首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Pyrethroid interactions with dipalmitoyl phosphatidylcholine (DPPC) vesicles have been characterized in bilayers having large and small radii of curvature. The abilities of pyrethroids to alter the gel-fluid phase transition profiles were determined by steady state fluorescence anisotropy and phase-modulation lifetime techniques using the fluorescent probes cis- and trans-parinaric acid. Using the geometric isomers of parinaric acid as membrane probes, pyrethroids were found to lower the phase transition temperature (Tc) of DPPC large multilamellar vesicles with the same order of comparative effectiveness as previously reported using the fluorescent probe 1,6-diphenyl-1,3,5-hexatriene (DPH). Permethrin had a greater depressive effect upon the Tc of DPPC in the small unilamellar vesicle (SUV) system than in the large multilamellar system. Conversely, allethrin was less effective in reducing the Tc of DPPC SUVs. The enhanced effect of permethrin in decreasing the Tc of DPPC SUVs was greatest in regions of more rigid lipid packing, as determined by trans-parinaric acid fluorescence parameters. The results indicate that changes in lipid packing configuration caused by differing bilayer radii of curvature may alter the interactive characteristics of pyrethroids with lipid membranes.  相似文献   

2.
Fluorescence steady-state anisotropy and phase-modulation lifetime techniques have been utilized to study the interactions of pyrethroid compounds with fluid-phase phosphatidylcholine membranes containing the polypeptide gramicidin. This polypeptide is considered to be a model of hydrophobic regions of cellular integral membrane proteins. The pyrethroids disorder lipid packing in cellular membranes and gel-phase liposomes but do not disorder lipid packing in fluid-phase lipid (Stelzer, K.J. and Gordon, M.A. (1984) J. Immunopharmacol. 6, 381-410; (1985) Biochim. Biophys. Acta 812, 361-368) Irrespective of liposomal size, gramicidin incorporation resulted in a substantial increase in anisotropy of the fluorescent probe, 1,6-diphenyl-1,3,5-hexatriene (DPH), in fluid phase lipid. In the absence of gramicidin, permethrin and three other pyrethroids, allethrin, cypermethrin and fenpropathrin, increased DPH anisotropy. In these fluid phase systems, as the protein:lipid ratio was increased, the extent of the pyrethroid-mediated increase in fluorescence anisotropy diminished. Also, the pyrethroids shortened DPH fluorescence lifetimes. At high gramicidin:lipid ratios, permethrin substantially lowered anisotropy in the fluid phase lipid, relative to controls. The data suggest that pyrethroids disturb fluid-phase lipids which have been promoted to a relative state of order by proximity to an integral membrane protein. This type of order is one which is represented by DPH fluorescence anisotropy. A model based on these results is proposed to explain the effects of pyrethroids on lipid packing order in cellular membranes, as determined by DPH fluorescence anisotropy.  相似文献   

3.
Phospho-N-acetylmuramyl-pentapeptide translocase, the initial membrane enzyme in the biosynthesis of peptidoglycan, requires a lipid microenvironment for function. n-Butanol was reversibly intercalated into membranes to perturb the hydrophobic interactions in this microenvironment in order to define further the role of lipid. In the concentration range for maximal stimulation of enzymic activity (0.12-0.18 M), n-butanol causes a 40% decrease in the fluorescence emission of the dansylated product, undecaprenyl diphosphate-(N epsilon-dansyl)pentapeptide. Since no change in emission maximum occurs below 22 degrees C in the presence of 0.12 M n-butanol, it is concluded that intercalation of this alkanol causes an increase in fluidity. Above 22 degrees C this concentration of n-butanol causes both a decrease in the fluorescence emission and a red shift in the emission maximum. It is concluded that a polarity change as well as fluidity change occurs above 22 degrees C. n-Butanol also causes a significant change in the phase transition experienced by the dansylated lipid product. Thus, it is possible with n-alkanols, e.g. n-butanol, to perturb lipid-translocase interactions resulting in an increase in fluidity in the microenvironment of the enzyme. This change in fluidity correlates with a stimulation of enzymic activity.  相似文献   

