首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dopamine (DA) quinone as DA neuron-specific oxidative stress conjugates with cysteine residues in functional proteins to form quinoproteins. Here, we examined the effects of cysteine-rich metal-binding proteins, metallothionein (MT)-1 and -2, on DA quinone-induced neurotoxicity. MT quenched DA semiquinones in vitro. In dopaminergic cells, DA exposure increased quinoproteins and decreased cell viability; these were ameliorated by pretreatment with MT-inducer zinc. Repeated L-DOPA administration markedly elevated striatal quinoprotein levels and reduced the DA nerve terminals specifically on the lesioned side in MT-knockout parkinsonian mice, but not in wild-type mice. Our results suggested that intrinsic MT protects against L-DOPA-induced DA quinone neurotoxicity in parkinsonian mice by its quinone-quenching property.  相似文献   

2.
Hypoglycaemic coma and brain injury are potential complications of insulin therapy. Hippocampal neurons are particularly vulnerable to hypoglycaemic stress leading to memory impairment. In the present article, we have investigated the dopamine (DA) content, homovanillic acid (HVA)/DA turnover ratio, DA D1 and DA D2 receptors in the hippocampus of insulin-induced hypoglycaemic (IIH) and streptozotocin induced diabetic rats where brain functions are impaired. The DA content decreased significantly in hippocampus of diabetic, diabetic +IIH and control +IIH rats compared to control. The HVA/DA turnover ratio also increased significantly in diabetic, diabetic +IIH and control +IIH rats compared to control. Scatchard analysis using [3H] DA in the hippocampus showed a significant increase in DA receptors of diabetic, diabetic +IIH and control +IIH rats with decreased affinity. Gene expression studies using Real-time PCR showed an increased expression of DA D1 and DA D2 receptors in the hippocampus of hypoglycaemic and diabetic rats. Our results indicate that the dopaminergic system is impaired in the hippocampus of hypoglycaemic and hyperglycaemic rats impairing DA related functions of hippocampus. We observed a prominent dopaminergic functional disturbance in the hypoglycaemic condition than in hyperglycaemia compared to control. This dopaminergic dysfunction in hippocampus during hypoglycaemia and hyperglycaemia is suggested to contribute to cognitive and memory deficits. This will have clinical significance in the treatment of diabetes.  相似文献   

3.
Oxidative stress has been reported to be a common underlying mechanism in the pathogenesis of many neurodegenerative disorders such as Alzheimer, Huntington, Creutzfeld–Jakob, and Parkinson disease. Despite the increasing number of articles showing a correlation between oxidative damage and neurodegeneration little is known about the genetic elements that confer protection against the deleterious effects of an oxidative imbalance in neurons. We show that oxygen-induced damage is a direct cause of brain degeneration in Drosophila and establish an experimental setup measuring dopaminergic neuron survival to model oxidative stress-induced neurodegeneration in flies. The overexpression of superoxide dismutase but not catalase was able to protect dopaminergic neurons against oxidative imbalance under hyperoxia treatment. In an effort to identify new genes involved in the process of oxidative stress-induced neurodegeneration, we have carried out a genome-wide expression analysis to identify genes whose expression is upregulated in fly heads under hyperoxia. Among them, a number of mitochondrial and cytoplasmic chaperones could be identified and were shown to protect dopaminergic neurons when overexpressed, thus validating our approach to identifying new genes involved in the neuronal defense mechanism against oxidative stress.  相似文献   

