands have been lost. Our proposed restoration involves the strategic creation and restoration of 2.2 million ha of wetlands in the MOM basin where in-field wetlands intercept agricultural runoff and diversion wetlands are overflowed by flooding river water. Case studies that total 50 wetland-years of data from Illinois, Ohio, and Louisiana are summarized as the basis for the restoration area estimate. Benefits of this restoration, in addition to solving the Gulf hypoxia, include water quality improvement, reduction of public health threats, habitat creation, and flood mitigation that will accrue to the locations in the MOM basin where the restoration occurs. Before the restoration commences, there is a need for formal and rigorous large-scale research in the basin to reduce uncertainties.  相似文献   

3.
Y. Jun Xu 《Hydrobiologia》2006,560(1):133-143
Freshwater diversions from the lower Mississippi River into the region’s wetlands have been considered an alternative means for reducing nitrogen loading. The Atchafalaya River Swamp, the largest freshwater swamp in North America, carries the entire discharge of the Red River and 30% of the discharge of the Mississippi River, but it is largely unknown how much nitrogen actually can be retained from the overflowing waters of the Mississippi–Atchafalaya River system. Nitrogen discharge from the upper Mississippi River Basin has been implicated as the major cause for the hypoxia in the Northern Gulf of Mexico, which threatens not only the aquatic ecosystem health, but also Louisiana’s fishery industry, among other problems. This study was conducted to determine the change in organic nitrogen mass as water flows through the Atchafalaya River Swamp and into the Gulf of Mexico. By utilizing the river’s long-term discharge and water quality data (1978–2002), monthly and annual organic nitrogen fluxes were quantified, and their relationships with the basin’s hydrologic conditions were investigated. A total Kjeldahl nitrogen (TKN) mass input–output balance between the upstream (Simmesport) and downstream (Morgan City and Wax Lake Outlet) locations was established to examine the organic nitrogen removal potential for this large swamp. The results showed that on average, TKN input into the Atchafalaya was 200 323 tons year−1 and TKN output leaving the basin was 145 917 tons year−1, resulting in a 27% removal rate of organic nitrogen. Monthly TKN input and output in the basin were highest from March to June (input vs. output: 25 000 vs. 18 000 tons month−1) and lowest from August to November (8000 vs. 6000 tons month−1). There was a large variation in both annual and inter-annual organic nitrogen removals. The variability was positively correlated with the amount of inflow water at Simmesport, suggesting that regulating the river’s inflow at the Old River flood control structures may help reduce nitrogen loading of the Mississippi River to the Gulf of Mexico. Furthermore, the in-stream loss of organic nitrogen indicates that previous studies may have overestimated nitrogen discharge from the Mississippi–Atchafalaya River system.  相似文献   

4.
Nutrient pollution, now the leading cause of water quality impairment in the U.S., has had significant impact on the nation"s waterways. Excessive nutrient pollution has been linked to habitat loss, fish kills, blooms of toxic algae, and hypoxia (oxygen-depleted water). The hypoxic "dead zone" in the Gulf of Mexico is one of the most striking illustrations of what can happen when too many nutrients from inland watersheds reach coastal areas. Despite programs to improve municipal wastewater treatment facilities, more stringent industrial wastewater requirements, and agricultural programs designed to reduce sediment loads in waterways, water quality and nutrient pollution continues to be a problem, and in many cases has worsened. We undertook a policy analysis to assess how the agricultural community could better reduce its contribution to the dead zone and also to evaluate the synergistic impacts of these policies on other environmental concerns such as climate change. Using a sectorial model of U.S. agriculture, we compared policies including untargeted conservation subsidies, nutrient trading, Conservation Reserve Program extension, agricultural sales of carbon and greenhouse gas credits, and fertilizer reduction. This economic and environmental analysis is watershed-based, primarily focusing on nitrogen in the Mississippi River basin, which allowed us to assess the distribution of nitrogen reduction in streams, environmental co-benefits, and impact on agricultural cash flows within the Mississippi River basin from various options. The model incorporates a number of environmental factors, making it possible to get a more a complete picture of the costs and co-benefits of nutrient reduction. These elements also help to identify the policy options that minimize the costs to farmers and maximize benefits to society.  相似文献   

