首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tyrosine hydroxylase was purified from bovine adrenal chromaffin cells and rat pheochromocytoma using a rapid (less than 2 days) procedure performed at room temperature. Rabbits were immunized with purified enzyme that was denatured with sodium dodecylsulfate, and antibodies to tyrosine hydroxylase were affinity-purified from immune sera. A Western blot procedure using the affinity-purified antibodies and 125I-protein A demonstrated a selective labeling of a single Mr approximately 62,000 band in samples from a number of different tissues. The relative lack of background 125I-protein A binding permitted the development of a quantitative spot immunolabeling procedure for tyrosine hydroxylase protein. The sensitivity of the assay is 1-2 ng of enzyme. Essentially identical standard curves were obtained with tyrosine hydroxylase purified from rat pheochromocytoma, rat corpus striatum, and bovine adrenal medulla. An extract of PC 12 cells (clonal rat pheochromocytoma cells) was calibrated against purified rat pheochromocytoma tyrosine hydroxylase and used as an external standard against which levels of tyrosine hydroxylase in PC12 cells and other tissue were quantified. With this procedure, qualitative assessment of tyrosine hydroxylase protein levels can be obtained in a few hours and quantitative assessment can be obtained in less than a day.  相似文献   

2.
Phenylalanine hydroxylase (PAH) is a non-heme iron dioxygenase catalyzing the conversion of phenylalanine to tyrosine and is present in both prokaryotic and eukaryotic organisms. A relatively simple PAH is expressed by Chromobacterium violaceum, a gram-negative bacterium found in tropical and subtropical regions. The effects of temperature, pH and metals on the stability and catalytic activity of Chromobacterium violaceum PAH were determined by steady-state kinetics, circular dichroism (CD) and differential scanning calorimetry (DSC). The kcat and KM for phenylalanine were determined between 7 and 40 degrees C. The KM remained constant between 20 and 40 degrees C but rapidly increased below 20 degrees C. The half-life of the enzyme at 47 degrees C is 66+/-4 min in the presence of Fe(II) and 8+/-1 min in the presence of EDTA. The melting temperature of the protein determined by CD and DSC is 53+/-2 degrees C in the presence of EDTA and 63+/-2 degrees C in the presence of Fe(II). Co(II) stabilizes the enzyme (Tm=63+/-2 degrees C) and inhibits the catalytic activity by displacing iron from the active site. The optimum pH for catalytic activity and stability is 7.4. In conclusion, PAH is adapted for optimal phenylalanine binding at temperatures above 20 degrees C and Fe(II) enhances the resistance of the enzyme to thermal denaturation.  相似文献   

3.
A method for isolation and purification of tyrosinase from the fungus Aspergillus flavipes 56003 was developed. The method includes extraction with water, concentration on DEAE-cellulose, gel-filtration on Acrylex P-150, and ion-exchange chromatography on DEAE-Toyopearl 650M. The tyrosinase was purified to apparent homogeneity according polyacrylamide gel electrophoresis and ultracentrifugation. The tyrosinase is a 130-kD protein with pI 4.6. It contains two copper atoms. The Km and Vmax for tyrosine hydroxylation are 0.3 mM and 1300 &mgr;moles/min per mg at pH 6.8, and for dehydrogenation of 3,4-dihydroxyphenylalanine (DOPA) they are 5 mM and 16000 &mgr;moles/min per mg, respectively. Hydroxylation of monophenols has a characteristic lag period. The rate of tyrosine and DOPA oxidation is maximal at pH 6.0-6.8. The half-life of the enzyme at 50 degrees C is 40 min. The hydroxylase activity of the tyrosinase is more stable at neutral pH, whereas the dehydrogenase activity is more stable at acidic pH (4.0). The absorption spectrum of the enzyme has a maximum at 290 mn and a shoulder in the 320-400-nm region.  相似文献   