4.
1-Methyl-4-phenylpyridinium (MPP+), the active metabolite of the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, selectively kills dopaminergic neurons in vivo and in vitro via a variety of toxic mechanisms, including mitochondrial dysfunction, generation of peroxynitrite, induction of apoptosis, and oxidative stress due to disruption of vesicular dopamine (DA) storage. To investigate the effects of acute MPP+ exposure on neuronal DA homeostasis, we measured stimulation-dependent DA release and non-exocytotic DA efflux from mouse striatal slices and extracellular, intracellular, and cytosolic DA (DAcyt) levels in cultured mouse ventral midbrain neurons. In acute striatal slices, MPP+ exposure gradually decreased stimulation-dependent DA release, followed by massive DA efflux that was dependent on MPP+ concentration, temperature, and DA uptake transporter activity. Similarly, in mouse midbrain neuronal cultures, MPP+ depleted vesicular DA storage accompanied by an elevation of cytosolic and extracellular DA levels. In neuronal cell bodies, increased DAcyt was not due to transmitter leakage from synaptic vesicles but rather to competitive MPP+-dependent inhibition of monoamine oxidase activity. Accordingly, monoamine oxidase blockers pargyline and l-deprenyl had no effect on DAcyt levels in MPP+-treated cells and produced only a moderate effect on the survival of dopaminergic neurons treated with the toxin. In contrast, depletion of intracellular DA by blocking neurotransmitter synthesis resulted in ∼30% reduction of MPP+-mediated toxicity, whereas overexpression of VMAT2 completely rescued dopaminergic neurons. These results demonstrate the utility of comprehensive analysis of DA metabolism using various electrochemical methods and reveal the complexity of the effects of MPP+ on neuronal DA homeostasis and neurotoxicity.  相似文献   

5.
It is believed that both mitochondrial dysfunction and oxidative stress play important roles in the pathogenesis of Parkinson's disease (PD). We studied the effect of chronic systemic exposure to the mitochondrial inhibitor rotenone on the uptake, content, and release of striatal neurotransmitters upon neuronal activity and oxidative stress, the latter simulated by H(2)O(2) perfusion. The dopamine content in the rat striatum is decreased simultaneously with the progressive loss of tyrosine hydroxylase (TH) immunoreactivity in response to chronic intravenous rotenone infusion. However, surviving dopaminergic neurons take up and release only a slightly lower amount of dopamine (DA) in response to electrical stimulation. Striatal dopaminergic neurons showed increased susceptibility to oxidative stress by H(2)O(2), responding with enhanced release of DA and with formation of an unidentified metabolite, which is most likely the toxic dopamine quinone (DAQ). In contrast, the uptake of [(3)H]choline and the electrically induced release of acetylcholine increased, in coincidence with a decline in its D(2) receptor-mediated dopaminergic control. Thus, oxidative stress-induced dysregulation of DA release/uptake based on a mitochondrial deficit might underlie the selective vulnerability of dopaminergic transmission in PD, causing a self-amplifying production of reactive oxygen species, and thereby contributing to the progressive degeneration of dopaminergic neurons.  相似文献   

6.
Mitochondrial dysfunction and oxidative stress are considered central in dopaminergic neurodegeneration in Parkinson's disease (PD). Oxidative stress occurs when the endogenous antioxidant systems are overcome by the generation of reactive oxygen species (ROS). A plausible source of oxidative stress, which could account for the selective degeneration of dopaminergic neurons, is the redox chemistry of dopamine (DA) and leads to the formation of ROS and reactive dopamine-quinones (DAQs). Superoxide dismutase 2 (SOD2) is a mitochondrial enzyme that converts superoxide radicals to molecular oxygen and hydrogen peroxide, providing a first line of defense against ROS. We investigated the possible interplay between DA and SOD2 in the pathogenesis of PD using enzymatic essays, site-specific mutagenesis, and optical and high-field-cw-EPR spectroscopies. Using radioactive DA, we demonstrated that SOD2 is a target of DAQs. Exposure to micromolar DAQ concentrations induces a loss of up to 50% of SOD2 enzymatic activity in a dose-dependent manner, which is correlated to the concomitant formation of protein aggregates, while the coordination geometry of the active site appears unaffected by DAQ modifications. Our findings support a model in which DAQ-mediated SOD2 inactivation increases mitochondrial ROS production, suggesting a link between oxidative stress and mitochondrial dysfunction.  相似文献   

