首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Heparin and heparan sulfate proteoglycans (HSPG) bind many soluble growth factors and this binding is now recognized as an important mechanism for modulation of cell activity. Fibroblast growth factor-2 (FGF-2) is one of the best characterized of the heparin-binding growth factors and it has been shown experimentally that heparin regulation of FGF-2 activity is dependent on the level of cell HSPG and the concentration of heparin. In this paper, we explore, using mathematical modeling, proposed mechanisms for heparin regulation and determine how they impact FGF receptor binding. We demonstrate that the experimentally observed receptor binding phenomena can be reproduced if cells (1) express heparin-binding cell surface molecules and if either (2) these heparin binding sites are FGFR and bind heparin and FGF-2-heparin complexes or (3) are surface molecules able to bind FGF-2 and couple with FGF-2 receptors to form high-affinity FGF-2-bound surface complexes. The ability of heparin to directly interact with the FGFR and bind FGF-2 in the absence of this coupling function was not sufficient to explain heparin activity. These findings have implications with regard to regulation of heparin-binding growth factors and could help guide the development of highly specific growth regulatory molecules through specific regulation by heparin and HSPG.  相似文献   

2.
Heparin-carrying polystyrene (HCPS) consists of low-molecular-weight heparin chains enriched in trisulfated disaccharide structures linked to a polystyrene core. In this study, the interactions between HCPSs of various molecular weights and heparin-binding growth factors, VEGF(165), FGF-2, and HGF, were compared to the interactions of the same factors with native heparin, periodate-oxidized heparin (IO(4)-heparin) and periodate-oxidized alkaline-degraded heparin (IO(4)-LMW-heparin). The binding of each growth factor to heparin-agarose beads (heparin-beads) was more strongly inhibited by HCPSs in a molecular weight-dependent manner than by native heparin or the modified heparins, indicating a stronger interaction between HCPS and these growth factors. HCPSs also inhibit heparin-binding growth factor-induced endothelial cell growth in a molecular weight-dependent manner much more strongly than the native or modified heparins. However, HCPSs did not inhibit the mitogenic activity of VEGF(121), which has a non-heparin-binding nature. Thus, HCPSs exhibit enhanced abilities to interact with each of the heparin-binding growth factors studied and to inhibit heparin-binding growth factor-induced endothelial cell proliferation in a molecular weight-dependent manner. These effects might be ascribed to the heparin-clustering effect of HCPSs.  相似文献   

3.
The heparin-binding growth factors include a family of seven structurally related proteins that can potentially interact with four known high affinity receptors. We have cloned the murine homologues of fibroblast growth factor receptors 1 and 3 (mFR1 and mFR3). To define the ligand specificity of these receptors, we have characterized their binding properties with respect to acidic and basic fibroblast growth factors (aFGF and bFGF, respectively) and their biologic activity with respect to aFGF, bFGF, FGF-4/K-FGF, and FGF-5. Unlike mFR1, which binds both aFGF and bFGF, mFR3 preferentially binds aFGF. mFR3-mediated mitogenicity also favors aFGF and FGF-4 with a 10-12-fold lower response to bFGF and no response to FGF-5. Both receptor binding and growth factor-mediated mitogenicity are dependent on heparin. Heparin-binding growth factor activity can thus be regulated by proteoglycans and by the type of FGF receptor expressed on the target cell.  相似文献   

4.
Growth promoting activity for rat hepatocytes in bovine spleen was identified as three heparin-binding growth factors. All the features tested, such as heparin affinity, molecular mass, cross reactivity with antibody, and partial amino acid sequence, indicated that one of the three factors was identical to FGF-1 (fibroblast growth factor-1, acidic FGF), another one was related to FGF-2 (fibroblast growth factor-2, basic FGF), whereas it was more potent for hepatocytes than the FGF-2 purified from bovine brain. The third one was eluted from heparin-Sepharose column at 0.75M NaCl, of which activity was not abolished by anti-FGF-1 or FGF-2 antibodies. In addition, the mitogenic effect of this factor was synergistic with that of HGF (hepatocyte growth factor), a known potent hepatocyte mitogen, suggesting that it is a novel growth factor for hepatocytes.  相似文献   

