首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Incubation of human platelets with myo-[3H]inositol in a low-glucose Tyrode's solution containing MnCl2 enhanced the labelling of phosphoinositides about sevenfold and greatly facilitated the measurement of [3H]inositol phosphates formed by the activation of phospholipase C. Labelled platelets were permeabilized by high-voltage electric discharges and equilibrated at 0 degree C with ATP, Ca2+ buffers and guanine nucleotides, before incubation in the absence or presence of thrombin. Incubation of these platelets with ATP in the presence or absence of Ca2+ ions led to the conversion of [3H]phosphatidylinositol to [3H]phosphatidylinositol 4-phosphate and [3H]phosphatidylinositol 4,5-bisphosphate ([3H]PtdInsP2). At a pCa of 6, addition of 100 microM GTP[gamma S] both prevented this accumulation of [3H]PtdInsP2 and stimulated its breakdown; the formation of [3H]inositol phosphates was increased ninefold. After 5 min these comprised 70% [3H]inositol monophosphate ([3H]InsP), 28% [3H]inositol bisphosphate ([3H]InsP2) and 2% [3H]inositol trisphosphate ([3H]InsP3). In shorter incubations higher percentages of [3H]InsP2 and [3H]InsP3 were found. In the absence of added Ca2+, the formation of [3H]inositol phosphates was decreased by over 90%. Incubation of permeabilized platelets with GTP[gamma S] in the presence of 10 mM Li+ decreased the accumulation of [3H]InsP and increased that of [3H]InsP2, without affecting [3H]InsP3 levels. Addition of unlabelled InsP3 decreased the intracellular hydrolysis of exogenous [32P]InsP3 but did not trap additional [3H]InsP3. These results and the time course of [3H]inositol phosphate formation suggest that GTP[gamma S] stimulated the action of phospholipase C on a pool of [3H]phosphatidylinositol 4-phosphate that was otherwise converted to [3H]PtdInsP2 and that much less hydrolysis of [3H]phosphatidylinositol to [3H]InsP or of [3H]PtdInsP2 to [3H]InsP3 occurred. At a pCa of 6, addition of thrombin (2 units/ml) to permeabilized platelets caused small increases in the formation of [3H]InsP and [3H]InsP2. This action of thrombin was enhanced twofold by 10-100 microM GTP and much more potently by 4-40 microM GTP[gamma S]. In the presence of the latter, thrombin also increased [3H]InsP3. The total formation of [3H]inositol phosphates by permeabilized platelets incubated with thrombin and GTP[gamma S] was comparable with that observed on addition of thrombin alone to intact platelets. However, HPLC of the [3H]inositol phosphates formed indicated that about 75% of the [3H]InsP accumulating in permeabilized platelets was the 4-phosphate, whereas in intact platelets stimulated by thrombin, up to 80% was the 1-phosphate.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
Cultured pituitary cells prelabeled with myo-[2-3H] inositol were permeabilized by ATP4-, exposed to guanine nucleotides and resealed by Mg2+. Addition of guanosine 5'-0-(3-thio triphosphate) (GTP gamma S) to permeabilized cells, or gonadotropin releasing hormone (GnRH) to resealed cells, resulted in enhanced phospholipase C activity as determined by [3H] inositol phosphate (Ins-P) production. The effect was not additive, but the combined effect was partially inhibited by guanosine 5'-0-(2-thiodiphosphate) (GDP beta S) or by neomycin. Surprisingly, addition of GDP beta S (100-600 microM) on its own resulted in a dose-related increase in [3H]Ins-P accumulation. Several nucleoside triphosphates stimulated phospholipase C activity in permeabilized pituitary cells with the following order: UTP greater than GTP gamma S greater than ATP greater than CTP. The stimulatory effect of UTP, ATP and CTP, but not GTP gamma S or GDP beta S, could also be demonstrated in normal pituitary cells suggesting a receptor-activated mechanism. GTP and GTP gamma S decreased the affinity of GnRH binding to pituitary membranes and stimulated LH secretion in permeabilized cells. These results suggest the existence of at least two G-proteins (stimulatory and inhibitory) which are involved in phospholipase C activation and GnRH action in pituitary cells.  相似文献   

