首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Payseur BA  Nachman MW 《Gene》2002,300(1-2):31-42
Theoretical and empirical work indicates that patterns of neutral polymorphism can be affected by linked, selected mutations. Under background selection, deleterious mutations removed from a population by purifying selection cause a reduction in linked neutral diversity. Under genetic hitchhiking, the rise in frequency and fixation of beneficial mutations also reduces the level of linked neutral polymorphism. Here we review the evidence that levels of neutral polymorphism in humans are affected by selection at linked sites. We then discuss four approaches for distinguishing between background selection and genetic hitchhiking based on (i) the relationship between polymorphism level and recombination rate for neutral loci with high mutation rates, (ii) relative levels of variation on the X chromosome and the autosomes, (iii) the frequency distribution of neutral polymorphisms, and (iv) population-specific patterns of genetic variation. Although the evidence for selection at linked sites in humans is clear, current methods and data do not allow us to clearly assess the relative importance of background selection and genetic hitchhiking in humans. These results contrast with those obtained for Drosophila, where the signals of positive selection are stronger.  相似文献   

2.
Postcopulatory sexual selection affects the evolution of numerous features ranging from mating behavior to seminal fluid toxicity to the size of gametes. In an earlier study of the effect of sperm competition risk on sperm size evolution, experimental populations of the nematode Caenorhabditis elegans were maintained either by outcrossing (sperm competition present) or by selfing (no sperm competition), and after 60 generations, significantly larger sperm had evolved in the outcrossing populations. To determine the effects of this selection on population genetic variation, we assessed genetic diversity in a large number of loci using random amplification of polymorphic DNA-PCR. Nearly 80% of the alleles present in parental strain populations persisted in the 6 experimental populations after the 60 generations and, despite a 2.2-fold difference in expected heterozygosity, the resulting levels of genetic variation were equivalent between the outcrossing and selfing experimental populations. By inference, we conclude that genetic hitchhiking due to sexual selection in the experimental populations dramatically reduced genetic diversity. We use the levels of variation in the selfing populations as a control for the effects of drift, and estimate the strength of sexual selection to be strong in obligatorily outcrossing populations. Although sequential hermaphrodites like C. elegans probably experience little sexual selection in nature, these data suggest that sexual selection can profoundly affect diversity in outcrossing taxa.  相似文献   

3.
Cutter AD 《Genetics》2008,178(3):1661-1672
Natural selection and neutral processes such as demography, mutation, and gene conversion all contribute to patterns of polymorphism within genomes. Identifying the relative importance of these varied components in evolution provides the principal challenge for population genetics. To address this issue in the nematode Caenorhabditis remanei, I sampled nucleotide polymorphism at 40 loci across the X chromosome. The site-frequency spectrum for these loci provides no evidence for population size change, and one locus presents a candidate for linkage to a target of balancing selection. Selection for codon usage bias leads to the non-neutrality of synonymous sites, and despite its weak magnitude of effect (N(e)s approximately 0.1), is responsible for profound patterns of diversity and divergence in the C. remanei genome. Although gene conversion is evident for many loci, biased gene conversion is not identified as a significant evolutionary process in this sample. No consistent association is observed between synonymous-site diversity and linkage-disequilibrium-based estimators of the population recombination parameter, despite theoretical predictions about background selection or widespread genetic hitchhiking, but genetic map-based estimates of recombination are needed to rigorously test for a diversity-recombination relationship. Coalescent simulations also illustrate how a spurious correlation between diversity and linkage-disequilibrium-based estimators of recombination can occur, due in part to the presence of unbiased gene conversion. These results illustrate the influence that subtle natural selection can exert on polymorphism and divergence, in the form of codon usage bias, and demonstrate the potential of C. remanei for detecting natural selection from genomic scans of polymorphism.  相似文献   

4.
Differences in neutral diversity at different loci are predicted to arise due to differences in mutation rates and from the "hitchhiking" effects of natural selection. Consistent with hitchhiking models, Drosophila melanogaster chromosome regions with very low recombination have unusually low nucleotide diversity. We compared levels of diversity from five pericentromeric regions with regions of normal recombination in Arabidopsis lyrata, an outcrossing close relative of the highly selfing A. thaliana. In contrast with the accepted theoretical prediction, and the pattern in Drosophila, we found generally high diversity in pericentromeric genes, which is consistent with the observation in A. thaliana. Our data rule out balancing selection in the pericentromeric regions, suggesting that hitchhiking is more strongly reducing diversity in the chromosome arms than the pericentromere regions.  相似文献   

