首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
2.
IL 2 receptor induction on human T lymphocytes: role for IL 2 and monocytes   总被引:8,自引:0,他引:8  
In this report we studied the requirements for the activation and proliferation of highly purified human T lymphocytes. Purified T cells incubated for 3 days with PHA neither proliferate nor express IL 2 receptors as detected by FACS analysis with the use of anti-Tac antibodies. However, purified T cells incubated with Con A or anti-T3 moAb do not proliferate, albeit 30 to 35% T cells express Tac epitopes. The addition of IL 2, either natural purified or recombinant, resulted in both the appearance of Tac antigen and the proliferation of PHA-activated T cells. Much to our surprise, IL 2 did not induce proliferation of Tac-positive T cells activated by Con A or soluble anti-T3 unless monocytes were added to the cultures. These data suggested that two classes of IL 2 receptors might exist on T cells, one of which was not functionally involved in T cell proliferation. In keeping with this interpretation, we have been able to demonstrate, using a radiolabeled IL 2 binding assay, that anti-T3 moAb induced almost exclusively IL 2 receptors of low affinity (Kd = 30 to 70 X 10(-9) M) and that additional signals, provided by monocytes, are required for the acquisition of high affinity receptors. IL 2 itself can induce high affinity receptors on PHA-stimulated T cells but not on cells activated by Con A or anti-T3. In this latter case the physical presence of monocytes is required and cannot be substituted by IL 1, thus indicating a previously unreported role for monocytes. It is postulated that the contact of monocytes with T cells induces a switch from an inactive low affinity conformation of the IL 2 receptor to a functional high affinity one.  相似文献   

3.
Human peripheral blood monocytes were stimulated with lipopolysaccharide (LPS) and interferon-gamma (IFN-gamma) alone or in combination. Stimulated but not resting monocytes displayed the Tac peptide of the interleukin 2 (IL 2) receptor within 24 hr as measured by immunofluorescence staining and [3H] Tac binding. The total number of anti-Tac binding sites on co-stimulated monocytes was 13,700. By using scatchard analysis with radiolabeled IL 2, the activated cells were shown to express low numbers (below 100 sites/cell) of high affinity binding sites with a KD of approximately 15 pM. LPS and IFN-gamma were additive in augmenting the number of IL 2 and anti-Tac binding sites. By using an ELISA assay specific for the soluble released form of the Tac peptide we identified 112 U/ml of IL 2 receptors in the supernatant of monocytes stimulated for 24 hr with IFN-gamma, 233 U/ml after stimulation with LPS, and 519 U/ml after the addition of both stimulating agents. Both the membrane form (55,000 daltons), as well as the soluble form (45,000 to 50,000 daltons) of the Tac, IL 2 receptor, peptide from monocytes were shown by immunoprecipitation and gel electrophoresis to be similar size to the comparable forms of these receptors derived from activated T cells. In addition, monocytes stimulated for 8 hr contained mRNA specifically hybridizing to a cDNA probe coding for the Tac peptide. Finally, activated monocytes responded to the addition of recombinant IL 2 by an increase in H2O2 production that was measured by using fluorescent indicator 2,7-dichlorofluorescein. This response as well as the observed induction of monocytic IL 2 receptors by LPS may point to a functional role for this receptor during monocyte/macrophage responses to microbial infections.  相似文献   