5.
Heparan sulfate (HS) chains interact with various growth and differentiation factors and morphogens, and the most interactions occur on the specific regions of the chains with certain monosaccharide sequences and sulfation patterns. Here we generated a library of octasaccharides by semienzymatic methods by using recombinant HS 2-O-sulfotransferase and HS 6-O-sulfotransferase, and we have made a systematic investigation of the specific binding structures for various heparin-binding growth factors. An octasaccharide (Octa-I, DeltaHexA-GlcNSO(3)-(HexA-GlcNSO(3))(3)) was prepared by partial heparitinase digestion from completely desulfated N-resulfated heparin. 2-O- and 6-O-sulfated Octa-I were prepared by enzymatically transferring one to three 2-O-sulfate groups and one to three 6-O-sulfate groups per molecule, respectively, to Octa-I. Another octasaccharide containing 3 units of HexA(2SO(4))-GlcNSO(3)(6SO(4)) was prepared also from heparin. This octasaccharide library was subjected to affinity chromatography for interactions with fibroblast growth factor (FGF)-2, -4, -7, -8, -10, and -18, hepatocyte growth factor, bone morphogenetic protein 6, and vascular endothelial growth factor, respectively. Based upon differences in the affinity to those octasaccharides, the growth factors could be classified roughly into five groups: group 1 needed 2-O-sulfate but not 6-O-sulfate (FGF-2); group 2 needed 6-O-sulfate but not 2-O-sulfate (FGF-10); group 3 had the affinity to both 2-O-sulfate and 6-O-sulfate but preferred 2-O-sulfate (FGF-18, hepatocyte growth factor); group 4 required both 2-O-sulfate and 6-O-sulfate (FGF-4, FGF-7); and group 5 hardly bound to any octasaccharides (FGF-8, bone morphogenetic protein 6, and vascular endothelial growth factor). The approach using the oligosaccharide library may be useful to define specific structures required for binding to various heparin-binding proteins. Octasaccharides with the high affinity to FGF-2 and FGF-10 had the activity to release them, respectively, from their complexes with HS. Thus, the library may provide new reagents to specifically regulate bindings of the growth factors to HS.  相似文献   

6.
Monocyte/macrophages play important roles in regulating tissue growth and angiogenesis through the controlled release of heparin-binding growth factors such as fibroblast growth factor (FGF), vascular endothelial growth factor, and heparin binding epidermal growth factor. The action of these potent growth mediators is known to be regulated by adsorption to heparan sulfate proteoglycans (HSPGs) on the surface and within the extracellular matrix of other neighboring cells, which respectively promote or restrict interactions with their signal-transducing receptors on target cells. Here we report on the nature of HSPGs inducibly expressed on the surface of macrophages that confer these cells with the capacity to regulate endogenous growth factor activity. We reveal that activated human macrophages express only a single major 48-kDa cell surface HSPG, syndecan-2 (fibroglycan) as the result of de novo RNA and protein synthesis. In addition, we demonstrate this macrophage HSPG selectively binds the macrophage-derived growth factors FGF-2, vascular endothelial growth factor and heparin binding EGF and can present FGF-2 in a form that transactivates receptor-bearing BaF32 cells. These results define a novel and unique proteoglycan profile for macrophages and imply a key role for syndecan-2 in the delivery of sequestered growth factors by inflammatory macrophages for productive binding to their appropriate target cells in vivo.  相似文献   