5.
黄河是中华文明的发源地, 被誉为母亲河, 是两岸社会经济发展的保障, 切实保护好黄河流域湿地生态系统, 事关中华民族伟大复兴的千秋大计。黄河流域湿地总面积为391万ha, 其中80.4%分布在上游, 中游和下游分别仅12.5%和7.1%。黄河流域是东亚-澳大利西亚候鸟迁徙路线和中亚候鸟迁徙路线上水鸟的关键栖息地, 一些迁徙水鸟最关键的栖息地均分布在黄河流域, 如黑颈鹤(Grus nigricollis)、白鹤(G. leucogeranus)、丹顶鹤(G. japonensis)、斑头雁(Anser indicus)、大鸨(Otis tarda)、东方白鹳(Ciconia boyciana)、大天鹅(Cygnus cygnus)、疣鼻天鹅(C. olor)、青头潜鸭(Aythya baeri)等。尽管黄河流域湿地提供的水资源仅占全国的2%, 但维持着全国12%的人口饮水安全和15%的耕地用水, 湿地生态系统的脆弱性较高。截至2017年底, 黄河流域已建立各类湿地自然保护地230处, 其中国家公园2处、国家级自然保护区9处、地方级自然保护区68处、国家湿地公园145处、省级湿地公园6处, 湿地保护率达到65%, 高于我国湿地保护53%的平均水平。然而, 流域尺度现有水鸟生物多样性保护仍然面临不少挑战, 包括全球气候变化、水资源过度利用、水环境污染、栖息地丧失等。为此, 我们提出了建立以国家公园为主体的湿地保护地体系、开展濒危候鸟栖息地修复和强化黄河流域综合管理的体制机制建设等建议。  相似文献   

6.
Wetlands provide key functions in the landscape from improving water quality, to regulating flows, to providing wildlife habitat. Over half of the wetlands in the contiguous United States (CONUS) have been converted to agricultural and urban land uses. However, over the last several decades, research has shown the benefits of wetlands to hydrologic, chemical, biological processes, spurring the creation of government programs and private initiatives to restore wetlands. Initiatives tend to focus on individual wetland creation, yet the greatest benefits are achieved when strategic restoration planning occurs across a watershed or multiple watersheds. For watershed-level wetland restoration planning to occur, informative data layers on potential wetland areas are needed. We created an indicator of potential wetland areas (PWA), using nationally available datasets to identify characteristics that could support wetland ecosystems, including: poorly drained soils and low-relief landscape positions as indicated by a derived topographic data layer. We compared our PWA with the National Wetlands Inventory (NWI) from 11 states throughout the CONUS to evaluate their alignment. The state-level percentage of NWI-designated wetlands directly overlapping the PWA ranged from 39 to 95%. When we included NWI that was immediately adjacent to the overlapping NWI, our range of correspondence to NWI ranged from 60 to 99%. Wetland restoration is more likely on certain landscapes (e.g., agriculture) than others due to the lack of substantive infrastructure and the potential for the restoration of hydrology; therefore, we combined the National Land Cover Dataset (NLCD) with the PWA to identify potentially restorable wetlands on agricultural land (PRW-Ag). The PRW-Ag identified a total of over 46 million ha with the potential to support wetlands. The largest concentrations of PRW-Ag occurred in the glaciated corn belt of the upper Mississippi River from Ohio to the Dakotas and in the Mississippi Alluvial Valley. The PRW-Ag layer could assist land managers in identifying sites that may qualify for enrollment in conservation programs, where planners can coordinate restoration efforts, or where decision makers can target resources to optimize the services provided across a watershed or multiple watersheds.  相似文献   

7.
Two explicit landscape simulation models were used to investigate habitat shifts in coastal Louisiana due to varying river forcing and sea level rise scenarios. Wetland conversion to open water and yearly shifts of marsh habitats in two contrasting estuarine regions were examined; the Atchafalaya delta which is a prograding delta area with strong riverine input, and the Barataria Basin is a regressive delta with high wetland loss which is isolated from riverine input. The models linked several modules dynamically across spatial and temporal scales. Both models consisted of a vertically integrated hydrodynamic model coupled with process-based biological modules of above and below ground primary productivity and soil dynamics. The models explored future effects of possible sea level rise and river diversion plans for 30 and 70-year projections starting in 1988. Results showed that increased river forcing had large land preservation impacts, and indicated that healthy functioning of the Mississippi Delta depends largely on inputs of freshwater, nutrients, and sediments in river water. These types of models are useful for research and as management tools for predicting the effects of regional impacts on structural landscape level changes.  相似文献   