4.
Differential scanning calorimetry, fluorescence spectroscopy and freeze-fracture electron microscopy have been applied to a study of the reconstituted Ca2+-ATPase proteins from sarcoplasmic reticulum when they are incorporated into pure lipid/water systems. The results obtained with these techniques have been used to examine the effects of this intrinsic protein upon the surrounding lipid at temperatures above and below the main lipid solid-fluid phase transition temperature (Tc). 1. Above this Tc value, the freeze-fracture data show that the proteins are randomly distributed within the plane of the bilayer. The fluorescence data show that as the protein content in the bilayer increases, so does the 'microviscosity'. 2. Below Tc the proteins occur in high protein to lipid patches, separate from the remaining crystalline lipid. The fluorescence data indicate that at these temperatures the presence of the protein causes a decrease in microviscosity, whilst the calorimetric data indicate a decrease in enthalpy of the main lipid transition. 3. A premelting of the high protein to lipid patches formed by phase separation within the lipid bilayers is indicated by the calorimetric and fluorescence data. This observation is used to rationalise the 'anomalous' properties of the dipalmitoyl phosphatidylcholine-ATPase of exhibiting activity at temperatures well below the lipid phase transition at 41 degrees C.  相似文献   

5.
The effects of bacteriorhodopsin (BR) interaction with large dipalmitoylphosphatidylcholine (DPPC) liposomes (approx. 100 nm in diameter) were examined at various BR/DPPC ratios, using differential scanning calorimetry (DSC) and ultrasonic velocimetry (USV). On DSC, the lipid phase transition temperature, Tc, and the half-width of the phase transition peak, delta T1/2, showed significant non-monotonic changes with the increasing BR concentration. Two exponential segments could be distinguished in the dependence of the transition enthalpy change per mol of lipid (delta H/nL) on the BR/DPPC ratio: one corresponding to ratios between 0:1 and 1:64, and another corresponding to ratios between 1:44 and 1:16. A maximal value of delta H/nL was observed for BR/DPPC ratio 1:44, probably corresponding to maximal BR-lipid ordering with each BR molecule being surrounded by two layers of lipid molecules. The nonmonotonic changes of thermodynamical parameters suggest long-distance interactions between regions of altered bilayer structure which form around each BR molecule. The results obtained with USV provided support for the above conclusions. The dependence of ultrasound velocity increment A on BR concentration supplies information on relative changes of membrane volume compressibility. Decreasing volume compressibility is reflected in increasing values of parameter A. Within T less than Tc, the values of A increased with the increasing BR concentration; saturation was observed at BR/DPPC ratio 1:500 (A = A(BR/DPPC]. No significant BR-concentration dependent changes of A were observed at T greater than Tc. From these values the average diameter of the distorted region of lipid bilayer was estimated to be approximately 20 nm.  相似文献   

6.
By means of the scanning differential calorimetry, x-ray diffractometry, and the dynamic light scattering, we have systematically studied the phase and packing properties of dipalmitoylphosphatidylcholine vesicles or multibilayers in the presence of ethanol. We have also determined the partial ternary phase diagram of such dipalmitoylphosphatidylcholine/water/ethanol mixtures. The directly measured variability of the structural bilayer parameters implies that ethanol binding to the phospholipid bilayers increases the lateral as well as the transverse repulsion between the lipid molecules. This enlarges the hydrocarbon tilt (by up to 23 degrees) and molecular area (by < or = 40%). Ethanol-phospholid association also broadens the interface and, thus, promotes lipid headgroup solvation. This results in excessive swelling (by 130%) of the phosphatidylcholine bilayers in aqueous ethanol solutions. Lateral bilayer expansion, moreover, provokes a successive interdigitation of the hydrocarbon chains in the systems with bulk ethanol concentrations of 0.4-1.2 M. The hydrocarbon packing density as well as the propensity for the formation of lamellar gel phases simultaneously increase. The pretransition temperature of phosphatidylcholine bilayers is more sensitive to the addition of alcohol (initial shift: delta Tp = 22 degrees C/mol) than the subtransition temperature (delta Ts reversible 5 degrees C/mol), whereas the chain-melting phase transition temperature is even less affected (delta Tm = 1.8 degrees C/mol). After an initial decrease of 3 degrees for the bulk ethanol concentrations below 1.2 M, the Tm value increases by 2.5 degrees above this limiting concentration. The gel-phase phosphatidylcholine membranes below Tm are fully interdigitated above this limiting concentration. The chain tilt on the fringe of full chain interdigitation is zero and increases with higher ethanol concentrations. Above Tm, some of the lipid molecules are solubilized by the bound ethanol molecules. More highly concentrated ethanol solutions (> 7 M) solubilize the phosphatidylcholine bilayers with fluid chains fully and result in the formation of mixed lipid-alcohol micelles.  相似文献   

