首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Heparanase (HPSE-1) is involved in the degradation of both cell-surface and extracellular matrix (ECM) heparan sulfate (HS) in normal and neoplastic tissues. Degradation of heparan sulfate proteoglycans (HSPG) in mammalian cells is dependent upon the enzymatic activity of HPSE-1, an endo-beta-d-glucuronidase, which cleaves HS using a specific endoglycosidic hydrolysis rather than an eliminase type of action. Elevated HPSE-1 levels are associated with metastatic cancers, directly implicating HPSE-1 in tumor progression. The mechanism of HPSE-1 action to promote tumor progression may involve multiple substrates because HS is present on both cell-surface and ECM proteoglycans. However, the specific targets of HPSE-1 action are not known. Of particular interest is the relationship between HPSE-1 and HSPG, known for their involvement in tumor progression. Syndecan-1, an HSPG, is ubiquitously expressed at the cell surface, and its role in cancer progression may depend upon its degradation. Conversely, another HSPG, perlecan, is an important component of basement membranes and ECM, which can promote invasive behavior. Down-regulation of perlecan expression suppresses the invasive behavior of neoplastic cells in vitro and inhibits tumor growth and angiogenesis in vivo. In this work we demonstrate the following. 1) HPSE-1 cleaves HS present on the cell surface of metastatic melanoma cells. 2) HPSE-1 specifically degrades HS chains of purified syndecan-1 or perlecan HS. 3) Syndecan-1 does not directly inhibit HPSE-1 enzymatic activity. 4) The presence of exogenous syndecan-1 inhibits HPSE-1-mediated invasive behavior of melanoma cells by in vitro chemoinvasion assays. 5) Inhibition of HPSE-1-induced invasion requires syndecan-1 HS chains. These results demonstrate that cell-surface syndecan-1 and ECM perlecan are degradative targets of HPSE-1, and syndecan-1 regulates HPSE-1 biological activity. This suggest that expression of syndecan-1 on the melanoma cell surface and its degradation by HPSE-1 are important determinants in the control of tumor cell invasion and metastasis.  相似文献   

2.
The epithelial-mesenchymal transition (EMT) of proximal tubular epithelial cells (PTECs) into myofibroblasts contributes to the establishment of fibrosis that leads to end stage renal disease. FGF-2 induces EMT in PTECs. Because the interaction between FGF-2 and its receptor is mediated by heparan sulfate (HS) and syndecans, we speculated that a deranged HS/syndecans regulation impairs FGF-2 activity. Heparanase is crucial for the correct turnover of HS/syndecans. The aim of the present study was to assess the role of heparanase on epithelial-mesenchymal transition induced by FGF-2 in renal tubular cells. In human kidney 2 (HK2) PTEC cultures, although FGF-2 induces EMT in the wild-type clone, it is ineffective in heparanase-silenced cells. The FGF-2 induced EMT is through a stable activation of PI3K/AKT which is only transient in heparanase-silenced cells. In PTECs, FGF-2 induces an autocrine loop which sustains its signal through multiple mechanisms (reduction in syndecan-1, increase in heparanase, and matrix metalloproteinase 9). Thus, heparanase is necessary for FGF-2 to produce EMT in PTECs and to sustain FGF-2 intracellular signaling. Heparanase contributes to a synergistic loop for handling syndecan-1, facilitating FGF-2 induced-EMT. In conclusion, heparanase plays a role in the tubular-interstitial compartment favoring the FGF-2-dependent EMT of tubular cells. Hence, heparanase is an interesting pharmacological target for the prevention of renal fibrosis.  相似文献   