7.
Heparan sulfates (HS) play an important role in the control of cell growth and differentiation by virtue of their ability to modulate the activities of heparin-binding growth factors, an issue that is particularly well studied for fibroblast growth factors (FGFs). HS/heparin co-ordinate the interaction of FGFs with their receptors (FGFRs) and are thought to play a critical role in receptor dimerization. Biochemical and crystallographic studies, conducted mainly with FGF-2 or FGF-1 and FGF receptors 1 and 2, suggests that an octasaccharide is the minimal length required for FGF- and FGFR-induced dimerization and subsequent activation. In addition, 6-O-sulfate groups are thought to be essential for binding of HS to FGFR and for receptor dimerization. We show here that oligosaccharides shorter than 8 sugar units support activation of FGFR2 IIIb by FGF-1 and interaction of FGFR4 with FGF-1. In contrast, only relatively long oligosaccharides supported receptor binding and activation in the FGF-1.FGFR1 or FGF-7.FGFR2 IIIb setting. In addition, both 6-O- and 2-O-desulfated heparin activated FGF-1 signaling via FGFR2 IIIb, whereas neither one stimulated FGF-1 signaling via FGFR1 or FGF-7 via FGFR2 IIIb. These findings indicate that the structure of HS required for activating FGFs is dictated by the specific FGF and FGFR combination. These different requirements may reflect the differences in the mode by which a given FGFR interacts with the various FGFs.  相似文献   

8.
Solid tumors often display sites of necrosis near regions of angiogenesis in vivo. As tumor cell necrosis would result in the release of nucleosomes into the extracellular environment, we explored the potential role of nucleosomes in the promotion of angiogenesis. Data indicate that nucleosomes acted similar to heparin and bound to several heparin-binding, proangiogenic factors [i.e., fibroblast growth factor (FGF)-1, FGF-2, vascular endothelial growth factor, and transforming growth factor-beta1]. Nucleosomes modestly enhanced FGF-2 growth of human umbilical vein endothelial cells when grown in restricted media as well as increased human umbilical vein endothelial cell migration and primitive blood vessel tube formation in vitro. On s.c. injection in mice, nucleosomes aided FGF-2 in promoting angiogenesis. These results suggest that nucleosomes released from dying tumor cells aid in the formation of blood vessels and may provide a novel means by which tumor cells increase angiogenesis.  相似文献   

9.
Fibroblast growth factor-binding proteins (FGF-BP) are secreted carrier proteins that release fibroblast growth factors (FGFs) from the extracellular matrix storage and thus enhance FGF activity. Here we have mapped the interaction domain between human FGF-BP1 and FGF-2. For this, we generated T7 phage display libraries of N-terminally and C-terminally truncated FGF-BP1 fragments that were then panned against immobilized FGF-2. From this panning, a C-terminal fragment of FGF-BP1 (amino acids 193-234) was identified as the minimum binding domain for FGF. As a recombinant protein, this C-terminal fragment binds to FGF-2 and enhances FGF-2-induced signaling in NIH-3T3 fibroblasts and GM7373 endothelial cells, as well as mitogenesis and chemotaxis of NIH-3T3 cells. The FGF interaction domain in FGF-BP1 is distinct from the heparin-binding domain (amino acids 110-143), and homology modeling supports the notion of a distinct domain in the C terminus that is conserved across different species. This domain also contains conserved positioning of cysteine residues with the Cys-214/Cys-222 positions in the human protein predicted to participate in disulfide bridge formation. Phage display of a C214A mutation of FGF-BP1 reduced binding to FGF-2, indicating the functional significance of this disulfide bond. We concluded that the FGF interaction domain is contained in the C terminus of FGF-BP1.  相似文献   