7.
LL-37 is a cationic, amphipathic alpha-helical antimicrobial peptide found in humans that kills cells by disrupting the cell membrane. To disrupt membranes, antimicrobial peptides such as LL-37 must alter the hydrophobic core of the bilayer. Differential scanning calorimetry and deuterium ((2)H) NMR experiments on acyl chain perdeuterated lipids demonstrate that LL-37 inserts into the hydrophobic region of the bilayer and alters the chain packing and cooperativity. The results show that hydrophobic interactions between LL-37 and the hydrophobic acyl chains are as important for the ability of this peptide to disrupt lipid bilayers as its electrostatic interactions with the polar headgroups. The (2)H NMR data are consistent with the previously determined surface orientation of LL-37 (Henzler Wildman, K. A., et al. (2003) Biochemistry 42, 6545) with an estimated 5-6 A depth of penetration of the hydrophobic face of the amphipathic helix into the hydrophobic interior of the bilayer. LL-37 also alters the material properties of lipid bilayers, including the area per lipid, hydrophobic thickness, and coefficient of thermal expansion in a manner that varies with lipid type and temperature. Comparison of the effect of LL-37 on 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC-d(31)) and 1,2-dimyristoyl-phosphatidylcholine (DMPC-d(54)) at different temperatures demonstrates the importance of bilayer order in determining the type and extent of disordering and disruption of the hydrophobic core by LL-37. One possible explanation, which accounts for both the (2)H NMR data presented here and the known surface orientation of LL-37 under identical conditions, is that bilayer order influences the depth of insertion of LL-37 into the hydrophobic/hydrophilic interface of the bilayer, altering the balance of electrostatic and hydrophobic interactions between the peptide and the lipids.  相似文献   

8.
The basic protein of myelin binds electrostatically to acidic lipids but has several hydrophobic segments which may penetrate into the lipid bilayer. Calorimetric and spin-label evidence suggests that below the phase transition temperature, Tc, several phase states occur in the complex of phosphatidylglycerol with basic protein, possibly due to differences in the degree of penetration of the protein and/or interdigitation of the lipid acyl chains. One of these states is a metastable state which starts to melt 10 degrees C below the Tc of the pure lipid and then refreezes, with release of heat, into a stable state. The stable state melts near the Tc of the pure lipid but restricts the motion of fatty acid spin-labeled near the terminal methyl much more than does the pure lipid. The relationship between the rate of conversion to the stable state and the degree of penetration of the protein at varying pH, in the range 4--8, and the lipid acyl chain length, in the range 14 to 18 carbons, was investigated. Altering the pH in this range affects protonation of the histidines of the protein but has no effect on the lipid at pH 4 and above. The rate of conversion of the sample to both the metastable state and the stable state decreased with increase in pH for phosphatidylglycerol with all lipid chain lengths. It also decreased with decreasing chain length at constant pH. This suggested that the lipid could refreeze into the stable state more readily if a smaller proportion of the total bilayer thickness was occupied by the hydrophobic segments of the protein. The consistency of these results with the concept of penetration of portions of the protein partway into the bilayer lends support to this hypothesis.  相似文献   