3.
The guanine nucleotide analogue, guanosine 5'-O-thiotriphosphate (GTP gamma S) stimulated plasma membrane-associated phospholipase C. Phosphoinositides were the substrates for the reaction. Significant losses of phosphatidylinositol bisphosphate and phosphatidylinositol phosphate occurred at lower doses of GTP gamma S than did significant loss of phosphatidylinositol. Loss of 32P-labeled phosphatidylinositol bisphosphate was equal when plasma membranes were treated with either 100 microM GTP or 100 microM GTP gamma S, but accumulation of inositol trisphosphate was more apparent when the nonhydrolyzable analogue was used. The action of GTP gamma S alone was not dependent on Ca2+ although loss of 32P-labeled phosphoinositides was stimulated by Ca2+ alone or with GTP gamma S. The results are consistent with a role for guanine nucleotide binding proteins in the activation of membrane-bound phosphoinositide-specific phospholipase C.  相似文献   

4.
The effects of guanine nucleotides, thrombin, and platelet cytosol (100,000 X g supernatant) on the hydrolysis of polyphosphoinositides by phospholipase C was examined in isolated platelet membranes labeled with [3H]inositol. Guanosine 5'-(3-O-thio)triphosphate (GTP gamma S) (10 microM) caused a 2-fold stimulation of polyphosphoinositide hydrolysis, compared to background. GTP gamma S (10 microM) plus thrombin (1 unit/ml) stimulated the release of inositol triphosphate, inositol diphosphate, and inositol phosphate 500, 300, and 250%, respectively, compared to GTP gamma S alone. Cytosol prepared from unlabeled platelets slightly increased the release of inositol phosphates from [3H]inositol-labeled membranes. Addition of cytosol plus GTP gamma S (10 microM), however, resulted in a 300% enhancement of the release of inositol phosphates compared to membranes incubated with thrombin and GTP gamma S. The stimulatory effects of cytosol and GTP gamma S on polyphosphoinositide hydrolysis were also observed when membranes were replaced by sonicated lipid vesicles prepared from a total platelet lipid extract. These data suggest that PIP2 hydrolysis in platelets is catalyzed by a soluble phospholipase C which is regulated by a GTP-binding regulatory protein.  相似文献   

5.
5-Methyltryptamine, through a GTP-dependent mechanism, stimulated breakdown of endogenous [3H]inositol-labeled phosphoinositides in membranes prepared from blowfly salivary gland homogenates through a phospholipase C exhibiting a pH optimum of approximately 7.0. Unlabeled membranes, prepared from salivary gland homogenates, hydrolyzed exogenous [3H]phosphatidylinositol 4,5-bisphosphate substrate with generation of labeled inositol phosphates. Inositol trisphosphate formation was increased approximately 200% by 10 microM guanosine 5'-(O-thio)-trisphosphate (GTP gamma S) within 30 s. 5-Methyltryptamine, in the presence of 10 microM GTP gamma S, increased the rate of inositol trisphosphate formation by approximately 500% within 30 s. Half-maximal activation of hormone-stimulated breakdown of exogenous substrate required approximately 0.05 microM GTP gamma S. [3H]Phosphatidylinositol was also hydrolyzed during incubation with membranes, resulting in the generation of inositol, glycerol phosphoinositol, and inositol monophosphate. Formation of inositol monophosphate was stimulated approximately 30% by 10 microM GTP gamma S and 10 microM 5-methyltryptamine. Neither inositol nor glycerol phosphoinositol formation was affected by hormone. These results indicate that in a cell-free system from blowfly salivary glands, 5-methyltryptamine, through a GTP-dependent mechanism, directly activates a phospholipase C which mediates phosphoinositide hydrolysis.  相似文献   