4.
Several reports indicate that human peripheral blood lymphocytes (PBL) seeded in culture with purified or recombinant interleukin 2 (IL 2) immediately after separation from the blood display a substantial level of proliferation at day 5 or 6, even in the absence of any activating signal. The spontaneously IL 2 proliferating cells are large lymphocytes, and they co-purify on a Percoll gradient in the large granular lymphocytes (third (LGL) fraction) together with the natural killer (NK) activity. When LGL were separated into NKH1 (an NK-specific surface marker)-positive and NKH1-negative cells by fluorescence-activated cell sorting (FACS), proliferating cells were mainly found in the NKH1-negative fraction. On the contrary, when cells from Percoll fraction 3 were separated into OKT3-negative and positive cells, the majority of the proliferating cell was found in the OKT3-positive cells. These results indicate that spontaneously IL 2 proliferating (SIP) cells most probably belong to the T cell lineage, but are distinct from NK cells. Surprisingly, cells from this Percoll fraction examined immediately after separation from the blood do not express detectable amounts of IL 2 receptors as assessed by three different techniques: binding of [3H]IL 2, binding of [125I]anti-Tac antibodies, and FACS analysis with the use of anti-Tac antibodies. However, after 18 hr of culture in IL 2-supplemented medium, 5 to 7% of these cells became Tac-positive by FACS analysis. Additional analysis of IL 2 receptor induced in culture with IL 2 was performed by [125I]anti-TAC binding and by [3H]IL 2 binding. Scatchard analysis of [3H]IL 2 binding, in the range of concentrations leading to the detection of high-affinity binding sites, showed an affinity constant similar to that of conventional phytohemagglutinin blasts. The role of IL 2/IL 2 receptor interaction in the proliferation process was confirmed by the fact that proliferation, in contrast with NK activation, was clearly inhibited by anti-Tac antibodies. When LGL activated with IL 2 for 60 hr were sorted into Tac+ and Tac- cells, equal levels of NK activity was found in the two fractions. Proliferation, however, was only observed in the Tac+ population. We interpret these results to indicate that SIP cells are preactivated cells circulating in the blood. They are large cells and represent a very small proportion of circulating lymphocytes (0.3%). They express a subliminal amount of IL 2 receptor. Cultivated in the presence of IL 2, IL 2 receptor expression is enhanced to a detectable level, and the SIP cells begin to proliferate. These SIP cells could be activated T cells present in every normal individual.  相似文献   

5.
In certain human IgM and IgG cell lines, immunoglobulin (Ig) secretion is highly stimulated by a B cell inducing factor (BIF) that is free of interleukin 2 (IL 2). BIF also induces Ig secretion in purified peripheral blood B cell populations that have been mitogenically stimulated by Staphylococcus aureus bacteria. Low concentrations of IL 2 (less than 20 U/ml) are not active in these systems. We now show that IL 2 at concentrations above 100 U/ml can induce Ig secretion in these blood B cells and B cell lines. Both conventional IL 2, purified from the human JURKAT and gibbon MLA-144 cell lines, and recombinant IL 2 are active. Very high concentrations approaching 10(4) U/ml are optimal for Ig secretion. Antibody to the T cell IL 2 receptor, anti-Tac, did not inhibit stimulation of the IgM cell line SKW6.4 by IL 2, and no Tac antigen was detected on the cells. The 9B11 monoclonal anti-IL 2 antibody that neutralizes T cell growth activity also abrogates stimulation of Ig secretion by conventional and recombinant IL 2 in the SKW6.4 cell line. However, the 1H11 monoclonal anti-(conventional thr3-glycosylated IL 2), which does not neutralize T cell growth activity, does inhibit induction of Ig secretion by the corresponding IL 2 in the B cell line. These results suggest that IL 2 stimulates B cells via a low-affinity interaction with a receptor different from the Tac receptor identified on T cells, and that the active site on the IL 2 molecule for B cells differs from that for T cell targets. If IL 2 promotes Ig secretion by binding with a low affinity to the B cell BIF receptor, IL 2 and BIF could be homologous proteins.  相似文献   

6.
A continuous cell line (YT cells) with inducible receptor for T cell growth factor (TCGF)/interleukin 2 (IL 2) was established from a 15-yr-old boy with acute lymphoblastic lymphoma and thymoma. YT cells were tetraploid, having 4q+ chromosomal markers, and proliferated continuously in vitro without conditioned medium (CM) or IL 2. They were weakly positive for OKT9, OKT11, and Tac antigen (Ag), a determinant closely associated with the receptor for IL 2 (IL 2-R), and were negative for OKT1, OKT3, OKT4, and OKT8 Ag. YT cells also expressed HNK-1 Ag and Fc receptors for IgG, which are expressed on natural killer (NK) cells. They retained a killing activity against human cell lines, including K562 (myeloid), T, and B cell lines. Unlike Tac Ag/IL 2-R(+) cell lines derived from adult T cell leukemia (ATL), YT cells were negative for HTLV, as proved by Southern blotting with cDNA for viral DNA. The expression of Tac Ag was markedly enhanced in 18 hr, when YT cells were incubated with CM from PHA-stimulated peripheral blood leukocytes (PBL) or spleen cells, as determined by immunofluorescence by using flow cytometry and binding assay with 125I-anti-Tac antibody (Ab). The binding study with 125I-labeled recombinant IL 2 showed 3.2 X 10(4) IL 2 receptor sites on YT cells precultured with CM. PHA-P and Con A neither agglutinate nor enhance the expression of IL 2-R/Tac antigen on these non-T cell line cells. Furthermore, neither recombinant IL 2 nor gamma-interferon could induce IL 2-R on YT cells, suggesting the presence of a unique IL 2-R inducing factor in PBL or spleen CM. Unlike Tac Ag on HTLV(+), ATL-derived cell lines (Hut-102, MT-1, ATL-2), the expression of Tac Ag on YT cells was down-regulated by anti-Tac Ab. The induction of Tac Ag/IL 2-R on YT cells seemed specific, because the enhancement of Tac Ag expression was not associated with that of Ia Ag and T9/transferrin receptor.  相似文献   