5.
Abstract.— Partial self-fertilization is common in higher plants. Mating system variation is known to have important consequences for how genetic variation is distributed within and among populations. Selfing is known to reduce effective population size, and inbreeding species are therefore expected to have lower levels of genetic variation than comparable out crossing taxa. However, several recent empirical studies have shown that reductions in genetic diversity within populations of inbreeding species are far greater than the expected reductions based on the reduced effective population size. Two different processes have been argued to cause these patterns, selective sweeps (or hitchhiking) and background selection. Both are expected to be most effective in reducing genetic variation in regions of low recombination rates. Selfing is known to reduce the effective recombination rate, and inbreeding taxa are thus thought to be particularly vulnerable to the effects of hitchhiking or background selection. Here I propose a third explanation for the lower-than-expected levels of genetic diversity within populations of selfing species; recurrent extinctions and recolonizations of local populations, also known as metapopulation dynamics. I show that selfing in a metapopulation setting can result in large reductions in genetic diversity within populations, far greater than expected based the lower effective population size inbreeding species is expected to have. The reason for this depends on an interaction between selfing and pollen migration.  相似文献   

6.
A fundamental challenge in population genetics and molecular evolution is to understand the forces shaping the patterns of genetic diversity within and among species. Among them, mating systems are thought to have important influences on molecular diversity and genome evolution. Selfing is expected to reduce effective population size, Ne, and effective recombination rates, directly leading to reduced polymorphism and increased linkage disequilibrium compared with outcrossing. Increased isolation between populations also results directly from selfing or indirectly from evolutionary changes, such as small flowers and low pollen output, leading to greater differentiation of molecular markers than under outcrossing. The lower effective recombination rate increases the likelihood of hitch-hiking, further reducing within-deme diversity of selfers and thus increasing their genetic differentiation. There are also indirect effects on molecular evolutionary processes. Low Ne reduces the efficacy of selection; in selfers, selection should thus be less efficient in removing deleterious mutations. The rarity of heterozygous sites in selfers leads to infrequent action of biased conversion towards GC, which tends to increase sequences' GC content in the most highly recombining genome regions of outcrossers. To test these predictions in plants, we used a newly developed sequence polymorphism database to investigate the effects of mating system differences on sequence polymorphism and genome evolution in a wide set of plant species. We also took into account other life-history traits, including life form (whether annual or perennial herbs, and woody perennial) and the modes of pollination and seed dispersal, which are known to affect enzyme and DNA marker polymorphism. We show that among various life-history traits, mating systems have the greatest influence on patterns of polymorphism.  相似文献   

7.
Rao Y  Sun L  Nie Q  Zhang X 《Hereditas》2011,148(2):63-69
The association between recombination rate and diversity, but not divergence is considered to be driven mainly by natural selection: fixation of positively selected variants and associated hitchhiking effects and/or background selection eliminating deleterious alleles. In the present study, we investigated the relationship between recombination rate, SNP diversity and interspecies divergence for 29 loci in chickens. We found that recombination rate is positively correlated with nucleotide diversity but is not correlated with interspecies divergence. It appears that variation in recombination rate explains over 30% of the variation in levels of diversity among 29 loci. Our data suggested that natural selection is a main factor in shaping SNP diversity in chickens. Since SNP diversity is significantly lower at Z-linked than at autosomal loci, we argued that genetic hitchhiking might be more important than background selection in producing the observed correlation.  相似文献   

8.
W Stephan  C H Langley 《Genetics》1998,150(4):1585-1593
Surveys in Drosophila have consistently found reduced levels of DNA sequence polymorphism in genomic regions experiencing low crossing-over per physical length, while these same regions exhibit normal amounts of interspecific divergence. Here we show that for 36 loci across the genomes of eight Lycopersicon species, naturally occurring DNA polymorphism (scaled by locus-specific divergence between species) is positively correlated with the density of crossing-over per physical length. Large between-species differences in the amount of DNA sequence polymorphism reflect breeding systems: selfing species show much less within-species polymorphism than outcrossing species. The strongest association of expected heterozygosity with crossing-over is found in species with intermediate levels of average nucleotide diversity. All of these observations appear to be in qualitative agreement with the hitchhiking effects caused by the fixation of advantageous mutations and/or "background selection" against deleterious mutations.  相似文献   