9.
The cytoplasmic surface of the BR (initial) state of bacteriorhodopsin is characterized by a cluster of three carboxylates that function as a proton-collecting antenna. Systematic replacement of most of the surface carboxylates indicated that the cluster is made of D104, E161, and E234 (Checover, S., Y. Marantz, E. Nachliel, M. Gutman, M. Pfeiffer, J. Tittor, D. Oesterhelt, and N. Dencher. 2001. Biochemistry. 40:4281-4292), yet the BR state is a resting configuration; thus, its proton-collecting antenna can only indicate the presence of its role in the photo-intermediates where the protein is re-protonated by protons coming from the cytoplasmic matrix. In the present study we used the D96N and the triple (D96G/F171C/F219L) mutant for monitoring the proton-collecting properties of the protein in its late M state. The protein was maintained in a steady M state by continuous illumination and subjected to reversible pulse protonation caused by repeated excitation of pyranine present in the reaction mixture. The re-protonation dynamics of the pyranine anion was subjected to kinetic analysis, and the rate constants of the reaction of free protons with the surface groups and the proton exchange reactions between them were calculated. The reconstruction of the experimental signal indicated that the late M state of bacteriorhodopsin exhibits an efficient mechanism of proton delivery to the unoccupied-most basic-residue on its cytoplasmic surface (D38), which exceeds that of the BR configuration of the protein. The kinetic analysis was carried out in conjunction with the published structure of the M state (Sass, H., G. Büldt, R. Gessenich, D. Hehn, D. Neff, R. Schlesinger, J. Berendzen, and P. Ormos. 2000. Nature. 406:649-653), the model that resolves most of the cytoplasmic surface. The combination of the kinetic analysis and the structural information led to identification of two proton-conducting tracks on the protein's surface that are funneling protons to D38. One track is made of the carboxylate moieties of residues D36 and E237, while the other is made of D102 and E232. In the late M state the carboxylates of both tracks are closer to D38 than in the BR (initial) state, accounting for a more efficient proton equilibration between the bulk and the protein's proton entrance channel. The triple mutant resembles in the kinetic properties of its proton conducting surface more the BR-M state than the initial state confirming structural similarities with the BR-M state and differences to the BR initial state.  相似文献   

10.
In order to account for the large variety of kinetic phenomena in the light-induced reactions of bacteriorhodopsin's retinal chromophore (BR), a scheme of parallel photocycles has been proposed [W. Eisfeld, C. Pusch, R. Diller, R. Lohrmann and M. Stockburger, Biochemistry, 32 (1993) 7196-7215]. In the present study an experimental test for the validity of this model is described which is based on the fact that in the alkaline region the longest-living intermediates M(f), M(S) or N in each of the proposed cycles have significantly different lifetimes. A condition for the existence of parallel cycles would be that the population of M(f), M(S) or N is accompanied by a respective depletion of BR in each individual cycle. Dual-beam laser experiments were performed which showed that this condition is fulfilled. It is concluded that those proton transfer steps which are important for the function as a proton pump are the same for all cycles.  相似文献   

11.
BAFF/BLyS, a member of the tumor necrosis family (TNF) superfamily of ligands, is a crucial survival factor for B cells. BAFF binds three receptors, TACI, BCMA, and BR3, with signaling through BR3 being essential for promoting B cell function. Typical TNF receptor (TNFR) family members bind their cognate ligands through interactions with two cysteine-rich domains (CRDs). However, the extracellular domain (ECD) of BR3 consists of only a partial CRD, with cysteine spacing distinct from other modules described previously. Herein, we report the solution structure of the BR3 ECD. A core region of only 19 residues adopts a stable structure in solution. The BR3 fold is analogous to the first half of a canonical TNFR CRD but is stabilized by an additional noncanonical disulfide bond. BAFF-binding determinants were identified by shotgun alanine-scanning mutagenesis of the BR3 ECD expressed on phage. Several of the key BAFF-binding residues are presented from a beta-turn that we have shown previously to be sufficient for ligand binding when transferred to a structured beta-hairpin scaffold [Kayagaki, N., Yan, M., Seshasayee, D., Wang, H., Lee, W., French, D. M., Grewal, I. S., Cochran, A. G., Gordon, N. C., Yin, J., Starovasnik, M. A, and Dixit, V. M. (2002) Immunity 10, 515-524]. Outside of the turn, mutagenesis identifies additional hydrophobic contacts that enhance the BAFF-BR3 interaction. The crystal structure of the minimal hairpin peptide, bhpBR3, in complex with BAFF reveals intimate packing of the six-residue BR3 turn into a cavity on the ligand surface. Thus, BR3 binds BAFF through a highly focused interaction site, unprecedented in the TNFR family.  相似文献   