7.
8.
Association of protein kinase C activation with IL 2 receptor expression   总被引:7,自引:0,他引:7  
Tac antigen (as a measure of the IL 2 receptor) acquisition and regulation by IL 2, an antigen-receptor agonist (anti-T3), phorbol esters, and phytohemagglutinin (PHA) were studied. Phorbol esters stimulated de novo acquisition of Tac antigen, which was associated with the subcellular redistribution of protein kinase C (PK-C) from cytosol to particulate membranes of human T lymphocytes. PHA and anti-T3 (alpha-T3) antibody also stimulated a transient redistribution and activation of PK-C that reached a maximum within 20 min after stimulation. Both phorbol esters and alpha-T3 could increase Tac expression and stimulate PK-C translocation on 5 and 12 day activated T cells that were at the G0/G1 stage of the cell cycle due to IL 2 deprivation. Tac antigen-specific mRNA was seen in the nucleus within 2 hr after stimulation. In contrast, IL 2 alone could only increase Tac expression and stimulate PK-C translocation on day 5 but not day 12 activated T cells. IL 2 synergizes with alpha-T3 and phorbol ester for the regulation of Tac expression. Although IL 2 increased expression of Tac, the majority if not all of these receptors possessed low affinity for IL 2. These data suggest that the activation of PK-C is a common transmembrane signal shared by IL 2 and antigen stimulation. The results also imply that PK-C activation is necessary for the regulation of Tac antigen expression.  相似文献   

9.
The ligand-binding component of high and low affinity IL 2 receptors is a 55,000 m.w. glycoprotein termed Tac. Correlating the structure and function of this molecule should provide insight into the mechanism of IL 2-initiated signal transduction and the structural basis for high and low affinity receptor forms. As a first step in this process, various approaches were used to localize the IL 2 binding region of the Tac molecule. Antibodies prepared to synthetic fragments of Tac were tested for their ability to interfere with IL 2 binding and bioactivity. The results delineated segments in the C-terminal portion of the molecule which appeared to be distal to the ligand binding site. In a more direct approach, radioiodinated IL 2 was cross-linked to high and low affinity receptors, and the resulting complexes were subjected to mild tryptic digestion. Consistent with the antibody data, the IL 2 remained covalently associated with an N-terminal tryptic fragment which apparently consisted of residues 1-83 of the Tac protein. These results suggest that the N-terminal region of the Tac molecule contains important contact sites for ligand-receptor interaction.  相似文献   

10.
Recent studies have shown that IL-2R are composed of at least two polypeptide chains of 55 kDa (Tac or alpha-chain) and 70 to 75 kDa (p70 or beta-chain). The association of both chains forms high affinity IL-2R, whereas each chain alone binds IL-2 with a low (alpha-chain) or intermediate (beta-chain) affinity. So far, the p70 peptide has been found, in the absence of the Tac peptide, on the surface of lymphoid cells of T, B, or NK lineage. In this study, we investigated whether leukemic cells of various hemopoietic lineages expressed the p70 IL-2-binding protein. We found that both fresh leukemic cells obtained from patients, and cells from established leukemic lines of T cells, B cell, and myeloid origin constitutively expressed a p70 IL-2-binding protein on their surface, as detected by affinity cross-linking of radioiodinated IL-2. IL-2 binding and cross-linking to these cells was completely inhibited in the presence of an excess unlabeled rIL-2, but not with an anti-Tac mAb. Binding experiments on pre-B and myeloid cell lines revealed intermediate affinity IL-2R, whereas both high and intermediate affinity IL-2R were detected in T leukemic cells. The intermediate affinity binding of 125I-rIL-2 to the leukemic cell lines MOLT4 and Reh6 was inhibited by the TU27 mAb, which recognized the p75 chain of IL-2R. Moreover, the TU27 mAb could stain the K562, KM3, and MOLT4 (weakly) cell lines by indirect immunofluorescence. A high dose of rIL-2 (400 U/ml) enhanced the proliferation of cells from one out of three patients with acute myeloblastic leukemia, but it did not induce differentiation of the cells in any of three cases. Thus the finding of p70 IL-2-binding molecules on immature lymphoid and nonlymphoid hemopoietic cells should disclose new biologic functions for IL-2.  相似文献   