8.
Despite this nation's massive effort during the past 90 years to build levees throughout the upper Mississippi Basin, mean annual flood damage in the region has increased 140% during that time. These levees exacerbate the flood damage problem by increasing river stage and velocity. Thus, rather than continuing to rely on structural solutions for flood control, it is time to develop a comprehensive flood management strategy that includes using wetlands to intercept and hold precipitation where it falls and store flood waters where they occur. History testifies to the truth of this premise: it was the rampant drainage of wetlands in the nineteenth century that gave rise to many of today's water resources management problems. The 1993 flood verifies the need for additional wetlands: the amount of excess water that passed St. Louis during the 1993 flood would have covered a little more than 13 million acres —half of the wetland acreage drained since 1780 in the upper Mississippi Basin. By strategically placing at least 13 million acres of wetlands on hydric soils in the basin, we can solve the basin's flooding problems in an ecologically sound manner.  相似文献   

9.
刘倩  赵娥  王克焕  熊雄  吴辰熙 《水生生物学报》2022,46(12):1797-1806
研究以拉萨市拉鲁湿地及其相连干渠和茶巴朗湿地水体为研究对象, 分别于2020年8月(夏季)和2021年4月(春季)各采集22个水样, 测定水体氮磷营养盐和高锰酸盐指数, 分析了夏季和春季湿地的水环境特征和水质净化能力。结果表明, 拉鲁湿地和茶巴朗湿地由于流域人为污染水平不同进水水质存在差异, 拉鲁湿地进水水质主要受氮磷营养盐影响, 茶巴朗湿地水质主要受耗氧有机物影响。两湿地对水质都具有净化作用, 不同季节湿地对不同污染物的去除效果也有所差异。夏季, 拉鲁湿地对TN、NH3-N、NO3-N、TP和SRP的最大去除率分别为75.0%、65.2%、89.5%、82.2%和35.3%。茶巴朗湿地对TN、NH3-N、NO3-N、TP和SRP的去除率分别为60.7%、73.5%、12.7%、35.9%和5.0%。夏季两湿地对CODMn均未表现出去除作用。春季, 拉鲁湿地对TN、NH3-N、NO3-N、TP、SRP和CODMn的最大去除率分别为35.2%、65.9%、56.8%、59.5%、62.3%和17.9%。茶巴朗湿地的水质净化效果较差, 对TN、NH3-N、NO3-N、TP、SRP和CODMn的去除率分别为2.2%、10.2%、11.3%、11.3%、9.0%和26.0%。湿地水生植物、湿地结构、特殊的水动力特征及水污染负荷都可能影响高原湿地的水质净化能力, 春季高原湿地较低的水温、植物丰度和水文条件可能会降低湿地对污染物的去除效果。  相似文献   

10.
A 3-month field study was conducted to examine the effects of Atchafalaya River discharge on nitrogen and phosphorus concentrations in the Fourleague Bay system, to document patterns with salinity variation, to evaluate stoichiometric nutrient ratios of nitrogen and phosphorus in the river and bay, and to examine the relationship between estuarine freshwater residence time and export of total nitrogen (TN) and total phosphorus (TP) to the Gulf of Mexico. During spring peak discharge of the Atchafalaya River, nutrient ratios in lower Fourleague Bay indicate potential phosphorus limitation with an average dissolved inorganic nitrogen (DIN) to dissolved inorganic phosphorus (DIP) ratio of 32:1, primarily a result of high concentrations of nitrogen entering the northern bay from the Atchafalaya River and of fairly stable phosphorus concentrations. Ratios of DIN to phosphorus in the river were much higher (54:1), indicating a significant loss of nitrogen within the Fourleague Bay system. Freshwater residence time averaged approximately 7 days during the study and ranged from 2 to 100 days. TN export averaged 57% over the study and ranged from less than 3% at long residence times to greater than 80% at short residence times. TN export to the coastal ocean with respect to residence time is considerably less than has been shown in other studies. Nitrate + nitrite export averaged 49% for the 3-month study. Percentages of TP export were greater than TN, averaging 82% for the study period. By examining the Atchafalaya River delta as a natural analog for controlled river diversions, which are currently being used as coastal restoration tools, this study shows that discharging river water into highly productive shallow coastal estuarine and wetland systems can significantly reduce the amount of nitrogen exported to the Gulf of Mexico.  相似文献   

