首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
During eukaryotic translation initiation, 43S ribosomal complex scans mRNA leader unless an AUG codon in an appropriate context is found. Establishing the stable codon–anticodon base-pairing traps the ribosome on the initiator codon and triggers structural rearrangements, which lead to Pi release from the eIF2-bound GTP. It is generally accepted that AUG recognition by the scanning 43S complex sets the final point in the process of start codon selection, while latter stages do not contribute to this process. Here we use translation reconstitution approach and kinetic toe-printing assay to show that after the 48S complex is formed on an AUG codon, in case GTP hydrolysis is impaired, the ribosomal subunit is capable to resume scanning and slides downstream to the next AUG. In contrast to leaky scanning, this sliding is not limited to AUGs in poor nucleotide contexts and occurs after a relatively long pause at the recognized AUG. Thus, recognition of an AUG per se does not inevitably lead to this codon being selected for initiation of protein synthesis. Instead, it is eIF5-induced GTP hydrolysis and Pi release that irreversibly trap the 48S complex, and this complex is further stabilized by eIF5B and 60S joining.  相似文献   

2.
Rhopalosiphum padi virus (RhPV) is an insect virus of the Dicistroviridae family. Recently, the 579-nucleotide-long 5' untranslated region (UTR) of RhPV has been shown to contain an internal ribosome entry site (IRES) that functions efficiently in mammalian, plant, and insect in vitro translation systems. Here, the mechanism of action of the RhPV IRES has been characterized by reconstitution of mammalian 48S initiation complexes on the IRES from purified components combined with the toeprint assay. There is an absolute requirement for the initiation factors eIF2 and eIF3 and the scanning factor eIF1 to form 48S complexes on the IRES. In addition, eIF1A, eIF4F (or the C-terminal fragment of eIF4G), and eIF4A strongly stimulated the assembly of this complex, whereas eIF4B had no effect. Although the eIF4-dependent pathway is dominant in the RhPV IRES-directed cell-free translation, omission of either eIF4G or eIF4A or both still allowed the assembly of 48S complexes from purified components with approximately 23% of maximum efficiency. Deletions of up to 100 nucleotides throughout the 5'-UTR sequence produced at most a marginal effect on the IRES activity, suggesting the absence of specific binding sites for initiation factors. Only deletion of the U-rich unstructured 380-nucleotide region proximal to the initiation codon resulted in a complete loss of the IRES activity. We suggest that the single-stranded nature of the RhPV IRES accounts for its strong but less selective potential to bind key mRNA recruiting components of the translation initiation apparatus from diverse origins.  相似文献   

3.
The pathway of HCV IRES-mediated translation initiation   总被引:12,自引:0,他引:12  
Otto GA  Puglisi JD 《Cell》2004,119(3):369-380
The HCV internal ribosome entry site (IRES) directly regulates the assembly of translation initiation complexes on viral mRNA by a sequential pathway that is distinct from canonical eukaryotic initiation. The HCV IRES can form a binary complex with an eIF-free 40S ribosomal subunit. Next, a 48S-like complex assembles at the AUG initiation codon upon association of eIF3 and ternary complex. 80S complex formation is rate limiting and follows the GTP-dependent association of the 60S subunit. Efficient assembly of the 48S-like and 80S complexes on the IRES mRNA is dependent upon maintenance of the highly conserved HCV IRES structure. This revised model of HCV IRES translation initiation provides a context to understand the function of different HCV IRES domains during translation initiation.  相似文献   