12.
A combined experimental and theoretical study is performed on binary dilauroylphosphatidylcholine/distearoylphosphatidylcholine (DLPC/DSPC) lipid bilayer membranes incorporating bacteriorhodopsin (BR). The system is designed to investigate the possibility that BR, via a hydrophobic matching principle related to the difference in lipid bilayer hydrophobic thickness and protein hydrophobic length, can perform molecular sorting of the lipids at the lipid-protein interface, leading to lipid specificity/selectivity that is controlled solely by physical factors. The study takes advantage of the strongly nonideal mixing behavior of the DLPC/DSPC mixture and the fact that the average lipid acyl-chain length is strongly dependent on temperature, particularly in the main phase transition region. The experiments are based on fluorescence energy transfer techniques using specifically designed lipid analogs that can probe the lipid-protein interface. The theoretical calculations exploit a microscopic molecular interaction model that embodies the hydrophobic matching as a key parameter. At low temperatures, in the gel-gel coexistence region, experimental and theoretical data consistently indicate that BR is associated with the short-chain lipid DLPC. At moderate temperatures, in the fluid-gel coexistence region, BR remains in the fluid phase, which is mainly composed of short-chain lipid DLPC, but is enriched at the interface between the fluid and gel domains. At high temperatures, in the fluid phase, BR stays in the mixed lipid phase, and the theoretical data suggest a preference of the protein for the long-chain DSPC molecules at the expense of the short-chain DLPC molecules. The combined results of the experiments and the calculations provide evidence that a molecular sorting principle is active because of hydrophobic matching and that BR exhibits physical lipid selectivity. The results are discussed in the general context of membrane organization and compartmentalization and in terms of nanometer-scale lipid-domain formation.  相似文献   

13.
J E Baatz  B Elledge  J A Whitsett 《Biochemistry》1990,29(28):6714-6720
The effects of bovine pulmonary surfactant-associated protein B (SP-B) on molecular packing of model membrane lipids (7:1 DPPC/DPPG) were studied by fluorescence anisotropy. The bilayer surface was markedly ordered by SP-B below the gel to fluid phase transition temperature (Tc) while it was only slightly ordered above this temperature as indicated by surface-sensitive probes 6-NBD-PC and 6-NBD-PG. The effects of SP-B on fluorescence anisotropy were concentration dependent, reaching maximal activity at 1-2% protein to phospholipid by weight. Anisotropy measurements of interior-selective fluorescent probes (cis-parinaric acid and DPH) imply that addition of SP-B into the phospholipid shifted the Tc of the model membrane but did not alter lipid order at the membrane interior. Since fluorescence anisotropy studies with trans-parinaric acid, an interior-sensitive probe with high affinity for gel-phase lipids, did not detect any changes in lipid packing or Tc, it is likely that SP-B resides primarily in fluid-phase domains. Fluorescence lifetime measurements indicated that two conformers of the NBD-PC probe exist in this DPPC/DPPG model membrane system. Fluorescence intensity measurements generated with NBD-PC and NBD-PG, in conjunction with information from lifetime measurements, support the concept that SP-B increases the distribution of the short-lifetime conformer in the gel phase. In addition, the anisotropy and intensity profiles of NBD-PG in the model membrane indicate that bovine SP-B interacts selectively with phosphatidylglycerol.  相似文献   

14.
Bacteriophage M13 major coat protein has been isolated with cholate and reconstituted in dimyristoyl- and dioleoylphosphatidylcholine (DMPC and DOPC, respectively) bilayers by dialysis. Fourier transform infrared spectra of DMPC/coat protein recombinants confirmed that, whereas the protein isolated by phenol extraction was predominantly in a beta-sheet conformation, the cholate-isolated coat protein contained a higher proportion of the alpha-helical conformation [cf. Spruijt, R. B., Wolfs, C. J. A. M., & Hemminga, M. A. (1989) Biochemistry 28, 9158-9165]. The cholate-isolated coat protein/lipid recombinants gave different electron spin resonance (ESR) spectral line shapes of incorporated lipid spin labels, as compared with those from recombinants with the phenol-extracted protein that were studied previously [Wolfs, C. J. A. M., Horváth, L. I., Marsh, D., Watts, A., & Hemminga, M. A. (1989) Biochemistry 28, 9995-10001]. Plots of the ratio of the fluid/motionally restricted components in the ESR spectra of spin-labeled phosphatidylglycerol were linear with respect to the lipid/protein ratio in the recombinants up to 20 mol/mol. The corresponding values of the relative association constants, Kr, and number of association sites, N1, on the protein were Kr approximately 1 and N1 approximately 4 for DMPC recombinants and Kr approximately 1 and N1 approximately 5 for DOPC recombinants. Simulation of the two-component lipid spin label ESR spectra with the exchange-coupled Bloch equations gave values for the off-rate of the lipids leaving the protein surface of 2.0 x 10(7) s-1 at 27 degrees C in DMPC recombinants and 3.0 x 10(7) s-1 at 24 degrees C in DOPC recombinants.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
The results of a calorimetric study of type I collagen fibrillogenesis were analyzed. The dependence of the half-width of the temperature transition of a collagen solution on the concentration and temperature of collagen formation was studied. It was demonstrated that, by varying temperature and collagen concentration, one can regulate the density of packing and dimensions of cooperative fibril blocks. At temperatures below the physiological level (25 degrees C and 30 degrees C), and a relatively low concentration of collagen (0.3 mg/ml), fibrils with the lowest density of packing are formed. The degree of order does not change as the collagen concentration increases twofold but grows as the concentration increases fourfold. It was shown that, at the physiological temperature (35 degrees C), fibrils with a dense packing of molecules are formed at all collagen concentrations studied. The value of fibril formation enthalpy is minimal at a temperature of 35 degrees C, pH 7.2, an ionic strength of 0.17 M and a concentration of 1.2 mg/ml. Based on the results obtained, a conclusion was made that the packing density of fibrils formed at physiological temperature does not depend on collagen concentration over the concentration range of 0.3 - 1.2 mg/ml.  相似文献   