11.
湿地氮素传输过程研究进展   总被引:32,自引:3,他引:29  
综述了湿地氮素传输过程的研究进展。湿地氮素传输过程包括物理过程、化学过程和生物过程 ,与土壤、植物的发生、发育紧密联系在一起 ,并形成了空气 -水 -土 -生命系统中物质循环和能量流动的复杂网络。湿地硝态氮的淋失直接威胁着湿地地下水水质安全 ,N2 O源汇转变受土壤和水体等环境因子的制约 ,氨挥发则与水体 p H值密切相关排放。湿地氮素的化学转化过程是矿质养分供给和 N2 O产生的主要机制 ,受环境因子和人类活动干扰的影响 ;动力学模型可用于描述氮素的化学转化过程。湿地植物的吸收和累积以及微生物的分解过程是湿地氮素循环的重要环节。最后分析了当前国内外研究中存在的不足 ,并对未来研究的重点领域进行了展望  相似文献   

12.
The Tarrant Regional Water District (TRWD) is supplementing the flows to Richland-Chambers Reservoir, to meet future water supply needs of Dallas-Ft. Worth, TX. The Trinity River is the new source, but quality is not adequate. TRWD has constructed and investigated treatment wetland facilities located near the reservoir to upgrade river water quality, from an eight-year study at a 0.72 ha pilot site, and a five-year study at a 102 ha field-scale site. Both systems had a sedimentation basin followed by wetland cells in series. The pilot had two basins feeding three trains of three wetland cells each, while the field-scale system had one basin followed by four wetland cells in series. Water depths were about 30 cm for the pilot, and 40 cm for the field-scale. Design nominal detention times were roughly 5 and 9 days for pilot basins and wetland trains; and 1.5 and 8 days for the field-scale. The systems ran year-round, supplied with water pumped from the river, which at times was predominantly treated wastewater from the Dallas-Fort Worth metroplex. The primary target contaminants were suspended solids, nitrogen, and phosphorus. Nitrogen forms in pumped flows from the river were dominated by oxidized nitrogen, which was mostly nitrate nitrogen. Pilot nitrate removal from the river water was 92%, and 61% for phosphorus, while sediment removal was 97%. Field-scale nitrate removal from the river water was 77%, and 45% for phosphorus, while sediment removal was 96%. The field-scale project is located on land owned by the Texas Parks and Wildlife Department, and they participate in management of the wetlands for the secondary purpose of wildlife habitat.  相似文献   

13.
The Natural Resources Conservation Service (NRCS) commenced the Migratory Bird Habitat Initiative (MBHI) in summer 2010 after the April 2010 Deepwater Horizon oil spill in the Gulf of Mexico. The MBHI enrolled in the program 193,000 ha of private wet‐ and cropland inland from potential oil‐impaired wetlands. We evaluated waterfowl and other waterbird use and potential seed/tuber food resources in NRCS Wetland Reserve Program easement wetlands managed via MBHI funding and associated reference wetlands in the Mississippi Alluvial Valley of Arkansas, Louisiana, Mississippi, and Missouri. In Louisiana and Mississippi, nearly three times more dabbling ducks and all ducks combined were observed on managed than reference wetlands. Shorebirds and waterbirds other than waterfowl were nearly twice as abundant on managed than referenced wetlands. In Arkansas and Missouri, managed wetlands had over twice more dabbling ducks and nearly twice as many duck species than reference wetlands. Wetlands managed via MBHI in Mississippi and Louisiana contained ≥1.3 times more seed and tuber biomass known to be consumed by waterfowl than reference wetlands. Seed and tuber resources did not differ between wetlands in Arkansas and Missouri. While other studies have documented greater waterbird densities on actively than nonmanaged wetlands, our results highlighted the potential for initiatives focused on managing conservation easements to increase waterbird use and energetic carrying capacity of restored wetlands for waterbirds.  相似文献   

14.
The causes of the extensive (0.86%/yr; 288,414 ha/yr) and welldocumented dramatic and accelerating rate of coastal wetlandloss in the northern Gulf of Mexico were investigated by aninterdisciplinary university research team to discern the roleof outer continental shelf development. The landscape changesand potential causal agents are emphasized herein. Natural drivingfactors include sea level rise and geological compaction, whichappear to remain constant this century, and sediment supplyfrom the Mississippi River which has declined by 50%,since the1950s. Man-made influences include hydrologic changes from riverdiversions, flood protection levees, an extensive canal andspoil bank network, belowground fluid withdrawal and accidentaland intentional impoundments. Wetland loss is not simply a geologicalphenomenon. Wetland plants hold sediments together, add to verticalaccretion rates, withstand storm winds and waves, and assistin sediment trapping. Plant physiologic stress is documentedwhere hydrologic changes occur, and much of the wetland losscould be attributed to the effects of soil waterlogging on plants,not to sediment deprivation.  相似文献   