4.
M Niepmann  A Petersen  K Meyer    E Beck 《Journal of virology》1997,71(11):8330-8339
The synthesis of picornavirus polyproteins is initiated cap independently far downstream from the 5' end of the viral RNA at the internal ribosome entry site (IRES). The cellular polypyrimidine tract-binding protein (PTB) binds to the IRES of foot-and-mouth disease virus (FMDV). In this study, we demonstrate that PTB is a component of 48S and 80S ribosomal initiation complexes formed with FMDV IRES RNA. The incorporation of PTB into these initiation complexes is dependent on the entry of the IRES RNA, since PTB and IRES RNA can be enriched in parallel either in 48S or 80S ribosomal complexes by stage-specific inhibitors of translation initiation. The formation of the ribosomal initiation complexes with the IRES occurs slowly, is temperature dependent, and correlates with the incorporation of PTB into these complexes. In a first step, PTB binds to the IRES, and then the small ribosomal subunit encounters this PTB-IRES complex. Mutations in the major PTB-binding site interfere simultaneously with the formation of initiation complexes, translation efficiency, and PTB cross-linking. PTB stimulates translation directed by the FMDV IRES in a rabbit reticulocyte lysate depleted of internal PTB, and the efficiency of translation can be restored to the original level by the addition of PTB. These results indicate that PTB plays an important role in the formation of initiation complexes with FMDV IRES RNA and in stimulation of internal translation initiation with this picornavirus.  相似文献   

5.
A primer extension inhibition (toeprint) assay was developed using ribosomes and ribosomal subunits from Streptomyces lividans. This assay allowed the study of ribosome binding to streptomycete leaderless and leadered mRNA. Purified 30S subunits were unable to form a ternary complex on aph leaderless mRNA, whereas 70S ribosomes could form ternary complexes on this mRNA. 30S subunits formed ternary complexes on leadered aph and malE mRNA. The translation initiation factors (IF1, IF2, and IF3) from S. lividans were isolated and included in toeprint and filter binding assays with leadered and leaderless mRNA. Generally, the IFs reduced the toeprint signal on leadered mRNA; however, incubation of IF1 and IF2 with 30S subunits that had been washed under high-salt conditions promoted the formation of a ternary complex on aph leaderless mRNA. Our data suggest that, as reported for Escherichia coli, initiation complexes with leaderless mRNAs might use a novel pathway involving 70S ribosomes or 30S subunits bound by IF1 and IF2 but not IF3. Some mRNA-ribosome-initiator tRNA reactions that yielded weak or no toeprint signals still formed complexes in filter binding assays, suggesting the occurrence of interactions that are not stable in the toeprint assay.  相似文献   

6.
Chloroplast ribosome-binding sites were identified on the plastidrbcL andpsbA mRNAs using toeprint analysis. TherbcL translation initiation domain is highly conserved and contains a prokaryotic Shine-Dalgarno (SD) sequence (GGAGG) located 4 to 12 nucleotides upstream of the initiator AUG. Toeprint analysis ofrbcL mRNA associated with plastid polysomes revealed strong toeprint signals 15 nucleotides downstream from the AUG indicating ribosome binding at the translation initiation site.Escherichia coli 30S ribosomes generated similar toeprint signals when mixed withrbcL mRNA in the presence of initiator tRNA. These results indicate that plastid SD sequences are functional in chloroplast translation initiation. ThepsbA initiator region lacks a SD sequence within 12 nucleotides of the initiator AUG. However, toeprint analysis of soluble and membrane polysome-associatedpsbA mRNA revealed ribosomes bound to the initiator region.E. coli 30S ribosomes did not associate with thepsbA translation initiation region.E. coli and chloroplast ribosomes bind to an upstream region which contains a conserved SD-like sequence. Therefore, translation initiation onpsbA mRNA may involve the transient binding of chloroplast ribosomes to this upstream SD-like sequence followed by scanning to localize the initiator AUG. Illumination 8-day-old dark-grown barley seedlings caused an increase in polysome-associatedpsbA mRNA and the abundance of initiation complexes bound topsbA mRNA. These results demonstrate that light modulates D1 translation initiation in plastids of older dark-grown barley seedlings.  相似文献   