11.
It is known that the affinity cross-linking study of the human high-affinity Interleukin 2 (IL-2) receptor reveals triplet bands consisting of 70 kDa alpha chain(Tac)-IL-2 and the 90/80 kDa doublet. We found the cell lines lacking the lower band of the doublet in spite of the expression of both alpha and beta chains. No IL-2 binding was detectable in the presence of anti-Tac antibody in these cells. Immunoprecipitation from the cell extract of [125 I] IL-2-cross-linked T cells with anti-beta chain polyclonal IgG detected the upper band, but not lower band of the doublet. These data suggest that the lower band of the doublet represents an unknown IL-2-binding protein (p65) distinct from the beta chain and this molecule may be involved in the intermediate-affinity IL-2 binding together with the beta chain.  相似文献   

12.
High affinity receptors for interleukin 2 (IL 2) contain the Tac protein as one ligand-binding subunit. Localization of the IL 2-binding site on this molecule, as well as localization of the complementary site on IL 2, should provide insight into the design of IL 2 analogs. In this report, we examine the ability of normal and modified Tac protein to bind IL 2 and several antibodies that recognize the native Tac molecule. Using a transient L cell expression system, we have determined that transfection with cDNA-missing Tac exon 4 resulted in expression of spliced protein that had no measurable binding to IL 2 or the monoclonal anti-receptor antibodies, anti-Tac, and 7G7/B6. This protein was detected, however, by rabbit polyclonal antibodies prepared against synthetic Tac peptides. Thus, one or more amino acids encoded by exon 4 is important, either for direct ligand contact or for the proper folding of critical segments of the Tac molecule. In addition, insertion of stop codons at a unique restriction enzyme site near the beginning of exon 5 resulted in cellular secretion of truncated Tac molecules that were capable of binding IL 2, anti-Tac, and 7G7/B6. Amino acids encoded by exons 5 to 8 thus play no critical role in IL 2 binding. The ligand association demonstrated for truncated Tac protein produced by exons 2 to 4 should guide attempts to define the IL 2-binding segment of the Tac molecule.  相似文献   

13.
The expression of receptors for interleukin 2 (IL 2) represents a critical event regulating the growth of normal T lymphocytes. We investigated the effects of the inhibitory monoclonal antibody OKT11A (anti-sheep erythrocyte receptor) and of purified recombinant IL 2 (rIL 2) on the expression of IL 2 receptors by activated T cells at both the protein and the mRNA levels. Adding OKT11A antibody (0.5 microgram/ml) to phytohemagglutinin (PHA)-stimulated cultures of human peripheral blood mononuclear cells (PBMC) markedly suppressed cellular proliferation (assessed by [3H]thymidine incorporation) and IL 2 receptor expression (determined by immunofluorescence assay by using the anti-IL 2-receptor antibody, anti-Tac). Northern blot analysis performed with the use of a cDNA probe specific for the human IL 2 receptor gene demonstrated that OKT11A antibody also decreased the accumulation of IL 2 receptor mRNA induced by PHA in PBMC. Purified rIL 2 (10 U/ml) alone had little effect on the expression of IL 2 receptors in unstimulated PBMC cultures. In combination with PHA or with PHA plus OKT11A, however, rIL 2 augmented both the expression of IL 2 receptor protein on PBMC and the accumulation of IL 2 receptor mRNA in PBMC. Adding anti-Tac antibody to PBMC cultures to block the interaction of IL 2 with its receptor diminished the accumulation of IL 2 receptor mRNA induced by PHA. Taken together, these data demonstrate that OKT11A antibody inhibits and IL 2 augments expression of IL 2 receptors on PHA-stimulated T cells, at least in part, at a pretranslational level.  相似文献   