7.
Altered glutamatergic neurotransmission and neuronal metabolic dysfunction appear to be central to the pathophysiology of Parkinson’s disease (PD). The substantia nigra pars compacta—the area where the primary pathological lesion is located—is particularly exposed to oxidative stress and toxic and metabolic insults. A reduced capacity to cope with metabolic demands, possibly related to impaired mitochondrial function, may render nigral neurons highly vulnerable to the effects of glutamate, which acts as a neurotoxin in the presence of impaired cellular energy metabolism. In this way, glutamate may participate in the pathogenesis of PD. Degeneration of dopamine nigral neurons is followed by striatal dopaminergic denervation, which causes a cascade of functional modifications in the activity of basal ganglia nuclei. As an excitatory neurotransmitter, glutamate plays a pivotal role in normal basal ganglia circuitry. With nigrostriatal dopaminergic depletion, the glutamatergic projections from subthalamic nucleus to the basal ganglia output nuclei become overactive and there are regulatory changes in glutamate receptors in these regions. There is also evidence of increased glutamatergic activity in the striatum. In animal models, blockade of glutamate receptors ameliorates the motor manifestations of PD. Therefore, it appears that abnormal patterns of glutamatergic neurotransmission are important in the symptoms of PD. The involvement of the glutamatergic system in the pathogenesis and symptomatology of PD provides potential new targets for therapeutic intervention in this neuro-degenerative disorder.  相似文献   

8.
The phenomenon of aging is known to modulate many disease conditions including neurodegenerative ailments like Parkinson’s disease (PD) which is characterized by selective loss of dopaminergic neurons. Recent studies have reported on such effects, as calorie restriction, in modulating aging in living systems. We reason that PD, being an age-associated neurodegenerative disease might be modulated by interventions like calorie restriction. In the present study we employed the transgenic Caenorhabditis elegans model (Pdat-1::GFP) expressing green fluorescence protein (GFP) specifically in eight dopaminergic (DA) neurons. Selective degeneration of dopaminergic neurons was induced by treatment of worms with 6-hydroxy dopamine (6-OHDA), a selective catecholaminergic neurotoxin, followed by studies on effect of calorie restriction on the neurodegeneration. Employing confocal microscopy of the dopaminergic neurons and HPLC analysis of dopamine levels in the nematodes, we found that calorie restriction has a preventive effect on dopaminergic neurodegeneration in the worm model. We further studied the role of sirtuin, sir-2.1, in modulating such an effect. Studies employing RNAi induced gene silencing of nematode sir-2.1, revealed that presence of Sir-2.1 is necessary for achieving the protective effect of calorie restriction on dopaminergic neurodegeneration.Our studies provide evidence that calorie restriction affords, an sir-2.1 mediated, protection against the dopaminergic neurodegeneration, that might have implications for neurodegenerative Parkinson’s disease.  相似文献   

9.
Oxidative stress and mitochondrial dysfunction, especially at the level of complex I of the electronic transport chain, have been proposed to be involved in the pathogenesis of Parkinson disease (PD). A plausible source of oxidative stress in nigral dopaminergic neurons is the redox reactions that specifically involve dopamine (DA) and produce various toxic molecules, i.e., free radicals and quinone species (DAQ). It has been shown that DA oxidation products can induce various forms of mitochondrial dysfunction, such as mitochondrial swelling and decreased electron transport chain activity. In the present work, we analyzed the potentially toxic effects of DAQ on mitochondria and, specifically, on the NADH and GSH pools. Our results demonstrate that the generation of DAQ in isolated respiring mitochondria triggers the opening of the permeability transition pore most probably by inducing oxidation of NADH, while GSH levels are not affected. We then characterized in vitro, by UV and NMR spectroscopy, the reactivity of different DA-derived quinones, i.e., dopamine-o-quinone (DQ), aminochrome (AC) and indole-quinone (IQ), toward NADH and GSH. Our results indicate a very diverse reactivity for the different DAQ studied that may contribute to unravel the complex molecular mechanisms underlying oxidative stress and mitochondria dysfunction in the context of PD.  相似文献   

10.
The etiology of sporadic Parkinson’s disease (PD) is unknown, although mitochondrial dysfunction and oxidative stress have been implicated in the mechanisms associated with PD pathogenesis. Dopamine (DA) neurons of the substantia nigra pars compacta have been shown to degenerate to a greater extent in PD than other neurons suggesting the possibility that DA itself may be contributing to the neurodegenerative process. This review discusses our work on the effects of DA oxidation and reactive DA quinones on mitochondrial function and protein modification and the potential for exacerbating toxicity associated with mitochondrial dysfunction in PD.  相似文献   