7.
During eukaryotic translation initiation, ribosomal 43S complexes scan mRNAs for the correct AUG codon at which to begin translation. Start codon recognition triggers GTP hydrolysis, committing the complex to engagement at that point on the mRNA. While fidelity at this step is essential, the nature of the codon recognition event and the mechanism by which it activates GTP hydrolysis are poorly understood. Here we report the changes that occur within the 43S.mRNA complex in response to AUG codon recognition. eIF1 and eIF1A are key players in assembly of 43S.mRNA complexes capable of locating initiation codons. We observed FRET between these two factors when bound to the 40S subunit. Using steady-state FRET, anisotropy, and kinetic analyses, we demonstrate that start codon recognition results in a conformational change and release of eIF1 from the ribosome. These rearrangements probably play a role in triggering GTP hydrolysis and committing the complex to downstream events.  相似文献   

8.
Eukaryotic translation initiation begins with assembly of a 48S ribosomal complex at the 5' cap structure or at an internal ribosomal entry segment (IRES). In both cases, ribosomal positioning at the AUG codon requires a 5' untranslated region upstream from the initiation site. Here, we report that translation of the genomic RNA of human immunodeficiency virus type 2 takes place by attachment of the 48S ribosomal preinitiation complex to the coding region, with no need for an upstream 5' untranslated RNA sequence. This unusual mechanism is mediated by an RNA sequence that has features of an IRES with the unique ability to recruit ribosomes upstream from its core domain. A combination of translation assays and structural studies reveal that sequences located 50 nucleotides downstream of the AUG codon are crucial for IRES activity.  相似文献   

9.
Most eukaryotic initiation factors (eIFs) are required for internal translation initiation at the internal ribosome entry site (IRES) of picornaviruses. eIF4B is incorporated into ribosomal 48S initiation complexes with the IRES RNA of foot-and-mouth disease virus (FMDV). In contrast to the weak interaction of eIF4B with capped cellular mRNAs and its release upon entry of the ribosomal 60S subunit, eIF4B remains tightly associated with the FMDV IRES during formation of complete 80S ribosomes. Binding of eIF4B to the IRES is energy dependent, and binding of the small ribosomal subunit to the IRES requires the previous energy-dependent association of initiation factors with the IRES. The interaction of eIF4B with the IRES in 48S and 80S complexes is independent of the location of the initiator AUG and thus independent of the mechanism by which the small ribosomal subunit is placed at the actual start codon, either by direct internal ribosomal entry or by scanning. eIF4B does not greatly rearrange its binding to the IRES upon entry of the ribosomal subunits, and the interaction of eIF4B with the IRES is independent of the polypyrimidine tract-binding protein, which enhances FMDV translation.  相似文献   

10.
Hinton TM  Li F  Crabb BS 《Journal of virology》2000,74(24):11708-11716
Equine rhinitis A virus (ERAV) has recently been classified as an aphthovirus, a genus otherwise comprised of the different serotypes of Foot-and-mouth disease virus (FMDV). FMDV initiates translation via a type II internal ribosomal entry site (IRES) and utilizes two in-frame AUG codons to produce the leader proteinases Lab and Lb. Here we show that the ERAV 5' nontranslated region also possesses the core structures of a type II IRES. The functional activity of this region was characterized by transfection of bicistronic plasmids into BHK-21 cells. In this system the core type II structures, stem-loops D to L, in addition to a stem-loop (termed M) downstream of the first putative initiation codon, are required for translation of the second reporter gene. In FMDV, translation of Lb is more efficient than that of Lab despite the downstream location of the Lb AUG codon. The ERAV genome also has putative initiation sites in positions similar to those utilized in FMDV, except that in ERAV these are present as two AUG pairs (AUGAUG). Using the bicistronic expression system, we detected initiation from both AUG pairs, although in contrast to FMDV, the first site is strongly favored over the second. Mutational analysis of the AUG codons indicated that AUG2 is the major initiation site, although AUG1 can be accessed, albeit inefficiently, in the absence of AUG2. Further mutational analysis indicated that codons downstream of AUG2 appear to be accessed by a mechanism other than leaky scanning. Furthermore, we present preliminary evidence that it is possible for ribosomes to access downstream of the two AUG pairs. This study reveals important differences in IRES function between aphthoviruses.  相似文献   