10.
The 165 amino acid form of vascular endothelial growth factor (VEGF165) is a heparin-binding growth factor with mitogenic activity for vascular endothelial cells. We examined activities of various heparin derivatives toward their interactions with VEGF165 using an enzyme-linked immunosorbent assay and elucidated the structural features in heparin for the interactions. Native heparin interacted with VEGF165, whereas N-desulfated, N-acetylated (N-DS, N-Ac-) heparin, and 6-O-desulfated (6-O-DS-) heparin did not. The 2-O-desulfated (2-O-DS-) heparin retained the ability for the interaction with VEGF165. In contrast, the 2-O-DS-heparin exhibited no ability for the interaction with FGF-2 and HGF. Thus, structural requirements in heparin for the specific interaction with VEGF165 are distinct from those with FGF-2 and HGF which require a high content of 2-O-sulfate groups. In a cell proliferation assay, native heparin and 2-O-DS-heparin exhibited inhibitory abilities for VEGF165-induced proliferation of human umbilical vein endothelial cells (HUVECs) with their high concentrations (more than 64 microg/ml), while only native heparin could enhance the proliferation of the chlorate-treated cells. These results suggested that a high content of 2-O-sulfate groups is not required for the specific interaction with VEGF165alone, although it is essential for the mitogenic activity of the growth factor.  相似文献   

11.
Neuroprotective actions of scatter factor/hepatocyte growth factor (SF/HGF) have not been described. We examined the effects of SF/HGF in comparison to acidic fibroblast growth factor-1 (FGF-1) on N-methyl-D-aspartate (NMDA) and quinolinic acid (QUIN)-induced excitotoxicity in primary cerebellar granule neurons. Exposure to NMDA or QUIN for 24 h resulted in concentration-dependent cell death (p < 0.001) that was completely attenuated (p < 0.001) by pre-treatment of cells with SF/HGF (50 ng/mL) or FGF-1 (40 ng/mL). SF/ HGF and FGF-1 activated both Akt and MAP-kinase > threefold (p < 0.001). Neither SF/HGF nor FGF-1 activated cyclic AMP-response element binding protein (CREB), a downstream target of MAP-kinase, whereas brain-derived neurotrophic factor (BDNF) activated both MAP-kinase and CREB in granule neurons. Neuroprotection against NMDA or QUIN by SF/HGF and FGF-1 was negated by the addition of LY294002 (10 microM) or wortmannin (100 microM), two distinct inhibitors of phosphatidylinositol 3-kinase (P13-K), but not by the MAP-kinase kinase (MEK) inhibitor PD98059 (33 microm). Likewise, expression of a dominant-negative mutant of Akt (Akt-kd) completely prevented the neuroprotective actions of SF/HGF and FGF-1. Overexpression of a constitutively activated Akt (Akt-myr) or wild-type Akt (wtAkt) attenuated excitotoxic cell death. These data show that both SF/HGF and FGF-1 protect cerebellar granule neurons against excitotoxicity with similar potency in a P13-K/Akt-dependent and MAP-kinase/CREB-independent manner.  相似文献   

12.
The disaccharide beta-D-GlcA-(1-->4)-alpha-D-GlcNAc-1-->OMe and other small nonsulfated oligosaccharides related to heparin/heparan sulfate have been shown to bind to FGF and activated the fibroblast growth factor (FGF) signalling pathway in (F32) cells expressing the FGF receptor. Synthetic routes to beta-D-GlcA-(1-->4)-alpha-D-GlcNAc-1-->OMe and a glucose analogue beta-D-Glc-(1-->4)-alpha-D-GlcNAc-1-->OMe are described. The effects of these disaccharides on endothelial cell growth, which is relevant to angiogenesis, were evaluated and it was found they did not mimic the inhibitory effects that were observed for heparin albumin (HA) and that have also been observed by monosaccharide conjugates. They did not alter bovine aortic endothelial cell (BAEC) proliferation, in the presence of FGF-2 in serum free medium or in absence of FGF-2 in serum free and complete medium. Disaccharides (10 microg/mL) reduced by 25-31% the inhibition caused by HA (10 microg/mL) on BAEC growth in serum-free medium but had no effect in complete medium. There was no evidence obtained for the binding of these oligosaccharides to FGF-2 in competition with HA by ELISA.  相似文献   