14.
15.
M Gullberg 《The EMBO journal》1986,5(9):2171-2178
Activated T cells express at least two distinct affinity classes of interleukin-2 (IL-2) receptors. The number of low-affinity receptors per cell is normally 10-30 times greater than that of the high-affinity receptors, and the difference in the dissociation constant between the two classes of receptors is in the order of 1,000-fold. In this report normal human T cells are used in a cellular system in which the number of low-affinity receptors can be manipulated. It is demonstrated that a cell population could be achieved with such low levels of low-affinity IL-2 receptors that almost half of the surface pool of anti-IL-2 receptor antibody (anti-Tac) binding sites represented high-affinity receptors. By using this cellular system it was possible to show that anti-Tac recognizes both receptor classes with similar affinity and that IL-2 inhibits Tac binding to both receptor classes in a competitive fashion. Tac antigens were purified from surface 125I-labeled cells expressing high levels of high-affinity IL-2 receptors, but low levels of the low-affinity receptor class, and this preparation was compared with another pool of Tac antigens obtained from cells expressing the normal 10- to 20-fold excess of low-affinity IL-2 binding sites over high-affinity IL-2 receptors. Biochemical characterization by peptide mapping by limited proteolysis and two-dimensional gel analysis revealed that these distinct preparations of Tac antigens were indistinguishable.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
In testing the recently discovered tumor promoter teleocidin (TCD), we found that like phorbol esters, TCD was mitogenic to human peripheral blood lymphocytes (PBL) and preferentially stimulated sheep erythrocyte-rosetted (ER) T cell-enriched populations. Stimulation of PBL with TCD induced synthesis and expression of receptors for interleukin 2 (IL 2), as shown by dot-blot analysis with the use of a synthetic oligonucleotide probe, cell surface staining with anti-Tac antibody followed by fluorescence-activated cell sorter analysis, and a functional proliferation assay in which TCD-stimulated cells were washed free of TCD and were recultured with human recombinant IL 2 (rIL 2). Increased expression of cell surface markers after TCD stimulation of PBL is not general, because TCD did not affect the expression of Leu-2a antigen, and it also reduced the density of Leu-3a and Leu-4 antigens. Stimulation of cultured, IL 2 receptor-positive PBL with rIL 2, but not TCD, was blocked by anti-rIL 2 antibodies. Furthermore, IL 2-specific mRNA was not detected in TCD-stimulated PBL, demonstrating that IL 2 was not required for TCD-induced T cell proliferation. In addition, TCD replaced IL 2 in inducing short-term proliferation of IL 2-dependent murine cytotoxic T cell lines. The findings that TCD induced IL 2-independent proliferation of T cells, and TCD and IL 2 synergized in inducing T cell proliferation, suggest that they initiate T cell proliferation via different mechanisms. The IL 2-independent activation of T cells, and the induction of IL 2 receptor expression by TCD, may be related to its ability to activate protein kinase C in cell membrane.  相似文献   

17.
PHA-driven monoclonal colony formation by low concentrations of resting T4 lymphocytes in agar culture requires the presence of interleukin 2 (IL 2) and accessory cells. Using recombinant IL 2 and anti-Tac monoclonal antibody as a probe for the IL 2 receptor, we demonstrate that the requirement of accessory cells (here an irradiated B cell line) in inducing IL 2 responsiveness relies on their enhancing effect in functional IL 2 receptor expression by the T colony progenitors. Furthermore, it is shown that cell to cell interaction between accessory cells and colony progenitors results in IL 2 response, i.e., colony formation, when the IL 2 receptor density reaches a critical threshold. The asynchronism in IL 2 responsiveness expression by the T colony progenitors upon activation and the short-lived T cell-accessory cell interaction, due to accessory cell death, determine the 10% colony efficiency of the culture system. In addition, we demonstrate that the accessory function in IL 2 receptor and IL 2 responsiveness expression by the T colony progenitors can be supported by irradiated T lymphocytes as well as B cells. The absence of lineage restriction of the signal delivered by accessory cells, and the requirement of physical interaction between T colony progenitors and accessory cells, emphasize the necessity of cross-linking the activation-signal receptors in inducing IL 2 responsiveness by resting T4 cells.  相似文献   