6.
Phosphoinositides of human, rabbit, rat, and turkey erythrocytes were radiolabeled by incubation of intact cells with [32P]Pi. Guanosine 5'-O-(thiotriphosphate) (GTP gamma S) and NaF, which are known activators of guanine nucleotide regulatory proteins, caused a large increase in [32P]inositol phosphate release from plasma membranes derived from turkey erythrocytes, but had no effect on inositol phosphate formation by plasma membranes prepared from the mammalian erythrocytes. High performance liquid chromatography analysis indicated that inositol bisphosphate, inositol 1,3,4-trisphosphate, inositol 1,4,5-trisphosphate, and inositol 1,3,4,5-tetrakisphosphate all increased by 20-30-fold during a 10-min incubation of turkey erythrocyte membranes with GTP gamma S. The increase in inositol phosphate formation was accompanied by a similar decrease in radioactivity in phosphatidylinositol 4-phosphate (PIP) and phosphatidylinositol 4,5-bisphosphate (PIP2). GTP gamma S increased inositol phosphate formation with a K0.5 of 600 nM; guanosine 5'-(beta, gamma-imido)trisphosphate was 50-75% as efficacious as GTP gamma S and expressed a K0.5 of 36 microM. Although GTP alone had little effect on inositol phosphate formation, it blocked GTP gamma S-stimulated inositol phosphate formation, as did guanosine 5'-O-(2-thiodiphosphate). Turkey erythrocytes were also shown to express phosphatidylinositol synthetase activity in that incubation of cells with [3H] inositol resulted in incorporation of radiolabel into phosphatidylinositol, PIP, and PIP2. Incubation of membranes derived from [3H]inositol-labeled erythrocytes with GTP gamma S resulted in large increases in [3H] inositol phosphate formation and corresponding decreases in radiolabel in PIP and PIP2. The data suggest that, in contrast to mammalian erythrocytes, the turkey erythrocyte expresses a guanine nucleotide-binding protein that regulates phospholipase C, and as such, should provide a useful model system for furthering our understanding of hormonal regulation of this enzyme.  相似文献   

7.
The ability of alcohols to regulate inositol lipid-specific phospholipase C (phosphoinositidase C) was examined in turkey erythrocyte ghosts prepared by cell lysis of erythrocytes which were prelabeled with [3H] inositol. Guanosine 5'-[gamma-thiotriphosphate] GTP[S] stimulated the production of both [3H]inositol bisphosphate (18-fold) and [3H]inositol trisphosphate (6-fold) in this system. The accumulation of [3H]inositol bisphosphate and [3H]inositol trisphosphate was linear up to 8 min following an initial lag period of 1-2 min. Ethanol (300 mM) reduced the lag period for [3H]inositol phosphate accumulation at submaximal GTP[S] concentrations and caused a shift to the left (3-fold) in the dose-response curve. Other short chain alcohols, methanol (300 mM), 1-propanol (200 mM), and 1-butanol (50 mM) also enhanced the accumulation of [3H] inositol phosphates in the presence of submaximal GTP[S] concentrations. Receptor activation by the purinergic agonist adenosine 5'-[beta-thio]disphosphate (ADP[S]) (10 microM) also reduced the lag period for [3H] inositol phosphate formation and shifted the GTP[S] dose response to the left (10-fold). In addition, ADP[S] increased the response to maximal GTP[S] concentrations. The formation of [3H]inositol phosphates induced by GTP[S] was associated with a concomitant decrease in labeling of both [3H]phosphatidylinositol monophosphate and [3H]phosphatidylinositol bisphosphate, but no decrease in [3H]phosphatidylinositol was observed. All of the alcohols tested enhanced the breakdown of [3H]polyphosphoinositides in the presence of GTP[S]. The dose response to guanosine 5'-[beta gamma-imino]triphosphate for [3H]inositol phosphate formation was displaced to the left by ethanol (300 mM) and ADP[S] (10 microM) (2- and 7-fold), respectively. ADP[S] also enhanced the maximal response to guanosine 5'-[beta gamma-imino]triphosphate. The [3H]inositol phosphate formation produced in response to NaF was unaffected by either ethanol or receptor activation. These results indicate that alcohols initiate an activation of phosphoinositidase C, mediated at the level of the regulatory guanine nucleotide-binding protein.  相似文献   