9.
The Effect of Deleterious Mutations on Neutral Molecular Variation   总被引:12,自引:12,他引:0  
Selection against deleterious alleles maintained by mutation may cause a reduction in the amount of genetic variability at linked neutral sites. This is because a new neutral variant can only remain in a large population for a long period of time if it is maintained in gametes that are free of deleterious alleles, and hence are not destined for rapid elimination from the population by selection. Approximate formulas are derived for the reduction below classical neutral values resulting from such background selection against deleterious mutations, for the mean times to fixation and loss of new mutations, nucleotide site diversity, and number of segregating sites. These formulas apply to random-mating populations with no genetic recombination, and to populations reproducing exclusively asexually or by self-fertilization. For a given selection regime and mating system, the reduction is an exponential function of the total mutation rate to deleterious mutations for the section of the genome involved. Simulations show that the effect decreases rapidly with increasing recombination frequency or rate of outcrossing. The mean time to loss of new neutral mutations and the total number of segregating neutral sites are less sensitive to background selection than the other statistics, unless the population size is of the order of a hundred thousand or more. The stationary distribution of allele frequencies at the neutral sites is correspondingly skewed in favor of rare alleles, compared with the classical neutral result. Observed reductions in molecular variation in low recombination genomic regions of sufficiently large size, for instance in the centromere-proximal regions of Drosophila autosomes or in highly selfing plant populations, may be partly due to background selection against deleterious mutations.  相似文献   

10.
Self-fertilization is generally seen to be disadvantageous in the long term. It increases genetic drift, which subsequently reduces polymorphism and the efficiency of selection, which also challenges adaptation. However, high selfing rates can increase the fixation probability of recessive beneficial mutations, but existing theory has generally not accounted for the effect of linked sites. Here, we analyze a model for the fixation probability of deleterious mutants that hitchhike with selective sweeps in diploid, partially selfing populations. Approximate analytical solutions show that, conditional on the sweep not being lost by drift, higher inbreeding rates increase the fixation probability of the deleterious allele, due to the resulting reduction in polymorphism and effective recombination. When extending the analysis to consider a distribution of deleterious alleles, as well as the average fitness increase after a sweep, we find that beneficial alleles generally need to be more recessive than the previously assumed dominance threshold (h < 1/2) for selfing to be beneficial from one-locus theory. Our results highlight that recombination aiding the efficiency of selection on multiple loci amplifies the fitness benefits of outcrossing over selfing, compared to results obtained from one-locus theory. This effect additionally increases the parameter range under which obligate outcrossing is beneficial over partial selfing.  相似文献   

11.
Nucleotide variation at the alcohol dehydrogenase locus (Adh) was studied in the outcrossing Arabidopsis lyrata, a close relative of the selfing Arabidopsis thaliana. Overall, estimated nucleotide diversity in the North American ssp. lyrata and two European ssp. petraea populations was 0.0038, lower than the corresponding specieswide estimate for A. thaliana at the same set of nucleotide sites. The distribution of segregating sites across the gene differed between the two species. Estimated sequence diversity within an A. lyrata population with a large sample size (0.0023) was much higher than has previously been observed for A. thaliana. This North American population has an excess of sites at intermediate frequencies compared with neutral expectation (Tajima's D = 2.3, P < 0.005), suggestive of linked balancing selection or a recent population bottleneck. In contrast, an excess of rare polymorphisms has been found in A. thaliana. Polymorphism within A. lyrata and divergence from A. thaliana appear to be correlated across the Adh gene sequence. The geographic distribution of polymorphism was quite different from that of A. thaliana, for which earlier studies of several genes found low within-population nucleotide site polymorphism and no overall continental differentiation of variation despite large differences in site frequencies between local populations. Differences between the outcrossing A. lyrata and the selfing A. thaliana reflect the impact of differences in mating system and the influence of bottlenecks in A. thaliana during rapid colonization on DNA sequence polymorphism. The influence of additional variability-reducing mechanisms, such as background selection or hitchhiking, may not be discernible.  相似文献   

12.
In hermaphrodites, pleiotropic genetic trade‐offs between female and male reproductive functions can lead to sexually antagonistic (SA) selection, where individual alleles have conflicting fitness effects on each sex function. Although an extensive theory of SA selection exists for dioecious species, these results have not been generalized to hermaphrodites. We develop population genetic models of SA selection in simultaneous hermaphrodites, and evaluate effects of dominance, selection on each sex function, self‐fertilization, and population size on the maintenance of polymorphism. Under obligate outcrossing, hermaphrodite model predictions converge exactly with those of dioecious populations. Self‐fertilization in hermaphrodites generates three points of divergence with dioecious theory. First, opportunities for stable polymorphism decline sharply and become less sensitive to dominance with increased selfing. Second, selfing introduces an asymmetry in the relative importance of selection through male versus female reproductive functions, expands the parameter space favorable for the evolutionary invasion of female‐beneficial alleles, and restricts invasion criteria for male‐beneficial alleles. Finally, contrary to models of unconditionally beneficial alleles, selfing decreases genetic hitchhiking effects of invading SA alleles, and should therefore decrease these population genetic signals of SA polymorphisms. We discuss implications of SA selection in hermaphrodites, including its potential role in the evolution of “selfing syndromes.”  相似文献   