4.
Shikimate 5-dehydrogenase (SKDH; EC 1.1.1.25) catalyzes the reversible reduction of 3-dehydroshikimate to shikimate and is a key enzyme in the aromatic amino acid biosynthesis pathway. The shikimate 5-dehydrogenase gene, aroE, from Archaeoglobus fulgidus was cloned and overexpressed in Escherichia coli. The recombinant enzyme purified as a homodimer and yielded a maximum specific activity of 732 U/mg at 87 degrees C (with NADP+ as coenzyme). Apparent Km values for shikimate, NADP+, and NAD+ were estimated at 0.17+/-0.03 mM, 0.19+/-0.01 mM, and 11.4+/-0.4 mM, respectively. The half-life of the A. fulgidus SKDH is 2 h at the assay temperature (87 degrees C) and 17 days at 60 degrees C. Addition of 1 M NaCl or KCl stabilized the enzyme's half-life to approximately 70 h at 87 degrees C and approximately 50 days at 60 degrees C. This work presents the first kinetic analysis of an archaeal SKDH.  相似文献   

5.
Glutamate dehydrogenase (L-glutamate:NAD(P)+ oxidoreductase, deaminating, EC 1.4.1.3) from the hyperthermophilic Archeon Pyrococcus furiosus was purified to homogeneity by chromatography on anion-exchange, molecular-exclusion and hydrophobic-interaction media. The purified native enzyme had an M(r) of 270,000 +/- 15,000 and was shown to be a hexamer with identical subunits of M(r) 46,000. The enzyme was exceptionally thermostable, having a half-life of 3.5 to more than 10 h at 100 degrees C, depending on the concentration of enzyme. The Km of the enzyme for ammonia was high (9.5 mM), indicating that the enzyme is probably active in the deaminating, catabolic direction. The coenzyme utilization of the enzyme resembled the equivalent enzymes from eukaryotes rather than eubacteria, since both NADH and NADPH were recognized with high affinity. The enzyme displayed a preference for NADP+ over NAD+ that was more pronounced at low assay temperatures (50-70 degrees C) compared with the optimal temperature for enzyme activity, 95 degrees C.  相似文献   

6.
We characterized the bovine polymorphonuclear neutrophil alkaline phosphatase which was considerably purified with a sp. act. of 206 units/mg of protein. The Km value for p-nitrophenylphosphate at pH 10.0 was 1.69 mM. L-Histidine, imidazole and L-homoarginine but not L-phenylalanine inhibited the enzyme. In heat stability study, the enzyme lost 50% activity at 56 degrees C for 20 min. The enzyme had a half-life of 30 min in 3 M urea at 37 degrees C and pH 7.5. The enzyme was inhibited by beta-mercaptoethanol in a dose-dependent fashion. It is suggested from above results that the neutrophil alkaline phosphatase isozyme could be distinguishable from other tissue isozymes.  相似文献   

7.
In two groups of silver foxes--i.e. selected by the domestic type of behaviour and aggressive ones--studies have been made on the activity of the key enzyme in biosynthesis of catecholamines--i.e. tyrosine hydroxylase from the brain. Domesticated animals exhibited higher enzymic activity in the locus coeruleus, hypothalamus and cortex. Animals from both groups did not differ with respect to the level of tyrosine hydroxylase activity in the corpus striatum. The enzymic reactions of homogenates from locus coeruleus region of the brain in both groups of animals, as well as homogenates from the corpus striatum of the brain of aggressive animals exhibited low and approximately equal values of Michaelis constant for tyrosine. The value of KM was 3 times higher in the hypothalamus in both groups of foxes and in the corpus striatum of tame animals. Presumably, selection of silver foxes for the domestic type of behaviour resulted in the increase of biosynthesis of catecholamines in the brain due to the increase in the number of enzyme molecules. The increase in the activity of tyrosine hydroxylase in noradrenaline system of the brain may be associated with changes in the behavioural pattern of animals resulting from selection.  相似文献   

8.
Tyrosine hydroxylase was purified from human pheochromocytoma tumors. Polyacrylamide disc gel electrophoresis of the enzyme preparation obtained after sucrose density gradient centrifugation revealed a single enzymatically active protein band. A specific antiserum to purified human pheochromocytoma tyrosine hydroxylase was produced in rabbits. The specificity of the antiserum was demonstrated by immunoelectrophoretic analysis as well as by the specific inhibition of tyrosine hydroxylase. Enzyme inhibition studies revealed extensive cross-reactivity between the antiserum and tyrosine hydroxylases from bovine and rat adrenals and from rat striatum. The kinetic properties of the purified pheochromocytoma enzyme are similar to those of the bovine adrenal enzyme.  相似文献   