11.
Parkinson's disease (PD) is a progressive and chronic neurodegenerative disorder, characterized by progressive loss of dopaminergic neurons in substantia nigra. The etiology and pathogenesis of PD is still elusive, however, a large body of evidence suggests a prominent role of oxidative stress, inflammation, apoptosis, mitochondrial dysfunction and proteosomal dysfunction in the pathogenesis of PD. Due to multifactorial nature of the disease, currently available drug therapy cannot halt / slow down the disease progression, and only provides symptomatic relief. Peroxisome proliferator-activated receptor (PPAR), a member of nuclear receptor superfamily, regulates development, tissue differentiation, inflammation, mitochondrial function, wound healing, lipid metabolism and glucose metabolism. Recently, several PPAR agonists were shown to exert neuroprotective activity against oxidative damage, inflammation and apoptosis in several neurodegenerative disorders including Alzheimer's, Parkinson's, Huntington's, amyotrophic lateral sclerosis and multiple sclerosis. Similarly, regular intake of PPAR activating non-steroidal anti-inflammatory drugs such as indomethacin and ibuprofen was associated with reduced incidence and progression of neurodegenerative disorders in several epidemiological studies. In this article, we review studies relating to the neuroprotective effect of PPAR agonists in in vitro and in vivo models of PD. Similarly, the pharmacological mechanism in neuroprotective actions of PPAR agonists is also reviewed. In conclusion, PPAR agonists exert neuroprotective actions by regulating the expression of a set of genes involved in cell survival processes, and could be a therapeutic target in debilitating neurodegenerative illnesses such as PD.  相似文献   

12.
Parkinson's disease (PD) is a common neurodegenerative disorder characterized by the loss of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNpc) and its pathogenesis is under intense investigation. Substantial evidence indicates that mitochondrial dysfunction and oxidative stress play central roles in the pathophysiology of PD, through activation of mitochondria-dependent apoptotic molecular pathways. Several mitochondrial internal regulating factors act to maintain mitochondrial function. However, the mechanism by which these internal regulating factors contribute to mitochondrial dysfunction in PD remains elusive. One of these factors, mitochondrial NADP+-dependent isocitrate dehydrogenase (IDH2), has been implicated in the regulation of mitochondrial redox balance and reduction of oxidative stress-induced cell injury. Here we report that IDH2 regulates mitochondrial dysfunction and cell death in MPP+/MPTP-induced DA neuronal cells, and in a mouse model of PD. Down-regulation of IDH2 increased DA neuron sensitivity to MPP+; lowered IDH2 levels facilitated induction of apoptotic cell death due to elevated mitochondrial oxidative stress. Deficient IDH2 also promoted loss of DA SNpc neurons in an MPTP mouse model of PD. Interestingly, Mito-TEMPO, a mitochondrial ROS-specific scavenger, protected degeneration of SNpc DA neurons in the MPTP model of PD. These findings demonstrate that IDH2 contributes to degeneration of the DA neuron in the neurotoxin model of PD and establish IDH2 as a molecular target of potential therapeutic significance for this disabling neurological illness.  相似文献   

13.
Parkinson disease (PD) is a chronic and progressive neurological disease associated with a loss of dopaminergic neurons. In most cases the disease is sporadic but genetically inherited cases also exist. One of the major pathological features of PD is the presence of aggregates that localize in neuronal cytoplasm as Lewy bodies, mainly composed of α-synuclein (α-syn) and ubiquitin. The selective degeneration of dopaminergic neurons suggests that dopamine itself may contribute to the neurodegenerative process in PD. Furthermore, mitochondrial dysfunction and oxidative stress constitute key pathogenic events of this disorder. Thus, in this review we give an actual perspective to classical pathways involving these two mechanisms of neurodegeneration, including the role of dopamine in sporadic and familial PD, as well as in the case of abuse of amphetamine-type drugs. Mutations in genes related to familial PD causing autosomal dominant or recessive forms may also have crucial effects on mitochondrial morphology, function, and oxidative stress. Environmental factors, such as MPTP and rotenone, have been reported to induce selective degeneration of the nigrostriatal pathways leading to α-syn-positive inclusions, possibly by inhibiting mitochondrial complex I of the respiratory chain and subsequently increasing oxidative stress. Recently, increased risk for PD was found in amphetamine users. Amphetamine drugs have effects similar to those of other environmental factors for PD, because long-term exposure to these drugs leads to dopamine depletion. Moreover, amphetamine neurotoxicity involves α-syn aggregation, mitochondrial dysfunction, and oxidative stress. Therefore, dopamine and related oxidative stress, as well as mitochondrial dysfunction, seem to be common links between PD and amphetamine neurotoxicity.  相似文献   