8.
The guanine nucleotides guanosine 5'[beta, gamma-imido]triphosphate (Gpp[NH]p), guanosine 5'-[gamma-thio]-triphosphate (GTP gamma S), GMP, GDP and GTP stimulated the hydrolysis of inositol phospholipids by a phosphodiesterase in rat cerebral cortical membranes. Addition of 100 microM-Gpp[NH]p to prelabelled membranes caused a rapid accumulation of [3H )inositol phosphates (less than 30 s) for up to 2 min. GTP gamma S and Gpp [NH]p caused a concentration-dependent stimulation of phosphoinositide phosphodiesterase with a maximal stimulation of 2.5-3-fold over control at concentrations of 100 microM. GMP was as effective as the nonhydrolysable analogues, but much less potent (EC50 380 microM). GTP and GDP caused a 50% stimulation of the phospholipase C at 100 microM and at higher concentrations were inhibitory. The adenine nucleotides App[NH]p and ATP also caused small stimulatory effects (64% and 29%). The guanine nucleotide stimulation of inositide hydrolysis in cortical membranes was selective for inositol phospholipids over choline-containing phospholipids. Gpp[NH]p stimulated the production of inositol trisphosphate and inositol bisphosphate as well as inositol monophosphate, indicating that phosphoinositides are substrates for the phosphodiesterase. EGTA (33 microM) did not prevent the guanine nucleotide stimulation of inositide hydrolysis. Calcium addition by itself caused inositide phosphodiesterase activation from 3 to 100 microM which was additive with the Gpp[NH]p stimulation. These data suggest that guanine nucleotides may play a regulatory role in the modulation of the activity of phosphoinositide phosphodiesterase in rat cortical membranes.  相似文献   

9.
Retinoic acid, a derivative of vitamin A, is shown to inhibit the levels of inositol phosphates and diacylglycerol by 25-30% when added to intact HL-60 cells at concentrations which induce differentiation. The onset of inhibition occurs after 10 min and reaches a maximum at 45 min. To study the mechanism and the site of action of retinoic acid, the activity of the phosphatidylinositol bisphosphate-specific phospholipase C was studied in cells permeabilized with streptolysin O and in membrane preparations. Phospholipase C activity was stimulated either via the guanine nucleotide regulatory protein (G-protein) or directly by Ca2+. Retinoic acid treatment, in a time- and concentration-dependent manner, led to a decrease in phospholipase C activity when stimulated with either GTP gamma S or NaF, both of which activate the enzyme via the G-protein. By contrast, it had no effect on the enzyme activity when stimulated with Ca2+ alone. This indicates that retinoic acid interferes with the coupling of the G-protein and phospholipase C. A relationship between the inhibition of phospholipase C activity and the induction of differentiation by retinoic acid was investigated. Only a small inhibition of GTP gamma S-stimulated phospholipase C activity was observed when an analogue of retinoic acid, etretine or Ro10-1670, with low differentiating activity, was used. Moreover, no inhibition of the GTP gamma S-stimulated phospholipase C activity was observed in an HL-60 sub-line resistant to retinoic acid. These results suggest that phospholipase C inhibition is an important step in the induction of differentiation.  相似文献   

10.
A method of membrane permeabilization of T lymphocytes with the bacterial cytotoxin streptolysin O has allowed the effect of guanine nucleotide analogues on phosphatidylinositol metabolism and protein kinase C (PKC) activation to be investigated. The data demonstrate that, in permeabilized cells, phosphorylation of the gamma subunit of the CD3 antigen can be induced in response to the PKC activator phorbol 12,13-dibutyrate, the polyclonal mitogen phytohaemagglutinin (PHA) and the stimulatory guanine nucleotide analogue guanosine 5'-[gamma-thio]triphosphate (GTP[S]). Application of a pseudo-substrate inhibitor of PKC indicated that CD3gamma-chain phosphorylation induced in response to all three agonists was mediated by PKC. PHA and GTP[S] also stimulated inositol phospholipid turnover and inositol phosphate accumulation. The kinetics and concentration-dependence of PHA-induced inositol phospholipid hydrolysis correlated with PHA-induced CD3gamma phosphorylation, suggesting that PHA may regulate CD3gamma phosphorylation via diacylglycerol produced as a consequence of inositol phospholipid hydrolysis. However, there was an inconsistency in that PHA induced greater (greater than 200%) levels of inositol phospholipid turnover than did GTP[S], but much weaker (less than 50%) levels of CD3-antigen phosphorylation. There was also a discrepancy between GTP[S] effects on phosphatidylinositol turnover and PKC activation, in that the half-maximal GTP[S] concentration for inositol phosphate production and CD3gamma-chain phosphorylation was 0.75 microM and 75 microM respectively. Moreover, 10 microM-GTP[S] induced maximal inositol phosphate production, but only 10% of maximal CD3gamma-chain phosphorylation. The data are consistent with the idea that other signal-transduction pathways, in addition to those involving inositol phosphate production, exist for the regulation of PKC in T lymphocytes.  相似文献   