13.
Hepatocyte growth factor/scatter factor (HGF/SF) is a multifunctional cytokine that is involved in many normal as well as pathological conditions. HGF/NK1, a splice variant of HGF/SF, has been reported to have either antagonistic or agonistic effects with regard to c-Met signaling depending on the cell type. In these experiments, we have determined that HGF/NK1 is a potent mitogen for rat hepatocytes in culture. Furthermore, we have found that coagulation factor Xa (fXa) is capable of cleaving HGF/NK1 and single chain HGF/SF (scHGF/SF). The products resulting from cleavage of HGF/NK1 or scHGF/SF by fXa appear as single bands under non-reducing conditions. The reaction products from the digestion of HGF/NK1 by fXa were separated under reducing conditions, and the cleavage site, as determined by N-terminal sequencing, was located C-terminal to arginine 134. Previous work established that the heparin-binding domain for HGF/SF is located in the N domain of HGF/SF. Additionally, the dimerization of the HGF/SF receptor (c-Met) by the ligand HGF/NK1 is facilitated by heparin and related sulfonated sugars on the cell surface, whereas heparin is not required for HGF/SF-mediated dimerization. Cleavage of single chain HGF/SF or HGF/NK1 by factor Xa does not alter the affinity of the respective molecules for heparin, but it did variably affect the associated mitogenic activity of these factors. The associated mitogenic activity of HGF/NK1 was reduced by more than 90%, whereas the mitogenic activity of scHGF/SF was unaffected. This suggests mandatory maintenance of a steric interaction of the N domain and the first kringle domain for HGF/NK1 to act as an agonist for rat hepatocyte growth but is not required by full-length HGF/SF.  相似文献   

14.
The CD44 glycoprotein is expressed in multiple isoforms on a variety of cell types where it functions as a receptor for hyaluronan-mediated motility. Recently, interest has centered on CD44 heparan sulfate proteoglycan (HSPG) isoforms because of their potential to sequester heparin-binding growth factors and chemokines. Expression of these isoforms on ectodermal cells has recently been shown to regulate limb morphogenesis via presentation of fibroblast growth factor (FGF) 4/FGF 8 while expression on tumor cells was shown to sequester hepatocyte growth factor and promote tumor dissemination. To date, however, CD44 HSPG expression in tissue macrophages and lymphocytes has not been adequately investigated, despite the fact these cells actively synthesize growth factors and chemokines and indirect evidence that monocyte CD44 sequesters macrophage inflammatory protein-1beta. Here we show primary human monocytes rather than lymphocytes express CD44 HSPGs, but only following in vitro differentiation to macrophages or activation with the proinflammatory cytokine interleukin-1alpha or bacterial lipopolysaccharide. Furthermore, we show these isoforms are preferentially modified with heparan rather than chondroitin sulfate, bind the macrophage-derived growth factors FGF-2, vascular endothelial growth factor, and heparin-binding epidermal growth factor with varying affinities (K(d) 25-330 nM) and in the case of FGF-2, can stimulate productive binding to the high affinity tyrosine kinase FGF receptor 1 (FGFR1). In contrast, we find no evidence for significant binding to C-C chemokines. Last, we confirm by immunofluorescent antibody staining that inflamed synovial membrane macrophages express CD44 HSPGs and that expression is greatest in cells containing high FGF-2 levels. These results suggest a paracrine role for macrophage CD44 HSPG isoforms in the regulation of growth factor action during inflammation.  相似文献   

15.
A divalent cation-dependent association between heparin or heparan sulfate and the ectodomain of the fibroblast growth factor (FGF) receptor kinase (FGFR) restricts FGF-independent trans-phosphorylation between self-associated FGFR and determines specificity for and mediates binding of activating FGF. Here we show that only the fraction of commercial heparin or rat liver heparan sulfate which binds to immobilized antithrombin formed an FGF-binding binary complex with the ectodomain of the FGFR kinase. Conversely, only the fraction of heparin that binds to immobilized FGFR inhibited Factor Xa in the presence of antithrombin. Only the antithrombin-bound fraction of heparin competed with (3)H-heparin bound to FGFR in absence of FGF, whereas both antithrombin-bound and unretained fractions competed with radiolabeled heparin bound independently to FGF-1 and FGF-2. The antithrombin-bound fraction of heparin was required to support the heparin-dependent stimulation of DNA synthesis of endothelial cells by FGF-1. The requirement for divalent cations and the antithrombin-binding motif distinguish the role of heparan sulfate as an integral subunit of the FGFR complex from the wider range of effects of heparan sulfates and homologues on FGF signaling through FGFR-independent interactions with FGF.  相似文献   