3.
Heparan sulfate chains of syndecan-1 regulate ectodomain shedding   总被引:1,自引:0,他引:1  
Matrix metalloproteinases release intact syndecan-1 ectodomains from the cell surface giving rise to a soluble, shed form of the proteoglycan. Although it is known that shed syndecan-1 controls diverse pathophysiological responses in cancer, wound healing, inflammation, infection, and immunity, the mechanisms regulating shedding remain unclear. We have discovered that the heparan sulfate chains present on syndecan core proteins suppress shedding of the proteoglycan. Syndecan shedding is dramatically enhanced when the heparan sulfate chains are enzymatically degraded or absent from the core protein. Exogenous heparan sulfate or heparin does not inhibit shedding, indicating that heparan sulfate must be attached to the core protein to suppress shedding. Regulation of shedding by heparan sulfate occurs in multiple cell types, for both syndecan-1 and syndecan-4 and in murine and human syndecans. Mechanistically, the loss of heparan sulfate enhances the susceptibility of the core protein to proteolytic cleavage by matrix metalloproteinases. Enhanced shedding of syndecan-1 following loss of heparan sulfate is accompanied by a dramatic increase in core protein synthesis. This suggests that in response to an increase in the rate of shedding, cells attempt to maintain a significant level of syndecan-1 on the cell surface. Together these data indicate that the amount of heparan sulfate present on syndecan core proteins regulates both the rate of syndecan shedding and core protein synthesis. These findings assign new functions to heparan sulfate chains, thereby broadening our understanding of their physiological importance and implying that therapeutic inhibition of heparan sulfate degradation could impact the progression of some diseases.  相似文献   

4.
The early use of fresh frozen plasma as a resuscitative agent after hemorrhagic shock has been associated with improved survival, but the mechanism of protection is unknown. Hemorrhagic shock causes endothelial cell dysfunction and we hypothesized that fresh frozen plasma would restore endothelial integrity and reduce syndecan-1 shedding after hemorrhagic shock. A prospective, observational study in severely injured patients in hemorrhagic shock demonstrated significantly elevated levels of syndecan-1 (554±93 ng/ml) after injury, which decreased with resuscitation (187±36 ng/ml) but was elevated compared to normal donors (27±1 ng/ml). Three pro-inflammatory cytokines, interferon-γ, fractalkine, and interleukin-1β, negatively correlated while one anti-inflammatory cytokine, IL-10, positively correlated with shed syndecan-1. These cytokines all play an important role in maintaining endothelial integrity. An in vitro model of endothelial injury then specifically examined endothelial permeability after treatment with fresh frozen plasma orlactated Ringers. Shock or endothelial injury disrupted junctional integrity and increased permeability, which was improved with fresh frozen plasma, but not lactated Ringers. Changes in endothelial cell permeability correlated with syndecan-1 shedding. These data suggest that plasma based resuscitation preserved endothelial syndecan-1 and maintained endothelial integrity, and may help to explain the protective effects of fresh frozen plasma after hemorrhagic shock.  相似文献   

5.
Ginsengs, has long been used as one medicinal herb in China for more than two thousand years. Many studies have shown that ginsengs have preventive and therapeutic roles for cancer, and play a good complementary role in cancer treatment. Ginsenosides, as most important constituents of ginseng, have been extensively investigated and emphasized in cancer chemoprevention and therapeutics. However, the functional mechanism of Ginsenosides on cancer is not well known. This review will focus on introducing the functional mechanisms of ginsenosides and their metabolites, which regulate signaling pathways related with tumor growth and metastasis. Ginsenosides inhibit tumor growth via upregulating tumor apoptosis, inducing tumor cell differentiation and targeting cancer stem cells. In addition, Ginsenosides regulate tumor microenvironment via suppressing tumor angiogenesis-related proteins and pathways. Structural modification of ginsenosides and their administration alone or combinations with other Chinese medicines or chemical medicines have recently been developed to be a new therapeutic strategy for cancer.  相似文献   

6.
Cell surface heparan sulfate (HS) proteoglycans are carbohydrate-rich regulators of cell migratory, mitogenic, secretory, and inflammatory activity that bind and present soluble heparin-binding growth factors (e.g., fibroblast growth factor, Wnt, Hh, transforming growth factor beta, amphiregulin, and hepatocyte growth factor) to their respective signaling receptors. We demonstrate that the deglycanated core protein of syndecan-1 (SDC1) and not HS chains nor SDC2 or -4, appears to target the epithelial selective prosecretory mitogen lacritin. An important and novel step in this mechanism is that binding necessitates prior partial or complete removal of HS chains by endogenous heparanase. This limits lacritin activity to sites where heparanase appears to predominate, such as sites of exocrine cell migration, secretion, renewal, and inflammation. Binding is mutually specified by lacritin's C-terminal mitogenic domain and SDC1's N terminus. Heparanase modification of the latter transforms a widely expressed HS proteoglycan into a highly selective surface-binding protein. This novel example of cell specification through extracellular modification of an HS proteoglycan has broad implications in development, homeostasis, and disease.  相似文献   