11.
Electropermeabilized human platelets containing 5-hydroxy[14C]tryptamine ([14C]5-HT) were suspended in a glutamate medium containing ATP and incubated for 10 min with (in various combinations) Ca2+ buffers, phorbol 12-myristate 13-acetate (PMA), guanine nucleotides, and thrombin. Release of [14C]5-HT and beta-thromboglobulin (beta TG) were used to measure secretion from dense and alpha-granules, respectively. Ca2+ alone induced secretion from both granule types; half-maximal effects were seen at a -log [Ca2+ free] (pCa) of 5.5 and maximal secretion at a pCa of 4.5, when approximately 80% of 5-HT and approximately 50% of beta TG were released. Addition of PMA, guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S), GTP, or thrombin shifted the Ca2+ dose-response curves for secretion of both 5-HT and beta TG to the left and caused small increases in the maximum secretion observed. These results suggested that secretion from alpha-granules, like that from dense granules, is a Ca(2+)-dependent process stimulated by the sequential activation of a G-protein, phospholipase C, and protein kinase C (PKC). However, high concentrations of PMA and GTP gamma S had distinct effects in the absence of Ca2+ (pCa greater than 9); 100 nM PMA released approximately 20% of platelet 5-HT but little beta TG, whereas 100 microM GTP gamma S stimulated secretion of approximately 25% of each. Simultaneous addition of PMA greatly enhanced these effects of GTP gamma S. Phosphorylation of pleckstrin in permeabilized platelets incubated with [gamma-32P]ATP was used as an index of the activation of PKC during secretion. In the absence of Ca2+, 100 nM PMA caused maximal phosphorylation of pleckstrin and 100 microM GTP gamma S was approximately 50% as effective as PMA; neither GTP gamma S nor Ca2+ enhanced the phosphorylation of pleckstrin caused by 100 nM PMA. These results indicate that, although activation of PKC promoted secretion, GTP gamma S exerted additional stimulatory effects on secretion from both dense and alpha-granules that were not mediated by PKC. Measurement of [3H]inositol phosphate formation in permeabilized platelets containing [3H]phosphoinositides showed that GTP gamma S did not stimulate phosphoinositide-specific phospholipase C in the absence of Ca2+. It follows that in permeabilized platelets, GTP gamma S can both stimulate PKC and enhance secretion via G-protein-linked effectors other than this phospholipase.  相似文献   