9.
Uracil-DNA glycosylase of thermophilic Thermothrix thiopara.   总被引:1,自引:1,他引:0  
An activity which released free uracil from dUMP-containing DNA was purified approximately 1,700-fold from extracts of Thermothrix thiopara, the first such activity to be isolated from extremely thermophilic bacteria. The enzyme appeared homogeneous, according to the results of sodium dodecyl sulfate-polyacrylamide gel electrophoresis. It had a native molecular weight of 26,000 and existed as a monomer protein in water solution. The enzyme had an optimal activity at 70 degrees C, between pH 7.5 and 9.0, and in the presence of 0.2% Triton X-100. It had no cofactor requirement and was not inhibited by EDTA, but it was sensitive to N-ethylmaleimide. The purified enzyme did not contain any nuclease that acted on native or depurinated DNA. The Arrhenius activation energy was 76 kJ/mol between 30 and 50 degrees C and 11 kJ/mol between 50 and 70 degrees C. The rate of heat inactivation of the enzyme followed first-order kinetics with a half-life of 2 min at 70 degrees C. Ammonium sulfate and bovine serum albumin protected the enzyme from heat inactivation. One T. thiopara cell contains enough activity to release about 2 X 10(8) uracil residues from DNA during one generation time at 70 degrees C.  相似文献   

10.
By incubating native (N) transglutaminase from guinea-pig liver at various temperatures and assaying it at 25 degrees C, two steps in the irreversible deactivation process to the denatured form (D) have been found. The fitting of the data to the equations of two possible models (the two-steps model and the two-isoenzymes model) is only compatible with the first one (N----X----D). It is shown that the structure of the active intermediate, X, depends on the deactivation temperature and on the thermal history of the enzyme. This may mean that transglutaminase exists in a large number of microstates. Surprisingly, the activation energy of deactivation is lower than that of activity (36.6 +/- 3.4 against 47.2 +/- 2.2 kJ.mol-1). By deactivating transglutaminase at a constant temperature (55 degrees C) and assaying it at variable temperatures, the activation energy of the intermediate, (X55), has been determined to be 40.2 +/- 5 kJ.mol-1, of the same order of magnitude as the native form. Among several agents assayed, only Ca2+ had a positive effect on the thermal stability of this enzyme. At 40 degrees C, transglutaminase was quite stable in the presence of Ca2+ (in its absence, the half-life was 65 min) and at 45 degrees C, its thermostability had been considerably increased, the half-life being raised from 47 min to 275 min.  相似文献   

11.
Uptake hydrogenase (EC 1.12) from Azotobacter vinelandii has been purified 250-fold from membrane preparations. Purification involved selective solubilization of the enzyme from the membranes, followed by successive chromatography on DEAE-cellulose, Sephadex G-100, and hydroxylapatite. Freshly isolated hydrogenase showed a specific activity of 110 mumol of H2 uptake (min X mg of protein)-1. The purified hydrogenase still contained two minor contaminants that ran near the front on sodium dodecyl sulfate-polyacrylamide gels. The enzyme appears to be a monomer of molecular weight near 60,000 +/- 3,000. The pI of the protein is 5.8 +/- 0.2. With methylene blue or ferricyanide as the electron acceptor (dyes such as methyl or benzyl viologen with negative midpoint potentials did not function), the enzyme had pH optima at pH 9.0 or 6.0, respectively, It has a temperature optimum at 65 to 70 degrees C, and the measured half-life for irreversible inactivation at 22 degrees C by 20% O2 was 20 min. The enzyme oxidizes H2 in the presence of an electron acceptor and also catalyzes the evolution of H2 from reduced methyl viologen; at the optimal pH of 3.5, 3.4 mumol of H2 was evolved (min X mg of protein)-1. The uptake hydrogenase catalyzes a slow deuterium-water exchange in the absence of an electron acceptor, and the highest rate was observed at pH 6.0. The Km values varied widely for different electron acceptors, whereas the Km for H2 remained virtually constant near 1 to 2 microM, independent of the electron acceptors.  相似文献   