15.
Global climate change is recognized as a threat to species survival and the health of natural systems. Scientists worldwide are looking at the ecological and hydrological impacts resulting from climate change. Climate change will make future efforts to restore and manage wetlands more complex. Wetland systems are vulnerable to changes in quantity and quality of their water supply, and it is expected that climate change will have a pronounced effect on wetlands through alterations in hydrological regimes with great global variability. Wetland habitat responses to climate change and the implications for restoration will be realized differently on a regional and mega-watershed level, making it important to recognize that specific restoration and management plans will require examination by habitat. Floodplains, mangroves, seagrasses, saltmarshes, arctic wetlands, peatlands, freshwater marshes and forests are very diverse habitats, with different stressors and hence different management and restoration techniques are needed. The Sundarban (Bangladesh and India), Mekong river delta (Vietnam), and southern Ontario (Canada) are examples of major wetland complexes where the effects of climate change are evolving in different ways. Thus, successful long term restoration and management of these systems will hinge on how we choose to respond to the effects of climate change. How will we choose priorities for restoration and research? Will enough water be available to rehabilitate currently damaged, water-starved wetland ecosystems? This is a policy paper originally produced at the request of the Ramsar Convention on Wetlands and incorporates opinion, interpretation and scientific-based arguments.  相似文献   

16.
Successional patterns, water quality changes, and effects of hydrologic pulsing are documented for a whole-ecosystem experiment involving two created wetlands that have been subjected to continuous inflow of pumped river water for more than 10 years. At the beginning of the growing season in the first year of the experiment (1994), 2400 individuals representing 13 macrophyte species were introduced to one of the wetland basins. The other basin was an unplanted control. Patterns of succession are illustrated by macrophyte community diversity and net aboveground primary productivity, soil development, water quality changes, and nutrient retention for the two basins. The planted wetland continued to be more diverse in plant cover 10 years after planting and the unplanted wetland appeared to be more productive but more susceptible to stress. Soil color and organic content continued to change after wetland creation and wetlands had robust features of hydric soils within a few years of flooding. Organic matter content in surface soils in the wetlands increased by approximately 1% per 3-year period. Plant diversity and species differences led to some differences in the basins in macrophyte productivity, carbon sequestration, water quality changes and nutrient retention. The wetlands continued to retain nitrate–nitrogen and soluble reactive phosphorus 10 years after their creation. There are some signs that sediment and total phosphorus retention are diminishing after 10 years of river flow. Preliminary results from the beginnings of a flood pulsing experiment in the two basins in 2003–2004 are described for water quality, nutrient retention, aboveground productivity, and methane and nitrous oxide gaseous fluxes.  相似文献   

17.
Fecal pathogen contamination of watersheds worldwide is increasingly recognized, and natural wetlands may have an important role in mitigating fecal pathogen pollution flowing downstream. Given that waterborne protozoa, such as Cryptosporidium and Giardia, are transported within surface waters, this study evaluated associations between fecal protozoa and various wetland-specific and environmental risk factors. This study focused on three distinct coastal California wetlands: (i) a tidally influenced slough bordered by urban and agricultural areas, (ii) a seasonal wetland adjacent to a dairy, and (iii) a constructed wetland that receives agricultural runoff. Wetland type, seasonality, rainfall, and various water quality parameters were evaluated using longitudinal Poisson regression to model effects on concentrations of protozoa and indicator bacteria (Escherichia coli and total coliform). Among wetland types, the dairy wetland exhibited the highest protozoal and bacterial concentrations, and despite significant reductions in microbe concentrations, the wetland could still be seen to influence water quality in the downstream tidal wetland. Additionally, recent rainfall events were associated with higher protozoal and bacterial counts in wetland water samples across all wetland types. Notably, detection of E. coli concentrations greater than a 400 most probable number (MPN) per 100 ml was associated with higher Cryptosporidium oocyst and Giardia cyst concentrations. These findings show that natural wetlands draining agricultural and livestock operation runoff into human-utilized waterways should be considered potential sources of pathogens and that wetlands can be instrumental in reducing pathogen loads to downstream waters.  相似文献   