12.
The mode of phospholipase C activation initiated with platelet-derived growth factor (PDGF) has been studied in comparison with that initiated with vasopressin and bombesin in a rat fibroblast line, WFB. Stimulation of WFB cells by PDGF, vasopressin, and bombesin elicites rapid hydrolysis of polyphosphoinositides and an increase in cytoplasmic free Ca2+ concentration ([Ca2+]i). On stimulation by PDGF, there was a lag period of about 10 s before an increase in [Ca2+]i. No measurable lag period was observed in the [Ca2+]i response induced by vasopressin or bombesin. Pretreatment of WFB cells with phorbol 12-myristate 13-acetate profoundly inhibited inositol phosphate formation evoked by vasopressin and bombesin, but enhanced to some extent inositol phosphate formation stimulated by PDGF. In membranes prepared from WFB cells, GTP markedly augmented inositol polyphosphate formation induced by vasopressin and bombesin. It was not successful in showing the PDGF-stimulated formation of inositol phosphates in the membrane preparation. The effects of GTP, guanosine 5'-O-(2-thiodiphosphate) (GDP beta S), and guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S) on polyphosphoinositide hydrolysis stimulated by growth factors were studied in WFB cells made permeable to nucleotides by treatment with either saponin or Pseudomonas aeruginosa cytotoxin. PDGF, vasopressin, and bombesin elicited inositol phosphate production in the permeabilized WFB cells in the absence of added GTP. GDP beta S, a competitive inhibitor of GTP-binding proteins (G-proteins), markedly reduced the bombesin- and vasopressin-stimulated production of inositol phosphates. However, the PDGF-stimulated production of inositol phosphates was not affected by the addition of GDP beta S. GTP gamma S, an agonist of G-proteins, largely enhanced the vasopressin- and bombesin-stimulated hydrolysis of inositol lipids when added at 10-100 microM. In the presence of GTP gamma S, the PDGF-stimulated hydrolysis of inositol lipids was not enhanced, but was reduced: 100 microM GTP gamma S reduced the stimulated hydrolysis to about a half of the control level. Only GTP gamma S, and no other nucleoside triphosphates, was found to have these effects. Activation of G-proteins in WFB cells by fluoroaluminate resulted in the inhibition of inositol phosphate production elicited with not only PDGF, but also with vasopressin and bombesin. These results indicate that a G-protein couples vasopressin and bombesin receptors to the activation of phospholipase C. Moreover, these results suggest that coupling of the PDGF receptor to phospholipase C is not mediated through a G-protein.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
The possible involvement of a stimulatory guanosine triphosphate (GTP)-binding (G) protein in epidermal growth factor (EGF)-induced phosphoinositide hydrolysis has been investigated in permeabilized NIH-3T3 cells expressing the human EGF receptor. The mitogenic phospholipid lysophosphatidate (LPA), a potent inducer of phosphoinositide hydrolysis, was used as a control stimulus. In intact cells, pertussis toxin partially inhibits the LPA-induced formation of inositol phosphates, but has no effect on the response to EGF. In cells permeabilized with streptolysin-O, guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S) dramatically increases the initial rate of inositol phosphate formation induced by LPA. In contrast, activation of phospholipase C (PLC) by EGF occurs in a GTP-independent manner. Guanine 5'-O-(2-thiodiphosphate) (GDP beta S) which keeps G proteins in their inactive state, blocks the stimulation by LPA and GTP gamma S, but fails to affect the EGF-induced response. Tyrosine-containing substrate peptides, when added to permeabilized cells, inhibit EGF-induced phosphoinositide hydrolysis without interfering with the response to LPA and GTP gamma S. These data suggest that the EGF receptor does not utilize an intermediary G protein to activate PLC and that receptor-mediated activation of effector systems can be inhibited by exogenous substrate peptides.  相似文献   

14.
1. Because cellular pools of phosphatidylinositol phosphate and phosphatidylinositol bisphosphate turn over rapidly during phospholipase C stimulation, the continuing production of inositol phosphates requires continuing synthesis from phosphatidylinositol of the polyphosphoinositides. In the present study in adrenal chromaffin cells, we examined the effects of nicotinic stimulation and depolarization in intact cells and micromolar Ca2+ in permeabilized cells on the levels of labeled polyphosphoinositides. We compared the effects to muscarinic stimulation in intact cells and GTP gamma S in permeabilized cells. 2. Nicotinic stimulation, elevated K+, and muscarinic stimulation cause similar production of inositol phosphates (D. A. Eberhard and R. W. Holz, J. Neurochem. 49:1634-1643, 1987). Nicotinic stimulation and elevated K+ but not muscarinic stimulation increased the levels of [3H]inositol-labeled phosphatidylinositol phosphate by 30-60% and [3H]phosphatidylinositol bisphosphate by 25-30%. The increase required Ca2+ in the medium, was maximal by 1-2 min, and was not preceded by an initial decrease in phosphatidylinositol phosphate and phosphatidylinositol bisphosphate. 3. In digitonin-permeabilized cells, Ca2+ caused as much as a twofold increase in [3H]phosphatidylinositol phosphate and [3H]phosphatidylinositol bisphosphate. Similarly, Ca2+ enhanced the production of [32P]phosphatidylinositol phosphate and [32P]phosphatidylinositol bisphosphate in the presence of [gamma-32P]ATP. In contrast, GTP gamma S in permeabilized cells decreased polyphosphoinositides in the presence or absence of Ca2+. 4. The ability of Ca2+ to increase the levels of the polyphosphoinositides decayed with time after permeabilization. The effect of Ca2+ was increased when phosphoesterase and phospholipase C activities were inhibited by neomycin. 5. These observations suggest that Ca2+ specifically enhances polyphosphoinositide synthesis at the same time that it activates phospholipase C.  相似文献   