18.
Cells participating in the rIL 2-induced proliferation of resting PBMC were identified by using different methods of cell purification. NK cells recovered in the light density fraction of Percoll gradients responded, as already known, directly to rIL 2 by strong proliferation. In contrast, large T lymphocytes co-purifying with NK cells, and small T cells sedimenting in the high density area of the Percoll gradients, were virtually unresponsive when cultivated in the sole presence of rIL 2. However, the addition of either irradiated autologous monocytes or highly purified IL 1 allowed both kinds of T cells to undergo cell division. Stringent elimination of possibly contaminating NK cells (NKH-1+) and/or activated T cells (TNKTAR, Tac+, HLA-DR+) from the high density T cells by complement lysis did not impair rIL 2-induced cell proliferation, indicating entire responsiveness of these cells to the synergistic action of IL 1 plus IL 2. Both high density CD4+ and CD8+ participated in this phenomenon, with an apparent advantage for CD4+ cells. All Tac+ cells emerging in a 6-day culture of these cells expressed the WT31 antigen, which indicates that T cells involved in rIL 2-induced proliferation are conventional mature T cells. The relative precursor frequencies of NK cells, large T lymphocytes, and small T lymphocytes that proliferated in response to rIL 2 were analyzed by limiting dilution analysis. The frequencies of clonal growth of NK cells and low density T lymphocytes were approximately the same (1/103 vs 1/185), whereas that of high density T cells was four times lower (1/458). Thus, we clearly demonstrate that resting T cells, defined as such by morphological, density, and phenotypic criteria, are able to proliferate in response to IL 2 in the presence of IL 1 without antigenic or mitogenic triggering.  相似文献   

19.
Recent evidence indicates that interleukin 2 (IL 2), formerly thought to serve as growth factor exclusively for activated T cells, is directly involved in human B cell differentiation. We have investigated the role of IL 2 and IL 2 receptors (as defined by monoclonal anti-Tac antibody) in the phorbol ester-induced in vitro maturation of leukemic B cells from patients with chronic lymphocytic leukemia (CLL). Peripheral blood lymphocytes from B cells from CLL patients with high (greater than 10(5)/microliters) white blood cell counts were depleted of residual T lymphocytes and low-density cells (primarily macrophages) by consecutive steps of E rosetting, complement-mediated lysis of OKT3+ and OKT4+ cells, and Percoll density gradient centrifugation. No OKT3+ T cells were detectable in these cell populations before or after culture. When incubated for 3 days with phorbol ester plus recombinant human IL 2 (rIL 2), 12 to 57% of highly purified B cells from four of five tested patients expressed Tac antigen. Both phorbol ester and rIL 2 were required for maximal Tac antigen expression. Functional studies revealed that phorbol ester-activated (but not resting) CLL B cells responded to rIL 2 with [3H]thymidine incorporation and with enhanced secretion of IgM. Tac+ B cells were isolated in two cases on a fluorescence-activated cell sorter. In one patient, stimulation of Tac+ B cells with rIL 2 resulted in enhanced [3H]thymidine incorporation but no change in IgM secretion, as compared with Tac- B cells; in the second patient, stimulation of Tac+ B cells with rIL 2 did not result in [3H]thymidine uptake, but did result in significant IgM secretion. These findings indicate that certain leukemic B lymphocytes can be induced to express IL 2 receptors and respond to IL 2. The use of resting clonal B cell populations arrested at distinct stages of differentiation may help to better define the stage(s) at which IL 2 acts directly on B cells to induce proliferation and/or terminal differentiation.  相似文献   

20.
We have directly compared the signals required for: induction of the [Ca+2]i response, expression of Tac antigen, and proliferation in antigen-specific human T cell clones. We have previously shown that antigen-specific activation of cloned T cells under conditions leading to proliferation is accompanied by a rapid increase in [Ca+2]i. Cloned T cells showed increased [Ca+2]i, enhanced Tac expression, and proliferated in response to specific antigen in the presence of viable, genetically appropriate antigen-presenting cells. Paraformaldehyde fixation of antigen-presenting cells after "pulsing" with antigen prevented proliferation, but did not affect MHC-restricted [Ca+2]i or Tac responses. Treatment of cloned T cells with monoclonal anti-T3 antibody also increased [Ca+2]i and Tac expression but did not induce proliferation. Proliferation was restored by viable autologous or allogenic APC or exogenous IL 2, but not by IL 1. In contrast to resting T cells, T cell clones were insensitive to the mitogenic effects of lectins or of ionophores and phorbol esters. These results suggest that activation of antigen-specific T cells requires the sequential action of at least two signals. The first is MHC restricted and is mediated by interaction of antigen + MHC class II products with the T cell receptor (T3-Ti) complex. This leads to Tac expression and increased [Ca+2]i, but is not sufficient for proliferation. This signal can be bypassed by anti-T3 monoclonal antibodies. Proliferation requires a second, nonantigen-specific, non-MHC-restricted antigen-presenting cell signal, which cannot be replaced by IL 1 in our system. This signal can be bypassed, however, by the addition of exogenous IL 2 to cells that have received the first signal and express Tac, suggesting that it is required for IL 2 synthesis and secretion. T cell clones therefore provide a useful model for studying antigen-dependent and -independent events in cell activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号