16.
The anticoagulant serpin antithrombin acquires a potent antiangiogenic activity upon undergoing conformational alterations to cleaved or latent forms. Here we show that antithrombin antiangiogenic activity is mediated at least in part through the ability of the conformationally altered serpin to block the proangiogenic growth factors fibroblast growth factor (FGF)-2 and vascular endothelial growth factor (VEGF) from forming signaling competent ternary complexes with their protein receptors and heparan sulfate co-receptors on endothelial cells. Cleaved and latent but not native forms of antithrombin blocked the formation of FGF-2-FGF receptor-1 ectodomain-heparin ternary complexes, and the dimerization of these complexes in solution and similarly inhibited the formation of FGF-2-heparin binary complexes and their dimerization. Only antiangiogenic forms of antithrombin likewise inhibited (125)I-FGF-2 binding to its low affinity heparan sulfate co-receptor and blocked FGF receptor-1 autophosphorylation and p42/44 MAP kinase phosphorylation in cultured human umbilical vein endothelial cells (HUVECs). Moreover, treatment of HUVECs with heparinase III to specifically eliminate the FGF-2 heparan sulfate co-receptor suppressed the ability of antiangiogenic antithrombin to inhibit growth factor-stimulated proliferation. Antiangiogenic antithrombin inhibited full-length VEGF(165) stimulation of HUVEC proliferation but did not affect the stimulation of cells by the heparin-binding domain-deleted VEGF(121). Taken together, these results demonstrate that antiangiogenic forms of antithrombin block the proangiogenic effects of FGF-2 and VEGF on endothelial cells by competing with the growth factors for binding the heparan sulfate co-receptor, which mediates growth factor-receptor interactions. Moreover, the inability of native antithrombin to bind this co-receptor implies that native and conformationally altered forms of antithrombin differentially bind proangiogenic heparan sulfate domains.  相似文献   

17.
Neoglycolipid technology is eminently adaptable for microarray design for high-throughput detection and specificity assignments of carbohydrate-protein interactions. Dermatan sulfate (DS) is known to play an important role because of its ability to bind growth factors as well as chemokines and to modulate their biological activities during inflammation and response to injury. We prepared various iduronic acid-rich fragments from DS by complete digestion with chondroitinase ACI, and investigated whether the DS-binding proteins, such as HGF/SF, RANTES, KGF/FGF-7 and HCII, can detect their oligosaccharide ligands in a neoglycolipid microarray. First, a comparison of the intensity of binding signals obtained from chondroitin oligosaccharides with those of heparin oligosaccharides showed that our microarray system is feasible not only to single-out the oligosaccharide ligands, but also to detect the difference between an intrinsic interaction unrelated only to electrostatic interaction and non-specific electrostatic interaction. Second, HGF/SF, KGF/FGF-7 and HCII showed preferential binding to iduronic acid-rich fragments of DS oligosaccharides that are greater than 8-mers in lengths. In contrast, RANTES binding seemed to depend only on the negative charges; their binding intensity towards the DS oligosaccharides was somewhat stronger than the binding of HGF/SF, KGF/FGF-7 and HCII. Third, the use of polyvinylpyrrolidone-40 (PVP-40), ovalbumin (OV) and Tween 20 in place of BSA as a blotting agent was useful in these glycosaminoglycan dependent reactions to minimize background due to non-specific interactions.  相似文献   