18.
Coastal wetlands play an important but complex role in the global carbon cycle, contributing to the ecosystem service of greenhouse gas regulation through carbon sequestration. Although coastal wetlands occupy a small percent of the total US land area, their potential for carbon storage, especially in soils, often exceeds that of other terrestrial ecosystems. More than half of the coastal wetlands in the US are located in the northern Gulf of Mexico, yet these wetlands continue to be degraded at an alarming rate, resulting in a significant loss of stored carbon and reduction in capacity for carbon sequestration. We provide estimates of surface soil carbon densities for wetlands in the northern Gulf of Mexico coastal region, calculated from field measurements of bulk density and soil carbon content in the upper 10–15 cm of soil. We combined these estimates with soil accretion rates derived from the literature and wetland area estimates to calculate surface soil carbon pools and accumulation rates. Wetlands in the northern Gulf of Mexico coastal region potentially store 34–47 Mg C ha?1 and could potentially accumulate 11,517 Gg C year?1. These estimates provide important information that can be used to incorporate the value of wetlands in the northern Gulf of Mexico coastal region in future wetland management decisions related to global climate change. Estimates of carbon sequestration potential should be considered along with estimates of other ecosystem services provided by wetlands in the northern Gulf of Mexico coastal region to strengthen and enhance the conservation, sustainable management, and restoration of these important natural resources.  相似文献   

19.
In northeastern Illinois, restored wetlands are used to improve water quality in streams degraded by agriculture and urban development. Using freshwater wetlands to reduce nitrogen loading to lakes and rivers is well documented; however, there are fewer studies addressing their use to remove phosphorous. In 1998, a systematic water quality monitoring project was begun at Prairie Wolf Slough Wetland Demonstration Project, a restored palustrine emergent marsh wetland located on an abandoned farm field north of Chicago. The wetland drains 98 ha of mixed land uses into the Chicago River. Our objectives were to assess spatial and temporal variations in total suspended solids, soluble reactive and total phosphorous concentrations, and mass loadings and compute a mass balance and retention efficiency for these constituents. Water sampling was conducted from 1998 to 2003. In 2004, soil samples were collected from the marsh and an adjacent abandoned farm site and analyzed for soil test (Bray) phosphorus. The marsh effectively traps suspended solids but acts as a source of soluble reactive and total phosphorous to the river both during the growing and nongrowing seasons. Net export of phosphorous from the wetland was likely due to mobilization of orthophosphate as a result of anoxic conditions produced during inundation events. Often little consideration is given to the link between soil and water quality when locating restoration sites. Our study adds to a growing body of literature that clearly demonstrates the need for both soil and water quality assessments in wetland restoration planning, design, and monitoring.  相似文献   

20.
We investigated whether groundwater abstraction for urban water supply diminishes the storage of carbon (C), nitrogen (N), and organic matter in the soil of rural wetlands. Wetland soil organic matter (SOM) benefits air and water quality by sequestering large masses of C and N. Yet, the accumulation of wetland SOM depends on soil inundation, so we hypothesized that groundwater abstraction would diminish stocks of SOM, C, and N in wetland soils. Predictions of this hypothesis were tested in two types of subtropical, depressional‐basin wetland: forested swamps and herbaceous‐vegetation marshes. In west‐central Florida, >650 ML groundwater day?1 are abstracted for use primarily in the Tampa Bay metropolis. At higher abstraction volumes, water tables were lower and wetlands had shorter hydroperiods (less time inundated). In turn, wetlands with shorter hydroperiods had 50–60% less SOM, C, and N per kg soil. In swamps, SOM loss caused soil bulk density to double, so areal soil C and N storage per m2 through 30.5 cm depth was diminished by 25–30% in short‐hydroperiod swamps. In herbaceous‐vegetation marshes, short hydroperiods caused a sharper decline in N than in C. Soil organic matter, C, and N pools were not correlated with soil texture or with wetland draining‐reflooding frequency. Many years of shortened hydroperiod were probably required to diminish soil organic matter, C, and N pools by the magnitudes we observed. This diminution might have occurred decades ago, but could be maintained contemporarily by the failure each year of chronically drained soils to retain new organic matter inputs. In sum, our study attributes the contraction of hydroperiod and loss of soil organic matter, C, and N from rural wetlands to groundwater abstraction performed largely for urban water supply, revealing teleconnections between rural ecosystem change and urban resource demand.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号