11.
After exposure to O2 intermediates generated by the hypoxanthine-xanthine oxidase system (HX-XO), the rate of [3H]phenylalanine incorporation into total proteins in cultured endothelial cells was markedly reduced. This reduction, which was prevented by catalase, could not be explained by 1) changes in amino acid pools, 2) increased rate of degradation of newly synthesized proteins, 3) impaired poly(A)+ RNA synthesis and efficiency, 4) decreased rate of amino acylation. On the other hand, the increase in the monoribosome-to-polyribosome ratio suggested that translation was affected at the level of chain initiation. Further analysis indicated that 40S initiation complex formation was normal, whereas the assembly of 80S initiation complex was inhibited. Results from reconstitution experiments showed that both normal and treated ribosomes could support normal protein synthesis in the presence of normal initiation factors (IFs). In contrast, IFs from HX-XO lysates did not support normal protein synthesis with ribosomes from either source. Thus, the effect of XO treatment on protein synthesis appears to be an initiation defect related to decreased IF activity and/or availability.  相似文献   

12.
13.
The major late 16S mRNA species of simian virus 40 encodes both a 61-amino-acid protein, LP1, and the major virion protein, VP1. Although the initiation signal GCCAUGG is usually utilized at high efficiency, at least one-third of 40S ribosomal subunits bypass it when it is present on the major 16S mRNA of simian virus 40 (S. A. Sedman, P. J. Good, and J. E. Mertz, J. Virol. 63:3884-3893, 1989). The LP1 translation initiation codon is situated 10 bases from the 5' end of this mRNA. To determine whether the short length of the untranslated leader of this mRNA affects the efficiency of translation initiation at the LP1 initiation signal, monkey cells were transfected with plasmids which encode major late 16S-like mRNAs with 5' untranslated regions (UTRs) of 6 or 44 bases. Decreasing the length of the 5' UTR from 44 to 6 bases resulted in a 30% decrease in translation initiation at the LP1 AUG and a threefold increase in synthesis of VP1. When the VP1 open reading frame was replaced with the chloramphenicol acetyltransferase open reading frame, the reduction in 5' UTR length resulted in a 70% decrease in translation initiation at the LP1 AUG and a 30% increase in chloramphenicol acetyltransferase synthesis. Therefore, ribosomes bypass an AUG codon more efficiently when it is located very close to the 5' end of the mRNA.  相似文献   

14.
Human La autoantigen has been shown to influence internal initiation of translation of hepatitis C virus (HCV) RNA. Previously, we have demonstrated that, among the three RRMs of La protein, the RRM2 interacts with HCV internal ribosome entry site (IRES) around the GCAC motif near the initiator AUG present in the stem region of stem-loop IV (SL IV) (Pudi, R., Abhiman, S., Srinivasan, N., and Das S. (2003) J. Biol. Chem. 278, 12231-12240). Here, we have demonstrated that the mutations in the GCAC motif, which altered the binding to RRM2, had drastic effect on HCV IRES-mediated translation, both in vitro and in vivo. The results indicated that the primary sequence of the stem region of SL IV plays an important role in mediating internal initiation. Furthermore, we have shown that the mutations also altered the ability to bind to ribosomal protein S5 (p25), through which 40 S ribosomal subunit is known to contact the HCV IRES RNA. Interestingly, binding of La protein to SL IV region induced significant changes in the circular dichroism spectra of the HCV RNA indicating conformational alterations that might assist correct positioning of the initiation complex. Finally, the ribosome assembly analysis using sucrose gradient centrifugation implied that the mutations within SL IV of HCV IRES impair the formation of functional ribosomal complexes. These observations strongly support the hypothesis that La protein binding near the initiator AUG facilitates the interactions with ribosomal protein S5 and 48 S ribosomal assembly and influences the formation of functional initiation complex on the HCV IRES RNA to mediate efficient internal initiation of translation.  相似文献   