13.
Cutter AD  Baird SE  Charlesworth D 《Genetics》2006,174(2):901-913
The common ancestor of the self-fertilizing nematodes Caenorhabditis elegans and C. briggsae must have reproduced by obligate outcrossing, like most species in this genus. However, we have only a limited understanding about how genetic variation is patterned in such male-female (gonochoristic) Caenorhabditis species. Here, we report results from surveying nucleotide variation of six nuclear loci in a broad geographic sample of wild isolates of the gonochoristic C. remanei. We find high levels of diversity in this species, with silent-site diversity averaging 4.7%, implying an effective population size close to 1 million. Additionally, the pattern of polymorphisms reveals little evidence for population structure or deviation from neutral expectations, suggesting that the sampled C. remanei populations approximate panmixis and demographic equilibrium. Combined with the observation that linkage disequilibrium between pairs of polymorphic sites decays rapidly with distance, this suggests that C. remanei will provide an excellent system for identifying the genetic targets of natural selection from deviant patterns of polymorphism and linkage disequilibrium. The patterns revealed in this obligately outcrossing species may provide a useful model of the evolutionary circumstances in C. elegans' gonochoristic progenitor. This will be especially important if self-fertilization evolved recently in C. elegans history, because most of the evolutionary time separating C. elegans from its known relatives would have occurred in a state of obligate outcrossing.  相似文献   

14.
BACKGROUND: Caenorhabditis elegans is a major model system in biology, yet very little is known about its biology outside the laboratory. In particular, its unusual mode of reproduction with self-fertile hermaphrodites and facultative males raises the question of its frequency of outcrossing in natural populations. RESULTS: We describe the first analysis of C. elegans individuals sampled directly from natural populations. C. elegans is found predominantly in the dauer stage and with a very low frequency of males versus hermaphrodites. Whereas C. elegans was previously shown to display a low worldwide genetic diversity, we find by comparison a surprisingly high local genetic diversity of C. elegans populations; this local diversity is contributed in great part by immigration of new alleles rather than by mutation. Our results on heterozygote frequency, male frequency, and linkage disequilibrium furthermore show that selfing is the predominant mode of reproduction in C. elegans natural populations but that infrequent outcrossing events occur, at a rate of approximately 1%. CONCLUSIONS: Our results give a first insight in the biology of C. elegans in the natural populations. They demonstrate that local populations of C. elegans are genetically diverse and that a low frequency of outcrossing allows for the recombination of these locally diverse genotypes.  相似文献   

15.
Sexual reproduction shuffles genetic variation, potentially enhancing the evolutionary response to environmental change. Many asexual organisms respond to stress by generating facultative sexual reproduction, presumably as a means of escaping the trap of low genetic diversity. Self-fertilizing organisms are subject to similar genetic limitations: the consistent loss of genetic diversity within lineages restricts the production of variation through recombination. Selfing organisms may therefore benefit from a similar shift in mating strategy during periods of stress. We determined the effects of environmental stress via starvation and passage through the stress-resistant dauer stage on mating system dynamics of Caenorhabditis elegans , which reproduces predominantly through self-fertilization but is capable of outcrossing in the presence of males. Starvation elevated male frequencies in a strain-specific manner through differential male survival during dauer exposure and increased outcrossing rates after dauer exposure. In the most responsive strain, the mating system changed from predominantly selfing to almost exclusively outcrossing. Like facultative sex in asexual organisms, facultative outcrossing in C. elegans may periodically facilitate adaptation under stress. Such a shift in reproductive strategy should have a major impact on evolutionary change within these populations and may be a previously unrecognized feature of other highly selfing organisms.  相似文献   