7.
Syndecans are transmembrane heparan sulphate proteoglycans. Their role in the development of the malignant phenotype is ambiguous and depends upon the particular type of cancer. Nevertheless, syndecans are promising targets in cancer therapy, and it is important to elucidate the mechanisms controlling their various cellular effects. According to earlier studies, both syndecan-1 and syndecan-2 promote malignancy of HT-1080 human fibrosarcoma cells, by increasing the proliferation rate and the metastatic potential and migratory ability, respectively. To better understand their tumour promoter role in this cell line, syndecan expression levels were modulated in HT-1080 cells and the growth rate, chemotaxis and invasion capacity were studied. For in vivo testing, syndecan-1 overexpressing cells were also inoculated into mice. Overexpression of full length or truncated syndecan-1 lacking the entire ectodomain but containing the four juxtamembrane amino acids promoted proliferation and chemotaxis. These effects were accompanied by a marked increase in syndecan-2 protein expression. The pro-migratory and pro-proliferative effects of truncated syndecan-1 were not observable when syndecan-2 was silenced. Antisense silencing of syndecan-2, but not that of syndecan-1, inhibited cell migration. In vivo, both full length and truncated syndecan-1 increased tumour growth and metastatic rate. Based on our in vitro results, we conclude that the tumour promoter role of syndecan-1 observed in HT-1080 cells is independent of its ectodomain; however, in vivo the presence of the ectodomain further increases tumour proliferation. The enhanced migratory ability induced by syndecan-1 overexpression is mediated by syndecan-2. Overexpression of syndecan-1 also leads to activation of IGF1R and increased expression of Ets-1. These changes were not evident when syndecan-2 was overexpressed. These findings suggest the involvement of IGF1R and Ets-1 in the induction of syndecan-2 synthesis and stimulation of proliferation by syndecan-1. This is the first report demonstrating that syndecan-1 enhances malignancy of a mesenchymal tumour cell line, via induction of syndecan-2 expression.  相似文献   

8.
Exploitation of host components by microbes to promote their survival in the hostile host environment has been a recurring theme in recent years. Available data indicate that bacterial pathogens activate ectodomain shedding of host cell surface molecules to enhance their virulence. We reported previously that several major bacterial pathogens activate ectodomain shedding of syndecan-1, the major heparan sulfate proteoglycan of epithelial cells. Here we define the molecular basis of how Staphylococcus aureus activates syndecan-1 shedding. We screened mutant S. aureus strains devoid of various toxin and protease genes and found that only strains lacking both alpha-toxin and beta-toxin genes do not stimulate shedding. Mutations in the agr global regulatory locus, which positively regulates expression of alpha- and beta-toxins and other exoproteins, also abrogated the capacity to stimulate syndecan-1 shedding. Furthermore, purified S. aureus alpha- and beta-toxins, but not enterotoxin A and toxic shock syndrome toxin-1, rapidly potentiated shedding in a concentration-dependent manner. These results establish that S. aureus activates syndecan-1 ectodomain shedding via its two virulence factors, alpha- and beta-toxins. Toxin-activated shedding was also selectively inhibited by antagonists of the host cell shedding mechanism, indicating that alpha- and beta-toxins shed syndecan-1 ectodomains through stimulation of the host cell's shedding machinery. Interestingly, beta-toxin, but not alpha-toxin, also enhanced ectodomain shedding of syndecan-4 and heparin-binding epidermal growth factor. Because shedding of these ectodomains has been implicated in promoting bacterial pathogenesis, activation of ectodomain shedding by alpha-toxin and beta-toxin may be a previously unknown virulence mechanism of S. aureus.  相似文献   