18.
Among the members of the fibroblast growth factor receptor family the FGFR4 has demonstrated strong dependence on heparin-like material for its activation by fibroblast growth factors. We have produced and characterized a recombinant human FGFR4 extracellular domain (FGFR4ed), in order to study its biochemical properties in isolated conditions. The FGFR4ed was expressed in an insect cell system and purified from the culture medium by Ni(2+)-affinity and gel filtration chromatography. Pure FGFR4ed was tested for FGF- and heparin-binding by covalent crosslinking experiments and by biosensor analysis. In solution, FGFR4ed formed complexes with acidic FGF (FGF-1) and basic FGF (FGF-2), both in the presence and absence of heparin. Immobilized FGFR4 also bound FGF-8 besides FGF-1 and FGF-2. Furthermore, heparin alone induced receptor oligomerization on the surface of the receptor coupled chip. Thus, the recombinant FGFR4ed revealed properties described for the cellular form of this receptor and can be used for interaction studies.  相似文献   

19.
Hepatocyte growth factor/scatter factor (HGF/SF) acts via a dual receptor system consisting of the MET tyrosine kinase receptor and heparan sulfate or dermatan sulfate proteoglycans. In optical biosensor binding assays, competition by oligosaccharides for binding of HGF/SF to immobilized heparin showed that disaccharides failed to compete, whereas tetrasaccharides inhibited HGF/SF binding (IC(50) 8 microg/ml). The inhibitory potency of the oligosaccharides increased as their length increased by successive disaccharide units, to reach a maximum (IC(50) 1 microg/ml) at degree of polymerization (dp) 10. In binding assays, HGF/SF was found to bind directly to oligosaccharides as small as dp 4, and the binding parameters were similar for oligosaccharides of dp 4-14 (k(a) 2.2-45.3 x 10(6) m(-1) s(-1), k(d) 0.033-0.039 s(-1), and K(d) 9-16 nm). In human keratinocytes, HGF/SF stimulated DNA synthesis, and this was dependent on a sustained phosphorylation of p42/44(MAPK). In chlorate-treated and hence sulfated glycosaminoglycan-deficient HaCaT cells, the stimulation of DNA synthesis by HGF/SF was almost abolished. Heparin-derived oligosaccharides from dp 2 to dp 24 were added together with HGF/SF to chlorate-treated cells to determine the minimum size of oligosaccharides able to restore HGF/SF activity. At restricted concentrations of oligosaccharides (4 ng/ml), HGF/SF required decasaccharides, whereas at higher concentrations (100 ng/ml) even tetrasaccharides were able to partly restore DNA synthesis. The results suggest that HGF/SF binds to a tetrasaccharide and that although this is sufficient to enable the stimulation of DNA synthesis, longer oligosaccharides are more efficient, perhaps by virtue of their ability to bind more easily other molecules.  相似文献   

20.
Hepatocyte growth factor (HGF) is a pleiotropic factor that plays an important role in complex biological processes such as embryogenesis, tissue regeneration, cancerogenesis, and angiogenesis. HGF promotes cell proliferation, survival, motility, and morphogenesis through binding to its receptor, a transmembrane tyrosine kinase encoded by the MET proto-oncogene (c-met). Structurally speaking, HGF is a polypeptide related to the enzymes of the blood coagulation cascade. Thus, it comprises kringle domains that in some other proteins have been shown to be responsible for the anti-angiogenic activity. To check whether the isolated kringles of HGF were able to inhibit angiogenesis, we produced them as recombinant proteins and compared their biological activity with that of the recombinant HGF N-terminal domain (N). We showed that (i) none of the isolated HGF kringle exhibits an anti-angiogenic activity; (ii) N is a new anti-angiogenic polypeptide; (iii) the inhibitory action of N is not specific toward HGF, because it antagonized the angiogenic activity of other growth factors, such as fibroblast growth factor-2 and vascular endothelial growth factor; and (iv) in contrast with full-length HGF, N does not bind to the c-met receptor in vitro, but fully retains its heparin-binding capacity. Our results suggest that N inhibits angiogenesis not by disrupting the HGF/c-met interaction but rather by interfering with the endothelial glycosaminoglycans, which are the secondary binding sites of HGF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号