12.
Thermococcus celer cells contain a single hydrogenase located in the cytoplasm, which has been purified to apparent homogeneity using three chromatographic steps: Q-Sepharose, DEAE-Fast Flow, and Sephacryl S-200. In vitro assays demonstrated that this enzyme was able to catalyze the oxidation as well as the evolution of H2. T. celer hydrogenase had an apparent MW of 155,000+/-30,000 by gel filtration. When analyzed by SDS polyacrylamide gel electrophoresis a single band of 41,000+/-2,000 was detected. Hydrogenase activity was also detected in situ in a SDS polyacrylamide gel followed by an activity staining procedure revealing a single band corresponding to a protein of apparent Mr 84,000+/-3,000. Measurements of iron and acid-labile sulfide in different preparations of T. celer hydrogenase gave values ranging from 24 to 30 g-atoms Fe/mole of protein and 24 to 36 g-atoms of acid-labile sulfide per mole of protein. Nickel is present in 1.9-2.3 atoms per mole of protein. Copper, tungsten, and molybdenum were detected in amounts lower than 0.5 g-atoms per mole of protein. T. celer hydrogenase was inactive at ambient temperature, exhibited a dramatic increase in activity above 70 degrees C, and had an optimal activity above 90 degrees C. This enzyme showed no loss of activity after incubation at 80 degrees C for 28 h, but lost 50% of its initial activity after incubation at 96 degrees C for 20 h. Hydrogenase exhibited a half-life of approximately 25 min in air. However, after treating the air-exposed sample with sodium dithionite, more than 95% of the original activity was recovered. Copper sulfate, magnesium chloride and nitrite were also inactivators of this enzyme.  相似文献   

13.
Enzymes, especially proteases, have become an important and indispensable part of the processes used by the modern food and feed industry to produce a large and diversified range of products for human and animal consumption. A cysteine protease, used extensively in the food industry, was purified from germinated wheat Triticum aestivum (cv. Giza 164) grains through a simple reproducible method consisting of extraction, ion exchange chromatography and gel filtration. The molecular weight of the enzyme was estimated to be 61000+/-1200-62000+/-1500 by SDS-PAGE and gel filtration. The cysteine protease had an isoelectric point and pH optimum at 4.4 and 4.0, respectively. The enzyme exhibited more activity toward azocasein than the other examined substrates with K(m) 2.8+/-0.15 mg azocasein/ml. In addition, it had a temperature optimum of 50 degrees C and based on a heat stability study 55% of its initial activity remained after preincubation of the enzyme at 50 degrees C for 30 min prior to substrate addition. All the examined metal cations inhibited the enzyme except Co(2+), Mg(2+), Mn(2+) and Li(+). The proteolytic activity of the enzyme was inhibited by thiol-specific inhibitors, whereas iodoacetate and p-hydroxymercuribenzoate caused a competitive inhibition with Ki values 6+/-0.3 mM and 21+/-1.2 microM, respectively. Soybean trypsin inhibitor had no effect on the enzyme. The enzyme activity remained almost constant for 150 days of storage at -20 degrees C. The properties of this enzyme, temperature and pH optima, substrate specificity, stability and sensitivity to inhibitors or activators, meet the prerequisites needed for food industries.  相似文献   

14.
The phosphorylation of tyrosine hydroxylase, purified from rat striatum, was investigated using purified Ca2+/calmodulin (CaM)-dependent protein kinase II. This kinase catalyzed the Ca2+-dependent incorporation of up to 0.8 mol 32PO4/mol tyrosine hydroxylase subunit (62 kilodaltons). Reverse-phase high-performance liquid chromatography mapping of tryptic 32P-peptides established that the Ca2+/CaM-dependent protein kinase II phosphorylated a different serine residue than was phosphorylated by the cyclic AMP-dependent protein kinase. Limited proteolysis sequentially reduced the subunit Mr from 62 to 59 kilodaltons and finally to 57 kilodaltons, resulting in loss of the site phosphorylated by the Ca2+/CaM-dependent protein kinase II, but not the site phosphorylated by the cyclic AMP-dependent protein kinase. Phosphorylation by the Ca2+/CaM-dependent protein kinase II had little direct effect on the kinetic properties of tyrosine hydroxylase, but did convert it to a form that could be activated twofold by addition of an activator protein. This heat-labile activator protein increased the Vmax without affecting the Km for the pterin cofactor. This effect was specific in that the activator protein was without effect on nonphosphorylated tyrosine hydroxylase or on tyrosine hydroxylase phosphorylated by the cyclic AMP-dependent protein kinase. These results are consistent with the hypothesis that the "Vmax-type" activation of tyrosine hydroxylase observed upon depolarization of neural and adrenal tissues may be mediated by the Ca2+/CaM-dependent protein kinase II.  相似文献   