16.
beta-Amyloid peptide (A beta) is the primary constituent of senile plaques, a defining feature of Alzheimer's disease. Aggregated A beta is toxic to neurons, but the mechanism of toxicity is uncertain. One hypothesis is that interactions between A beta aggregates and cell membranes mediate A beta toxicity. Previously, we described a positive correlation between the A beta aggregation state and surface hydrophobicity, and the ability of the peptide to decrease fluidity in the center of the membrane bilayer [Kremer, J. J., et al. (2000) Biochemistry 39, 10309--10318]. In this work, we report that A beta aggregates increased the steady-state anisotropy of 1,6-diphenyl-1,3,5-hexatriene (DPH) embedded in the hydrophobic center of the membrane in phospholipids with anionic, cationic, and zwitterionic headgroups, suggesting that specific charge--charge interactions are not required for A beta--membrane interactions. A beta did not affect the fluorescence lifetime of DPH, indicating that the increase in anisotropy is due to increased ordering of the phospholipid acyl chains rather than changes in water penetration into the bilayer interior. A beta aggregates affected membrane fluidity above, but not below, the lipid phase-transition temperature and did not alter the temperature or enthalpy of the phospholipid phase transition. A beta induced little to no change in membrane structure or water penetration near the bilayer surface. Overall, these results suggest that exposed hydrophobic patches on the A beta aggregates interact with the hydrophobic core of the lipid bilayer, leading to a reduction in membrane fluidity. Decreases in membrane fluidity could hamper functioning of cell surface receptors and ion channel proteins; such decreases have been associated with cellular toxicity.  相似文献   

17.
G Váró  J K Lanyi 《Biochemistry》1990,29(9):2241-2250
The photocycle of bacteriorhodopsin (BR) was studied at alkaline pH with a gated multichannel analyzer, in order to understand the origins of kinetic complexities in the rise and decay of the M intermediate. The results indicate that the biphasic rise and decay kinetics are unrelated to a photoreaction of the N intermediate of the BR photocycle, proposed earlier by others [Kouyama et al. (1988) Biochemistry 27, 5855-5863]. Rather, under conditions where N did not accumulate in appreciable amounts (high pH, low salt concentration), they were accounted for by conventional kinetic schemes. These contained reversible interconversions, either M in equilibrium with N in one of two parallel photocycles or L in equilibrium with as well as M in equilibrium with N in a single photocycle. Monomeric BR also showed these kinetic complications. Conditions were then created where N accumulated in a photo steady state (high pH, high salt concentration, background illumination). The apparent increase in the proportion of the slow M decay component by the background illumination could be quantitatively accounted for with the single photocycle model, by the mixing of the relaxation of the background light induced photo steady state with the inherent kinetics of the photocycle. Postulating a new M intermediate which is produced by the photoreaction of N was neither necessary nor warranted by the data. The difference spectra suggested instead that absorption of light by N generates only one intermediate, observable between 100 ns and 1 ms, which absorbs near 610 nm. Thus, the photoreaction of N resembles in some respects that of BR containing 13-cis-retinal.  相似文献   