9.
Like other members of the epidermal growth factor family, heparin-binding epidermal growth factor-like growth factor (HB-EGF) is synthesized as a transmembrane protein that can be shed enzymatically to release a soluble growth factor. Ectodomain shedding is essential to the biological functions of HB-EGF and is strictly regulated. However, the mechanism that induces the shedding remains unclear. We have recently identified nardilysin (N-arginine dibasic convertase (NRDc)), a metalloendopeptidase of the M16 family, as a protein that specifically binds HB-EGF (Nishi, E., Prat, A., Hospital, V., Elenius, K., and Klagsbrun, M. (2001) EMBO J. 20, 3342-3350). Here, we show that NRDc enhances ectodomain shedding of HB-EGF. When expressed in cells, NRDc enhanced the shedding in cooperation with tumor necrosis factor-alpha-converting enzyme (TACE; ADAM17). NRDc formed a complex with TACE, a process promoted by phorbol esters, general activators of ectodomain shedding. NRDc enhanced TACE-induced HB-EGF cleavage in a peptide cleavage assay, indicating that the interaction with NRDc potentiates the catalytic activity of TACE. The metalloendopeptidase activity of NRDc was not required for the enhancement of HB-EGF shedding. Notably, a reduction in the expression of NRDc caused by RNA interference was accompanied by a decrease in ectodomain shedding of HB-EGF. These results indicate the essential role of NRDc in HB-EGF ectodomain shedding and reveal how the shedding is regulated by the modulation of sheddase activity.  相似文献   

10.

Background  

It has been recently reported that major pathogens Staphylococcus aureus and Pseudomonas aeruginosa accelerate a normal process of cell surface syndecan-1 (Synd1) ectodomain shedding as a mechanism of host damage due to the production of shedding-inducing virulence factors. We tested if acceleration of Synd1 shedding takes place in vitro upon treatment of epithelial cells with B. anthracis hemolysins, as well as in vivo during anthrax infection in mice.  相似文献   

11.
Osteosarcoma (OS) is the most common primary bone malignancy in children and adolescents. More than 30% of patients develop lung metastasis, which is the leading cause of mortality. Recently, the extracellular matrix protein Cyr61 has been recognized as a malignancy promoting protein in OS mouse model with prognostic potential in human OS. In this study, we aimed at the identification of novel Cyr61-interacting proteins.Here we report that Cyr61 associates with Caprin-1, and confocal microscopy showed that stable ectopic expression of Caprin-1 leads to the formation of stress granules containing Caprin-1 and Cyr61, confers resistance to cisplatin-induced apoptosis, and resulted in constitutive phosphorylation of Akt and ERK1/2. Importantly, ectopic expression of Caprin-1 dramatically enhanced primary tumor growth, remarkably increased lung metastatic load in a SCID intratibial OS mouse model, and decreased significantly (p < 0.0018) the survival of the mice. Although Caprin-1 expression, evaluated with a tissue microarray including samples from 59 OS patients, failed to be an independent predictor for the patients' outcome in this limited cohort of patients, increased Caprin-1 expression indicated a tendency to shortened overall survival, and more strikingly, Cyr61/Caprin-1 co-expression was associated with worse survival than that observed for patients with tumors expressing either Cyr61 or Caprin-1 alone or none of these proteins. The findings imply that Caprin-1 may have a metastasis promoting role in OS and show that through resistance to apoptosis and via the activation of Akt and ERK1/2 pathways, Caprin-1 is significantly involved in the development of OS metastasis.  相似文献   