15.
Abstract: Tyrosine hydroxylase activity is reversibly modulated by the actions of a number of protein kinases and phosphoprotein phosphatases. A previous report from this laboratory showed that low-molecular-weight substances present in striatal extracts lead to an irreversible loss of tyrosine hydroxylase activity under cyclic AMP-dependent phosphorylation conditions. We report here that ascorbate is one agent that inactivates striatal tyrosine hydroxylase activity with an EC50 of 5.9 μM under phosphorylating conditions. Much higher concentrations (100 mM) fail to inactivate the enzyme under nonphosphorylating conditions. Isoascorbate (EC50, 11 μM) and dehydroascorbate (EC50, 970 μM) also inactivated tyrosine hydroxylase under phosphorylating but not under nonphosphorylating conditions. In contrast, ascorbate sulfate was inactive under phosphorylating conditions at concentrations up to 100 mM. Since the reduced compounds generate several reactive species in the presence of oxygen, the possible protecting effects of catalase, peroxidase, and superoxide dismutase were examined. None of these three enzymes, however, afforded any protection against inactivation. We also examined the effects of ascorbate and its congeners on the activity of tyrosine hydroxylase purified to near homogeneity from a rat pheochromocytoma. This purified enzyme was also inactivated by the same agents that inactivated the impure corpus striatal enzyme. Under conditions in which ascorbate almost completely abolished enzyme activity, we found no indication for significant prote-olysis of the purified enzyme as determined by sodium do-decyl sulfate-polyacrylamide gel electrophoresis. We also found that pretreatment of PC12 cells in culture for 4 h with 1 mM ascorbate, dehydroascorbate, or isoascorbate (but not ascorbate sulfate) also decreased tyrosine hydroxylase activity 25–50%. The inactivation seen under in vitro conditions appears to have a counterpart under more physiological conditions.  相似文献   

16.
Psychrophilic organisms have successfully adapted to various low-temperature environments such as cold ocean waters. Catalysts with increased catalytic efficiencies are produced, generally at the expense of thermal stability due to fewer non-covalent stabilizing interactions. A marine bacterial strain producing a particularly heat-labile alkaline phosphatase was selected from a total of 232 strains isolated from North-Atlantic coastal waters. From partial 16S rRNA sequences the strain was characterized as a Vibrio sp. An alkaline phosphatase was purified 151-fold with 54% yield from the culture medium using a single step affinity chromatography procedure on agarose-linked L-histidyldiazobenzylphosphonic acid. The active enzyme was a 55 +/- 6 kDa monomer. The enzyme had optimal activity at pH 10 and was strikingly heat-labile with a half-life of 6 min at 40 degrees C and 30 min at 32 degrees C. This enzyme from Vibrio sp. had a higher turnover number (k(cat)) and higher apparent Michaelis-Menten factor (K(m)) than the enzyme from Escherichia coli, a clear-indication of cold-adaptation. Inorganic phosphate was a competitive inhibitor with a relatively high K(i) value of 1.7 mM. Low affinity for phosphate may contribute to higher turnover rates due to more facile release of product.  相似文献   