18.
The packing of lipids into different aggregates, such as spheres, rods, or bilayers, is dependent on the hydrophobic volume, the hydrocarbon-water interfacial area, and the hydrocarbon chain length of the participating molecules, according to the self-assembly theory [Israelachvili, J. N., Marcelja, S., & Horn, R. G. (1980) Q. Rev. Biophys. 13, 121-200]. The origin of the participating molecules should be of no importance with respect to their abilities to affect the above-mentioned parameters. In this investigation, Acholeplasma laidlawii, with a defined acyl chain composition of the membrane lipids, has been grown in the presence of three different classes of foreign molecules, known to partition into model and biological membranes. This results in an extensive metabolic alteration in the lipid polar head group composition, which is expressed as changes in the molar ratio between the lipids monoglucosyldiglyceride (MGDG) and diglucosyldiglyceride (DGDG), forming reversed hexagonal and lamellar phases in excess water, respectively. The formation of nonlamellar phases by A. laidlawii lipids depends critically upon the MGDG concentration [Lindblom, G., Brentel, I., Sj?lund, M., Wikander, G., & Wieslander, A. (1986) Biochemistry (preceding paper in this issue)]. The foreign molecules tested belong to the following groups: nonpolar organic solvents, alcohols, and detergents. Their effects on the gel to liquid crystalline phase transition temperature (Tm), on the order parameter of the acyl chains, and on the phase equilibria between lamellar and nonlamellar liquid crystalline phases in lipid-water model systems are known in several instances.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Recently, neutron diffraction experiments have revealed well-resolved and reversible changes in the protein conformation of bacteriorhodopsin (BR) between the light-adapted ground state and the M-intermediate of the proton pumping photocycle (Dencher, Dresselhaus, Zaccai and Büldt (1989) Proc. Natl. Acad. Sci. USA 86, 7876-7879). These changes are triggered by the light-induced isomerization of the chromophore retinal from the all-trans to the 13-cis configuration. Dark-adapted purple membranes contain a mixture of two pigment species with either the all-trans- or 13-cis-retinal isomer as chromophore. Employing a time-resolved neutron diffraction technique, no changes in protein conformation in the resolution regime of up to 7 A are observed during the transition between the two ground-state species 13-cis-BR and all-trans-BR. This is in line with the fact that the conversion of all-trans BR to 13-cis-BR involves an additional isomerization about the C15 = N Schiff's base bond, which in contrast to M formation minimizes retinal displacement and keeps the Schiff's base in the original protein environment. Furthermore, there is no indication for large-scale redistribution of water molecules in the purple membrane during light-dark adaptation.  相似文献   

20.
Isolated complexes of apolipoprotein A-I (apoA-I), the major apoprotein of human plasma high-density lipoproteins, and dimyristoylphosphatidylcholine (DMPC) have been prepared and studied by differential scanning calorimetry (DSC) and Raman spectroscopy. DSC studies establish that complexes having lipid to protein ratios of 200, 100, and 50 to 1 each exhibit a broad reversible thermal transition at Tc = 27 degrees C. The enthalpy of lipid melting for each of the three complexes is about 3 kcal/mol of DMPC. Raman spectroscopy indicates that the physical state of lipid molecules in the complexes is different from that in DMPC multilamellar liposomes. Analysis of the C-H stretching region (2800-3000 cm-1) of the complexes and of the pure components in water suggests that below 24 degrees C (Tc for DMPC) there is considerably less lateral order among lipid acyl chains in the complexes than in DMPC liposomes. Above 24 degrees C, these types of interactions appear to contribute equally or slightly less to the complex structure than in pure DMPC. The temperature dependence of peaks in the C-C stretching region (1000-1180 cm-1) reveals a continuous increase in the number of lipid acyl chain C-C gauche isomers over a broad range with increasing temperature. Compared to liposomes, DMPC in the complexes has more acyl chain trans isomers at temperatures above 24 degrees C; at temperatures above ca. 30 degrees C, trans isomer content is about the same for complexes and liposomes. A large change was observed in a protein vibrational band at 1340 cm-1 for pure vs. complexed apoA-I, indicating that protein hydrocarbon side chains are immobilized by lipid binding. The Raman data indicate that the reduction in melting enthalpy for complexes DMPC (approximately 3 kcal/mol) compared to that for free DMPC (approximately 6 kcal/mol) is due to reduced van der Waals interactions in the low-temperature lipid phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号