12.
Syndecans are constitutively shed from growing epithelial cells as the part of normal cell surface turnover. However, increased serum levels of the soluble syndecan ectodomain have been reported to occur during bacterial infections. The aim of this study was to evaluate the potential of lipopolysaccharide (LPS) from the periodontopathogen Porphyromonas gingivalis to induce the shedding of syndecan-1 expressed by human gingival epithelial cells. We showed that the syndecan-1 ectodomain is constitutively shed from the cell surface of human gingival epithelial cells. This constitutive shedding corresponding to the basal level of soluble syndecan-1 ectodomain was significantly increased when cells were stimulated with P. gingivalis LPS and reached a level comparable to that caused by phorbol myristic acid (PMA), an activator of protein kinase C (PKC) which is well known as a shedding agonist. The syndecan-1 shedding was paralleled by pro-inflammatory cytokine interleukin-1 beta (IL-1beta), IL-6, IL-8, and tumor necrosis factor alpha (TNF-alpha) release. Indeed, secretion of IL-1beta and TNF-alpha increased following stimulation by P. gingivalis LPS and PMA, respectively. When recombinant forms of these proteins were added to the cell culture, they induced a concentration-dependent increase in syndecan-1 ectodomain shedding. A treatment with IL-1beta converting enzyme (ICE) specific inhibitor prevented IL-1beta secretion by epithelial cells stimulated by P. gingivalis LPS and decreased the levels of shed syndecan-1 ectodomain. We also observed that PMA and TNF-alpha stimulated matrix metalloproteinase-9 secretion, whereas IL-1beta and P. gingivalis LPS did not. Our results demonstrated that P. gingivalis LPS stimulated syndecan-1 shedding, a phenomenon that may be mediated in part by IL-1beta, leading to an activation of intracellular signaling pathways different from those involved in PMA stimulation.  相似文献   

13.
Oxidized linoleic acid regulates expression and shedding of syndecan-4   总被引:2,自引:0,他引:2  
Syndecan-4, a heparan sulfate proteoglycan that is widely expressed in the vascular wall and as a cell surface receptor, modulates events relevant to acute tissue repair, including cell migration and proliferation, cell-substrate interactions, and matrix remodeling. While syndecan-4 expression is regulated in response to acute vascular wall injury, its regulation under chronic proatherogenic conditions such as those characterized by prolonged exposure to oxidized lipids has not been defined. In this investigation, arterial smooth muscle cells were treated with 13-hydroperoxy-9,11-octadecadienoic acid (HPODE) and 13-hydroperoxy-10,12-octadecadienoic acid, oxidized products of linoleic acid, which is the major oxidizable fatty acid in LDL. Both oxidized fatty acids induced a dose-dependent, rapid upregulation of syndecan-4 mRNA expression that was not attenuated by cycloheximide. This response was inhibited by pretreatment with N-acetylcysteine, catalase, or MEK1/2 inhibitors, but not by curcumin or lactacystin, known inhibitors of NF-B. These data suggest that oxidized linoleic acid induces syndecan-4 mRNA expression through the initial generation of intracellular hydrogen peroxide with subsequent activation of the extracellular signal-regulated kinase signaling pathway via MEK1/2. Notably, the HPODE-induced enhancement of syndecan-4 mRNA was accompanied by accelerated shedding of syndecan-4. In principle, alterations in both the cell surface expression and shedding of syndecan-4 may augment a variety of proatherogenic events that occur in response to oxidized lipids. heparan sulfate proteoglycan; smooth muscle cell  相似文献   

14.
15.
The cell surface heparan sulfate proteoglycan (HSPG) glypican-1 is up-regulated by pancreatic and breast cancer cells, and its removal renders such cells insensitive to many growth factors. We sought to explain why the cell surface HSPG syndecan-1, which is also up-regulated by these cells and is a known growth factor coreceptor, does not compensate for glypican-1 loss. We show that the initial responses of these cells to the growth factor FGF2 are not glypican dependent, but they become so over time as FGF2 induces shedding of syndecan-1. Manipulations that retain syndecan-1 on the cell surface make long-term FGF2 responses glypican independent, whereas those that trigger syndecan-1 shedding make initial FGF2 responses glypican dependent. We further show that syndecan-1 shedding is mediated by matrix metalloproteinase-7 (MMP7), which, being anchored to cells by HSPGs, also causes its own release in a complex with syndecan-1 ectodomains. These results support a specific role for shed syndecan-1 or MMP7-syndecan-1 complexes in tumor progression and add to accumulating evidence that syndecans and glypicans have nonequivalent functions in vivo.  相似文献   