14.
Among various types of neurons affected in Parkinson’s disease, dopamine (DA) neurons of the substantia nigra undergo the most pronounced degeneration. Products of DA oxidation and consequent cellular damage have been hypothesized to contribute to neuronal death. To examine whether elevated intracellular DA will selectively predispose the dopaminergic subpopulation of nigral neurons to damage by an oxidative insult, we first cultured rat primary mesencephalic cells in the presence of rotenone to elevate reactive oxygen species. Although MAP2+ neurons were more sensitive to rotenone-induced toxicity than type 1 astrocytes, rotenone affected equally both DA (TH+) neurons and MAP2+ neurons. In contrast, when intracellular DA concentration was elevated, DA neurons became selectively sensitized to rotenone. Raising intracellular DA levels in primary DA neurons resulted in dopaminergic neuron death in the presence of subtoxic concentrations of rotenone. Furthermore, mitochondrial superoxide dismutase mimetic, manganese (III) meso-tetrakis (4-benzoic acid) porphyrin, blocked activation of caspase-3, and consequent cell death. Our results demonstrate that an inhibitor of mitochondrial complex I and increased cytosolic DA may cooperatively lead to conditions of elevated oxidative stress and thereby promote selective demise of dopaminergic neurons.  相似文献   

15.
Oxidative stress is one of the major and continuous stresses, an organism encounters during its lifetime. Tissues such as the brain, liver and muscles are more prone to damage by oxidative stress due to their metabolic activity, differences in physiological and adaptive processes. One of the defence mechanisms against continuous oxidative stress is a set of small heat shock proteins. αB-Crystallin/HSPB5, a small heat shock protein, gets upregulated under stress and acts as a molecular chaperone. In addition to acting as a molecular chaperone, HSPB5 is shown to have a role in other cytoprotective functions such as inhibition of apoptosis, prevention of oxidative stress and stabilisation of cytoskeletal system. Such protection in vivo, at the organism level, particularly in a tissue-dependent manner, has not been investigated. We have expressed HSPB5 in fat body (liver), neurons and specifically in dopaminergic and motor neurons in Drosophila and investigated its protective effect against paraquat-induced oxidative stress. We observed that expression of HSPB5 in neurons and fat body confers protection against paraquat-induced oxidative stress. Expression in dopaminergic neurons showed a higher protective effect. Our results clearly establish the protective ability of HSPB5 in vivo; the extent of protection, however, varies depending on the tissue in which it is expressed. Interestingly, neuronal expression of HSPB5 resulted in an improvement in negative geotropic behaviour, whereas specific expression in muscle tissue did not show such a beneficial effect.  相似文献   

16.
Oxidative stress has been implicated in the degeneration of dopaminergic neurons in the substantia nigra (SN) of Parkinson's disease (PD) patients. An important biochemical feature of presymptomatic PD is a significant depletion of the thiol antioxidant glutathione (GSH) in these neurons resulting in oxidative stress, mitochondrial dysfunction, and ultimately cell death. We have earlier demonstrated that curcumin, a natural polyphenol obtained from turmeric, protects against peroxynitrite-mediated mitochondrial dysfunction both in vitro and in vivo. Here we report that treatment of dopaminergic neuronal cells and mice with curcumin restores depletion of GSH levels, protects against protein oxidation, and preserves mitochondrial complex I activity which normally is impaired due to GSH loss. Using systems biology and dynamic modeling we have explained the mechanism of curcumin action in a model of mitochondrial dysfunction linked to GSH metabolism that corroborates the major findings of our experimental work. These data suggest that curcumin has potential therapeutic value for neurodegenerative diseases involving GSH depletion-mediated oxidative stress.  相似文献   