15.
Electrically permeabilized cells of rat parotid gland, prelabelled with [3H]-inositol, synthesized [3H]-inositol phosphates (IP3 and IP2) when stimulated with alpha 1-adrenergic, muscarinic-cholinergic, and substance P receptor-agonists. Non-hydrolyzable analogues of GTP (GTP gamma S and GppNHp) also stimulated [3H]-IP3 formation by permeabilized cells and they potentiated the stimulation by receptor-agonists. These effects of guanine nucleotides occurred only with GTP analogues and only in permeabilized cells indicating an intracellular site of action. NaF stimulated [3H]-IP3 accumulation, an effect that was not entirely attributable to the ability of F- to inhibit (1,4,5)IP3 degradation. These results suggest that a guanine nucleotide-dependent regulatory protein couples Ca2+-mobilizing receptors to phospholipase C in parotid gland.  相似文献   

16.
Regulation of phosphoinositide-specific phospholipase C   总被引:7,自引:0,他引:7  
The receptors involved in the regulation of phospholipase C by hormones, neurotransmitters and other ligands have seven transmembrane-spanning hydrophobic regions (seven-helix motif) and no known enzymatic activity. Furthermore these receptors can be isolated as complexes with guanine nucleotide binding (G) proteins. Guanine nucleotides affect the binding of hormones that stimulate phospholipase C and it has been possible to see activation of GTPase activity in membranes upon addition of these ligands. Further indirect evidence for a Gp (p stands for phospholipase C activation) protein is the finding that in membranes agonist activation of phospholipase C requires the presence of GTP gamma S a non-hydrolyzable analog of GTP. Furthermore, fluoride is able to activate phospholipase C but its inhibition of phosphatidylinositol-4' kinase (PI-4' kinase) can interfere with efforts to demonstrate this in intact cells. There are four major isozymes of phospholipase C that have been cloned and sequenced. Recently it was found that phospholipase C-gamma as well as PI-3'-kinase are substrates for phosphorylation on tyrosine residues by the EGF and PDGF receptors. The PI-3' kinase is able to convert phosphatidylinositol 4,5-bisphosphate (PIP2) to phosphatidylinositol 3,4,5-trisphosphate (PIP3) but the function of this lipid is unknown since it is not a substrate for any known phospholipase C. While much has been learned about the structure and regulation of the phosphoinositide specific kinases and phosphodiesterase enzymes this is a relatively new field in which we can expect many advances during the next few years.  相似文献   

17.
The role of guanine nucleotides in insulin secretion was investigated in electrically permeabilized RINm5F cells. Ca2+ stimulated insulin release (EC50 approximately 2 microM Ca2+). The GTP stable analog, GTP gamma S, elicited insulin secretion at vanishingly low Ca2+ concentrations (less than 10(-11) M), slightly potentiated the response to intermediate Ca2+ levels, but exerted less than additive effects at maximal Ca2+ concentrations. The GDP analog, GDP beta S, inhibited both GTP gamma S- and Ca2+-stimulated secretion. The action of GTP gamma S was not mediated by cAMP, as the latter only enhanced Ca2+-induced secretion. In contrast, 12-O-tetradecanoylphorbol-13-acetate, an activator of protein kinase C, promoted insulin release at nonstimulatory Ca2+ levels as well as potentiating the Ca2+ response. GTP analogs stimulated hydrolysis of phosphatidylinositol 4,5-bisphosphate (PtdInsP2), as assessed by inositol phosphate generation. However, this could not fully explain guanine nucleotide-induced secretion because: GTP gamma S-stimulated PtdInsP2 breakdown was totally dependent on Ca2+ and abolished at Ca2+ below 10(-11) M; at these Ca2+ levels, activators of protein kinase C were weak or ineffective secretagogues; the GTP analog Gpp(NH)p was much less effective than GTP gamma S in activating PtdInsP2 hydrolysis, while fully mimicking the effect on Ca2+-independent secretion. Both GTP gamma S-induced PtdInsP2 hydrolysis and insulin release were insensitive to pertussis toxin and cholera toxin. The findings point to a guanine nucleotide-regulated site in the activation of insulin secretion different from the known transmembrane signalling systems.  相似文献   