16.
17.
Integrin-mediated cell-extracellular matrix (ECM) interactions are essential for multiple cellular processes; however, little is known regarding integrin turnover during these events. Recent studies have demonstrated shedding of cell surface molecules and suggested this as a potential mechanism for integrin turnover. Confocal microscopy of mouse hearts under different physiological conditions demonstrated the presence of beta(1)-integrin-immunoreactive material in the interstitium. Culture media from neonatal rat cardiac myocytes and fibroblasts contained a 55-kDa fragment of beta(1)-integrin. Attachment to ECM components, response to phorbol 12-myristate 13-acetate stimulation, and matrix metalloproteinase inhibition assays demonstrated that fibroblasts responded differently to the fragment compared with myocytes. The beta(1)-integrin fragment stimulated myocyte attachment to collagen and the fragment itself bound a variety of ECM proteins. These studies indicate that as myocytes and fibroblasts change size and shape, cellular contacts with the ECM are altered, resulting in the liberation of a beta(1)-integrin fragment from the cell surface. Integrin shedding may represent a novel mechanism of rapidly modifying cell-ECM contacts during various cellular processes.  相似文献   

18.
19.
Fibroblast growth factor-2 (FGF-2), the most abundant growth factor produced by melanoma cells but not by normal melanocytes, is an important regulator of cell proliferation, migration and differentiation. In this study we show that M5 human metastatic melanoma cells’ ability to migrate is significantly enhanced by exogenously added FGF-2 while, neutralization of endogenous FGF-2 stimulates their adhesion. Previously, we have demonstrated that FGF-2 distinctly modulates the synthesis of individual glycosaminoglycans/proteoglycans (GAGs/PGs) subclasses, changing both their amounts and distribution in M5 cells. Here, treatment with FGF-2 strongly reduces the expression levels of the heparan sulfate-containing proteoglycan, syndecan-4. Syndecan-4 is a focal adhesion component in a range of cell types, adherent to several different matrix molecules, including fibronectin (FN). The reduction in syndecan-4 expression by utilizing specific siRNA discriminately increased melanoma cell motility and decreased their attachment on FN, demonstrating a regulatory role of syndecan-4 on these cell functions. Syndecan-4 has previously been demonstrated to regulate focal adhesion kinase (FAK) phosphorylation. In this study FGF-2 was shown to downregulate FAK Y397-phosphorylation during FN-mediated M5 cell adhesion, promoting their migration. The observed decrease in FAK Y397 activation was correlated to syndecan-4 expression levels. Thus, a balance in syndecan-4 expression perpetrated by FGF-2 may be required for optimal M5 cell migration.These results suggest that essential in melanoma progression FGF-2, specifically regulates melanoma cell ability to migrate through a syndecan-4-dependent mechanism.  相似文献   

20.
Syndecan-1 is a heparan sulfate proteoglycan expressed on epithelia, and its ectodomain can be shed into the extracellular milieu, affecting a variety of cellular functions. Using two bacteria known to react with heparan sulfate, Listeria monocytogenes and Staphylococcus aureus, experiments were designed to clarify the effect of syndecan-1 shedding on bacterial internalization by human HT-29 enterocytes. Mature enterocytes were incubated with tumor necrosis factor (TNF)-alpha and/or interferon (IFN)-gamma for 16h prior to addition of bacteria. These cytokines acted synergistically to decrease syndecan-1 expression, assessed by visual observations of syndecan-1 expression on enterocytes using immunohistochemistry and a monoclonal antibody to the syndecan-1 core protein, by quantifying this fluorescent intensity, and by quantifying the concentration of shed syndecan-1 using an enzyme-linked immunoabsorbent assay. Neither IFN-gamma nor TNF-alpha alone had a noticeable effect on L. monocytogenes internalization, but a mixture of both cytokines resulted in decreased (P<0.01) internalization. Enterocyte preincubation with TNF-alpha alone, and with both cytokines, was associated with decreased S. aureus internalization, at P<0.05 and P<0.01, respectively. Thus, TNF-alpha and IFN-gamma acted synergistically to shed syndecan-1 ectodomains from HT-29 enterocytes, and shedding was associated with decreased internalization of two pathogenic bacteria, suggesting that syndecan-1 shedding may modulate the pathogenesis of specific microbes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号