17.
Parkinson's disease (PD) is caused by various factors such as reactive oxygen species (ROS), dysfunction of mitochondria, and aggregation of misfolded proteins, thereby leading to loss of dopaminergic (DA) neurons in the substantia nigra (SN) of the brain. Frataxin (FXN) is associated with iron homeostasis and biogenesis of iron-sulfur clusters in the electron transport chain complex. In this study, we investigated the potential of Tat-FXN to cross the blood-brain barrier (BBB) and protect DA neurons against oxidative stress in a mouse model of PD. Tat-FXN was effectively transduced into SH-SY5Y cells and blocked production of ROS and cleavage of DNA, significantly improving cell survival against 1-methyl-4-phenylpyridinium induced toxicity. In addition, Tat-FXN efficiently penetrated the BBB and exhibited a clear neuroprotective effect on tyrosine hydroxylase-specific DA neurons in the SN in a mice model of 1-methyl-4-phenyl-1,2,3,6-tetra-hydropyridine-induced PD. Therefore, these results suggest that Tat-FXN may provide neuroprotective therapy for ROS related diseases including PD.  相似文献   

18.
帕金森病(Parkinson’s disease,PD)主要症状是由中脑黑质致密部(substantia nigra compact,SNc)的多巴胺(dopamine,DA)神经元死亡引起。帕金森病发病过程中,路易小体病理(Lewy pathology,LP)和线粒体功能障碍最为突出,但SNc 多巴胺神经元为什么特别易遭受这两种病理损害尚不清楚。研究表明,与脑内其他神经元相比,SNc 多巴胺神经元具有特殊的解剖形态、生理和生化表型。SNc 多巴胺神经元具有高分支无髓鞘轴突和众多的突触终端,突触末梢物质和能量代谢的高要求需要大量的线粒体,巨大突触终端增加了突触蛋白质的表达、转运和降解的负担。SNc 多巴胺神经元具有独特的自主起搏电活动和缓慢钙振荡特性,Cav1-3钙通道活动及后续的级联反应增加了SNc 多巴胺神经元线粒体负担,增加了基础氧化应激、线粒体损伤和自噬,降低了处理错误折叠蛋白质的能力。SNc 多巴胺神经元特有的神经递质——多巴胺易被氧化成为反应性醌,具有潜在毒性,可破坏葡糖脑苷脂酶导致其活性降低,引起线粒体氧化应激和溶酶体功能障碍。总之,SNc 多巴胺神经元具有的这些内在因素综合起来,可能导致了其对线粒体功能障碍和路易小体病理损伤的易感性,并且SNc 多巴胺神经元所处的神经网络障碍也促使了帕金森病的进展。认识到这些特征会对研究帕金森病相关病理学机制和阻止疾病进展创造新的机会。  相似文献   

19.
PINK1 mutations cause autosomal recessive forms of Parkinson disease (PD). Previous studies suggest that the neuroprotective function of wild-type (WT) PINK1 is related to mitochondrial homeostasis. PINK1 can also localize to the cytosol; however, the cytosolic function of PINK1 has not been fully elucidated. In this study we demonstrate that the extramitochondrial PINK1 can regulate tyrosine hydroxylase (TH) expression and dopamine (DA) content in dopaminergic neurons in a PINK1 kinase activity-dependent manner. We demonstrate that overexpression of full-length (FL) WT PINK1 can downregulate TH expression and DA content in dopaminergic neurons. In contrast, overexpression of PD-linked G309D, A339T, and E231G PINK1 mutations upregulates TH and DA levels in dopaminergic neurons and increases their vulnerability to oxidative stress. Furthermore transfection of FL WT PINK1 or PINK1 fragments with the PINK1 kinase domain can inhibit TH expression, whereas kinase-dead (KD) FL PINK1 or KD PINK1 fragments upregulate TH level. Our findings highlight a potential novel function of extramitochondrial PINK1 in dopaminergic neurons. Deregulation of these functions of PINK1 may contribute to PINK1 mutation-induced dopaminergic neuron degeneration. However, deleterious effects caused by PINK1 mutations may be alleviated by iron-chelating agents and antioxidant agents with DA quinone-conjugating capacity.  相似文献   

20.
帕金森病(Parkinson's disease,PD)是常见的中枢神经系统退行性疾病之一,其主要病理学特征是中脑黑质部的多巴胺(dopamine,DA)能神经元选择性丢失.虽然已发现基因易感性、衰老、环境毒素等因素与PD发病有关,但导致DA能神经元退行性死亡的细胞分子机制仍不明确.DA代谢是DA能神经元中的重要生理过...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号