17.
Xue Y  Shao W 《Biotechnology letters》2004,26(19):1511-1515
A thermostable beta-xylosidase from a hyperthermophilic bacterium, Thermotoga maritima, was over-expressed in Escherichia coli using the T7 polymerase expression system. The expressed beta-xylosidase was purified in two steps, heat treatment and immobilized metal affinity chromatography, and gave a single band on SDS-PAGE. The maximum activity on p-nitrophenyl beta-D-xylopyranoside was at 90 degrees C and pH 6.1. The purified enzyme had a half-life of over 22-min at 95 degrees C, and retained over 57% of its activity after holding a pH ranging from 5.4 to 8.5 for 1 h at 80 degrees C. Among all tested substrates, the purified enzyme had specific activities of 275, 50 and 29 U mg(-1) on pNPX, pNPAF, and pNPG, respectively. The apparent Michaelis constant of the beta-xylosidase was 0.13 mM for p NPX with a V (max) of 280 U mg(-1). When the purified beta-xylosidase was added to xylanase, corncob xylan was hydrolized completely to xylose.  相似文献   

18.
A full-length xylanase gene, encoding 326 amino acids belonging to the fungal glycosyl hydrolase family 10, from Aspergillus terreus BCC129 was cloned and sequenced. Sequence analysis suggested that the first 25 amino acids of this enzyme is the signal peptide. Therefore, only the mature xylanase gene of 906 bp was cloned into a yeast expression vector, pPICZalphaA, for heterologous expression in Pichia pastoris. A band of approximately, 33 kDa was observed on the SDS-PAGE gel after one day of methanol induction. The expressed enzyme was purified by gel filtration chromatography. The purified recombinant xylanase demonstrated optimal activity at 60 degrees C, pH 5.0 and a Km of 4.8 +/- 0.07 mg/ml and a Vmax of 757 +/- 14.54 micromol/min mg, using birchwood xylan as a substrate. Additionally, the purified enzyme demonstrated broad pH stability from 4 to 10 when incubated at 40 degrees C for 4 h. It also showed a moderate thermal stability since it retained 90% of its activity when incubated at 50 degrees C, 30 min, making this enzyme a potential use in the animal feed and paper and pulp industries.  相似文献   

19.
Hypoxanthine-guanine phosphoribosyltransferase (HGPRT, EC 2.4.2.8) from a newly characterized thermophile Thermoanaerobacter tengcongensis was expressed in Escherichia coli and purified. Analytical gel filtration suggested that the enzyme exist as a homotetramer in solution. The optimal pH for the forward reaction was found to be 8.0 and the optimal temperature 70 degrees C. The steady-state kinetic characteristics suggest that hypoxanthine is the most effective substrate. This enzyme showed a half-life of 75min at 50 degrees C and no apparent loss of activity after 3 months at 4 degrees C.  相似文献   

20.
Abstract: We have investigated three aspects of the relationship between calcium and tyrosine hydroxylase activity in rat striatum. In the first series of experiments, we examined the hypothesis that the rise in dopamine synthesis during increased impulse flow results from a calcium-induced activation of tyrosine hydroxylase. Calcium (12.5–200 μ M ) had no effect when added to crude enzyme or enzyme partially purified by gel filtration. Moreover, incubation of synaptosomes with excess calcium (up to 3.5 m M ) had little or no effect on dopamine synthesis. Incubation with the depolarizing alkaloid veratridine (75 μ M ) did increase dopamine synthesis, but did not alter the activity of tyrosine hydroxylase subsequently prepared from the synaptosomes, despite the presumed rise in intracellular calcium. In the second series we examined the hypothesis that increased dopamine synthesis after axotomy results from activation of tyrosine hydroxylase owing to a decrease in intracellular calcium. Addition of the calcium chelator EGTA (100 μ M ) to crude or partially purified enzyme was without effect, whereas incubation of synaptosomes with EGTA (500 μM ) decreased cell-free enzyme activity. In the third experimental series we examined the relationship between calcium and activation of tyrosine hydroxylase by dibutyryl cyclic AMP. EGTA failed to alter the increase in the activity of tyrosine hydroxylase prepared from synaptosomes incubated with dibutyryl cyclic AMP. However, it blocked the increase in synaptosomal dopamine synthesis and dopamine content normally produced by the cyclic AMP analogue. Thus, tyrosine hydroxylase does not appear to be activated by either increases or decreases in calcium availability. However, calcium may be important for the maintenance of basal tyrosine hydroxylase activity, and may play an indirect role in the expression of tyrosine hydroxylase activation produced by other means.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号