18.
The effect of guanine nucleotides on platelet and calf brain cytosolic phospholipase C was examined in the absence of membranes or detergents in an assay using labeled lipid vesicles. Guanine nucleotides stimulate hydrolysis of [3H]phosphatidylinositol 4,5-bisphosphate [( 3H]PtdIns-4,5-P2) catalyzed both by enzyme from human platelets and by partially purified enzyme from calf brain. Guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S) was the most potent guanine nucleotide with a half-maximal stimulation at 1-10 microM, followed by guanosine 5'-(beta, gamma-imido)triphosphate greater than GTP greater than GDP = guanosine 5'-O-(2-thiodiphosphate). Guanosine 5'-O-(2-thiodiphosphate) was able to reverse the GTP gamma S-mediated stimulation. NaF also stimulated phospholipase C activity, further implying a role for a guanine nucleotide-binding protein. In the presence of GTP gamma S, the enzyme cleaved PtdIns-4,5-P2 at higher pH values, and the need for calcium ions was reduced 100-fold. The stimulation of PtdIns-4,5-P2 hydrolysis by GTP gamma S ranged from 2 to 25-fold under various conditions, whereas hydrolysis of [3H]phosphatidylinositol was only slightly affected by guanine nucleotides. We propose that a soluble guanine nucleotide-dependent protein activates phospholipase C to hydrolyze its initial substrate in the sequence of phosphoinositide-derived messenger generation.  相似文献   

19.
The effect of quisqualate, an excitatory amino acid agonist, on the breakdown of exogenously added phosphatidylinositol was investigated in a membrane preparation from the cerebellum of young rats. Quisqualate stimulated phospholipase C activity in a dose-dependent manner in the presence of guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S). Half-maximal activation of the quisqualate response required 0.15 microM GTP gamma S and was optimal at a free Ca2+ concentration of 300 nM. Phosphoinositide breakdown was also stimulated by quisqualate using either exogenous phosphatidylinositides 4,5-bisphosphate or endogenous labeled phosphoinositides as the substrate for phospholipase C in cerebellar membranes. In the presence of guanine nucleotides, other excitatory amino acid agonists, such as L-glutamate, trans-D,L-1-aminocyclopentyl-1,3-dicarboxylic acid, and ibotenate, but not N-methyl-D-aspartate, stimulated phosphatidylinositol breakdown. However, quisqualate displayed the highest response among these excitatory amino acid agonists. These data indicate that there is a direct activation of phosphoinositide-specific phospholipase C by excitatory amino acids through a process dependent on the presence of guanine nucleotides.  相似文献   

20.
Phosphoinositide hydrolysis was studied in a washed membrane preparation of 1321N1 astrocytoma cells prelabeled with [3H]inositol. GTP gamma S stimulated the formation of [3H]inositol mono-, bis-, and trisphosphate ([3H]InsP, [3H]InsP2, and [3H]InsP3) with a half-maximal effect on [3H]InsP formation at 5 microM. Carbachol increased the accumulation of [3H]inositol phosphates only in the presence of added guanine nucleotide. Calcium increased [3H]InsP3 accumulation over a range of concentrations (10 nM-3 mM free calcium). When 1321N1 cells were treated with phorbol ester (100 nM 4 beta-phorbol 12 beta-myristate 13 alpha-acetate (PMA)) prior to preparation of the membranes, the maximal [3H]InsP formation induced by GTP gamma S or GTP gamma S plus carbachol was decreased by 50-75%. In contrast, the response to a maximal calcium concentration presumed to activate phospholipase C directly was minimally inhibited (approximately 15%). PMA treatment did not affect muscarinic receptor affinity for carbachol or the effect of GTP on agonist binding. PMA treatment was also without effect on the breakdown of exogenous [3H]InsP3 in homogenates, permeabilized cells, and membranes, indicating that the InsP3-phosphatase was not the site of phorbol ester action. PMA treatment inhibited [3H] InsP3 formation only in membranes and not in cytosol prepared from the same cells, suggesting a membrane site of PMA action. Membranes were also required to demonstrate GTP gamma S-stimulated [3H]InsP3 formation although calcium-stimulated [3H]InsP3 formation was demonstrable in both membranes and cytosol. The addition of purified protein kinase C to the membranes mimicked the effect of PMA treatment to decrease GTP gamma S-stimulated [3H]InsP3 production. These data indicate that the effect of PMA on phosphoinositide metabolism is demonstrable in a cell-free system and that it can be mimicked by protein kinase C. We suggest that the ability of PMA to block GTP gamma S-stimulated formation of [3H]InsP3 results from inhibition of the G protein interaction with phospholipase C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号