15.
The formation of ribosomal 48S initiation complexes at the start AUG codon of uncapped mRNA leader sequences was studied using the methodology of primer extension inhibition (toe-printing). The experiments were performed in the system composed of purified individual components required for translation initiation. The formation of ribosomal 48S initiation complexes at the initiation codon was tested depending on the presence of the initiation factors eIF4F, eIF4A, and eIF4B. Several mRNAs containing short leader sequences lacking the extended secondary structure were studied. It was found that 48S ribosomal complexes at mRNAs with such leaders were not formed in the absence of eIF4F. In contrast, the removal of either eIF4A or eIF4B from the experimental system was found to be dispensable for the formation of the 48S complex.  相似文献   

16.
The effect on translation of multiple copies of the initiation codon AUG at the initiation site in a eukaryotic mRNA carrying a short leader sequence was tested in translation experiments in vitro. DNA, corresponding to a chimeric mRNA sequence consisting of the 5 leader region of brome mosaic virus (BMV) RNA4 and the goat pre--lactalbumin mRNA sequence, was prepared and transcribed in vitro using SP6 RNA polymerase. Site-directed mutagenesis was carried out to change the sequence around the initiation codon AUG. In a wheat germ translation system, the yield of protein obtained using the mRNA with a duplication of the AUG codons at the initiation site was 1.6 times that achieved when only one AUG was present. The rate of formation of the 80S initiation complex was measured by the ribosome binding assay using cycloheximide. A good correlation was observed between the ability to form the complex and translation efficiency.  相似文献   

17.
Overexpression and activation of the c-Src protein have been linked to the development of a wide variety of cancers. The molecular mechanism(s) of c-Src overexpression in cancer cells is not clear. We report here an internal ribosome entry site (IRES) in the c-Src mRNA that is constituted by both 5′-noncoding and -coding regions. The inhibition of cap-dependent translation by m7GDP in the cell-free translation system or induction of endoplasmic reticulum stress in hepatoma-derived cells resulted in stimulation of the c-Src IRES activities. Sucrose density gradient analyses revealed formation of a stable binary complex between the c-Src IRES and purified HeLa 40 S ribosomal subunit in the absence of initiation factors. We further demonstrate eIF2-independent assembly of 80 S initiation complex on the c-Src IRES. These features of the c-Src IRES appear to be reminiscent of that of hepatitis C virus-like IRESs and translation initiation in prokaryotes. Transfection studies and genetic analysis revealed that the c-Src IRES permitted initiation at the authentic AUG351, which is also used for conventional translation initiation of the c-Src mRNA. Our studies unveiled a novel regulatory mechanism of c-Src synthesis mediated by an IRES element, which exhibits enhanced activity during cellular stress and is likely to cause c-Src overexpression during oncogenesis and metastasis.  相似文献   

18.
19.
A method of analysis of translation initiation complexes by toeprinting has recently acquired a wide application to investigate molecular mechanisms of translation initiation in eukaryotes. So far, this very fruitful approach was used when researchers did not aim to discriminate between patterns of toeprints for 48S and 80S translation initiation complexes. Here, using cap-dependent and internal ribosomal entry site (IRES)-dependent mRNAs, we show that the toeprint patterns for 48S and 80S complexes are distinct whether the complexes are assembled in rabbit reticulocyte lysate or from fully purified individual components. This observation allowed us to demonstrate for the first time a delay in the conversion of the 48S complex into the 80S complex for beta-globin and encephalomyocarditis virus (EMCV) RNAs, and to assess the potential of some 80S antibiotics to block polypeptide elongation. Besides, additional selection of the authentic initiation codon among three consecutive AUGs that follow the EMCV IRES was revealed at steps subsequent to the location of the initiation codon by the 40S ribosomal subunit.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号