16.
17.
Determining the genetic basis of inbreeding depression is important for understanding the role of selection in the evolution of mixed breeding systems. Here, we investigate how androdioecy (a breeding system characterized by partial selfing and outcrossing) and dioecy (characterized by obligatory outcrossing) influence the experimental evolution of inbreeding depression in Caenorhabditis elegans. We derived inbred lines from ancestral and evolved populations and found that the dioecious lineages underwent more extinction than androdioecious lineages. For both breeding systems, however, there was selection during inbreeding because the diversity patterns of 337 single-nucleotide polymorphisms (SNPs) among surviving inbred lines deviated from neutral expectations. In parallel, we also followed the evolution of embryo to adult viability, which revealed similar starting levels of inbreeding depression in both breeding systems, but also outbreeding depression. Under androdioecy, diversity at a neutral subset of 134 SNPs correlated well with the viability trajectories, showing that the population genetic structure imposed by partial selfing affected the opportunity for different forms of selection. Our findings suggest that the interplay between the disruptions of coevolved sets of loci by outcrossing, the efficient purging of deleterious recessive alleles with selfing and overdominant selection with outcrossing can help explain mixed breeding systems.  相似文献   

18.
Much effort and interest have focused on assessing the importance of natural selection, particularly positive natural selection, in shaping the human genome. Although scans for positive selection have identified candidate loci that may be associated with positive selection in humans, such scans do not indicate whether adaptation is frequent in general in humans. Studies based on the reasoning of the MacDonald–Kreitman test, which, in principle, can be used to evaluate the extent of positive selection, suggested that adaptation is detectable in the human genome but that it is less common than in Drosophila or Escherichia coli. Both positive and purifying natural selection at functional sites should affect levels and patterns of polymorphism at linked nonfunctional sites. Here, we search for these effects by analyzing patterns of neutral polymorphism in humans in relation to the rates of recombination, functional density, and functional divergence with chimpanzees. We find that the levels of neutral polymorphism are lower in the regions of lower recombination and in the regions of higher functional density or divergence. These correlations persist after controlling for the variation in GC content, density of simple repeats, selective constraint, mutation rate, and depth of sequencing coverage. We argue that these results are most plausibly explained by the effects of natural selection at functional sites—either recurrent selective sweeps or background selection—on the levels of linked neutral polymorphism. Natural selection at both coding and regulatory sites appears to affect linked neutral polymorphism, reducing neutral polymorphism by 6% genome-wide and by 11% in the gene-rich half of the human genome. These findings suggest that the effects of natural selection at linked sites cannot be ignored in the study of neutral human polymorphism.  相似文献   

19.
Cytoplasmic genomes typically lack recombination, implying that genetic hitch-hiking could be a predominant force structuring nucleotide polymorphism in the chloroplast and mitochondria. We test this hypothesis by analysing nucleotide polymorphism data at 28 loci across the chloroplast and mitochondria of the outcrossing plant Arabidopsis lyrata, and compare patterns with multiple nuclear loci, and the highly selfing Arabidopsis thaliana. The maximum likelihood estimate of the ratio of effective population size at cytoplasmic relative to nuclear genes in A. lyrata does not depart from the neutral expectation of 0.5. Similarly, the ratio of effective size in A. thaliana is close to unity, the neutral expectation for a highly selfing species. The results are thus consistent with neutral organelle polymorphism in these species or with comparable effects of hitch-hiking in both cytoplasmic and nuclear genes, in contrast to the results of recent studies on gynodioecious taxa. The four-gamete test and composite likelihood estimation provide evidence for very low levels of recombination in the organelles of A. lyrata, although permutation tests do not suggest that adjacent polymorphic sites are more closely linked than more distant sites across the two genomes, suggesting that mutation hotspots or very low rates of gene conversion could explain the data.  相似文献   

20.
The transition from outcrossing to predominant self-fertilization is one of the most common evolutionary transitions in flowering plants. This shift is often accompanied by a suite of changes in floral and reproductive characters termed the selfing syndrome. Here, we characterize the genetic architecture and evolutionary forces underlying evolution of the selfing syndrome in Capsella rubella following its recent divergence from the outcrossing ancestor C. grandiflora. We conduct genotyping by multiplexed shotgun sequencing and map floral and reproductive traits in a large (N= 550) F2 population. Our results suggest that in contrast to previous studies of the selfing syndrome, changes at a few loci, some with major effects, have shaped the evolution of the selfing syndrome in Capsella. The directionality of QTL effects, as well as population genetic patterns of polymorphism and divergence at 318 loci, is consistent with a history of directional selection on the selfing syndrome. Our study is an important step toward characterizing the genetic basis and evolutionary forces underlying the evolution of the selfing syndrome in a genetically accessible model system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号