首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Administration of monosodium glutamate (MSG) during the neonatal period in rats produced differential effects on the contents of various neuropeptides in the hypothalamus: beta-endorphin (beta-E) level was reduced by 70% while substance P (SP), neurotensin (NT) and Met5-enkephalin (ME) levels were not significantly changed (ME content of male rats was slightly reduced). The contents of ME, SP and NT in striatum and hippocampus were also unaffected by the same treatment. Male rats contain higher pituitary content of beta-endorphin-like immunoreactivity (beta-ELI) than female rats. MSG treatment reduced the pituitary content of beta-ELI and abolished the sex difference in beta-ELI level seen in the control rats. MSG treatment in the neonates by eliminating beta-E neurons while sparing ME neurons in the brain may be a useful tool for studying the different functions of these two separate opioid peptides.  相似文献   

2.
Blood luteinizing hormone (LH) and testosterone levels are lower in old than in young male rats. The specific opiate antagonist, naloxone, previously shown to increase serum LH in mature male rats, exhibited relatively little ability to raise serum LH and testosterone levels in old (18–20 mo) as compared to young (4–5 mo) male rats. The brain opiate, met5-enkephalin, which depresses LH, was found to be significantly higher in the hypothalamus of old than of young male rats. These observations suggest that hypothalamic opiates may be partially responsible for the lower serum LH and testosterone levels in old male rats, and for reduced release of these hormones in response to naloxone administration.  相似文献   

3.
Immunoreactive beta-endorphin (IR-beta-ENDO) was compared in the plasma, pituitary and hypothalamus of young female rats on the day of estrus and old constant estrous (CE) female rats, and in intact and chronically castrated old CE female rats. The concentration of IR-beta-ENDO in the plasma and the content and concentration of IR-beta-ENDO in the neurointermediate lobe of the pituitary were significantly greater in the old CE female rats than in the young female rats on the day of estrus. The content and concentration of IR-beta-ENDO in the anterior pituitary and hypothalamus were similar in the two age groups. To determine if estrogen contributed to the increase in plasma and pituitary levels of IR-beta-ENDO observed in the old animals, a group of old CE female rats were castrated and compared to sham operated control CE rats. Thirty days after castration, levels of plasma, pituitary and hypothalamic IR-beta-ENDO were comparable in the intact and the chronically castrated old female rats. These data indicate that in old CE female rats, plasma and pituitary IR-beta-ENDO are significantly increased in comparison to young female rats on the day of estrus, and that these increased levels of IR-beta-ENDO observed in old female rats do not appear to be influenced by gonadal estrogen.  相似文献   

4.
The distribution of the endorphins, beta-endorphin and enkephalin (Met5-enkephalin and Leu5-enkephalin), was determined in the pars distalis, intermedia, and nervosa of the rat pituitary using both immunocytochemical and radioimmunological methods. Immunoreactive (ir) beta-endorphin was found in pars distalis and pars intermedia. On gel filtration of the pars distalis extracts, beta-endorphin immunoreactivity was eluted in three peaks corresponding to pro-opiocortin (5%), beta-lipotropin (75%), and beta-endorphin (20%). beta-Endorphin was the only component in the pars intermedia. Enkephalin was found in high amount in the pars nervosa. A new enkephalinergic hypothalamic-pars nervosa pathway was observed. Dehydration experiments on normal rats and analysis of the genetically polyuric Brattleboro rat suggest that this enkephalinergic pathway may modulate neurohypophyseal neurosecretion.  相似文献   

5.
The levels of immunoreactive beta-endorphin (ir-beta-EP) were measured in the brain and pituitary of lean Zucker rats subjected to food deprivation for 72 h and to a high fat diet, and in fatty Zucker rats after food deprivation for 72 h. Ir-beta-EP was increased in the neurointermediate (NI-) pituitary lobe but reduced in the medulla-pons of fatty rats when compared to lean littermates fed ad libitum. Food deprivation decreased ir-beta-EP in the cortex and medulla-pons of lean rats and in the cortex, midbrain and NI-pituitary of fatty rats. In contrast, ir-beta-EP was increased in the anterior pituitary of lean rats and in the striatum of fatty rats after deprivation. The high fat diet produced a decrease in ir-beta-EP in the cortex, midbrain and NI-pituitary with an increase in the striatum and hypothalamus of lean rats. These results suggest that the ir-beta-EP concentration could be differentially affected in different brain regions of Zucker rats by changes in the energy balance.  相似文献   

6.
Following 1-4 days of food-deprivation (FD) male rats were sacrificed. The pituitary and different regions of brain were analyzed for beta-endorphin-like immunoreactivity (beta-EI), dynorphin (dyn) and methionine-enkephalin (ME) content by RIA. Pituitary beta-EI increased by 16, 28 and 43% on days 2, 3 and 4 of FD. In striatum also, beta-EI increased by 140 and 176% on days 2 and 3 of FD. Dyn level in pituitary was not affected but decreased in hypothalamus by 20% and in striatum by 73% on the 4th day of FD. There was a significant decrease (33-55%) in ME levels in striatum, hippocampus and cortex on 4th day of FD. When food-deprived rats were fed for 24 hr, concentration of most of the opioid peptides returned to basal level. These results suggest that FD in rats affects the opioid peptide levels in a differential manner.  相似文献   

7.
Age-related functional and morphological alterations in the hypothalamo-pituitary-gonadal axis were investigated in old recurrently pseudopregnant (RPP) female rats, and these alterations were compared with those in young diestrous rats. LHRH in the median eminence (ME) and mediobasal hypothalamus (MBH) as well as plasma FSH, LH, and progesterone were measured by RIA. LHRH in the lateral ME (LME) and pituitary FSH and LH were evaluated by morphometry and densitometrical immunocytochemistry. Furthermore, by light microscopy, we classified and counted the number of ovarian follicles and corpora lutea. LHRH concentrations in the ME and MBH were similar in old and young rats, whereas in old rats, plasma FSH was markedly increased, LH was moderately increased, and plasma progesterone was unchanged. The number and the total area and immunoreactivity of LHRH-labeled axon cross sections in the LME were reduced in old rats. The number of nucleated FSH-labeled cells and total FSH area and immunoreactivity were almost twice in old compared with young animals. The measurements of LH-labeled cells were not different between the two groups. In old rats, the numbers of ovarian follicles and corpora lutea were reduced and that of atretic follicles increased. In conclusion, age-related morphological impairments of LHRH axons associated with an increased number of FSH gonadotropes and higher plasma FSH in our old RPP rats suggest hypothalamic and pituitary disturbances, which may largely contribute to the complex hormonal disarrangement responsible for the decline of reproductive functions in old female rats.  相似文献   

8.
Atrial natriuretic factor (ANF)-responsive areas in rat brain were examined by measuring ANF-stimulated cyclic GMP production in rat brain slice preparations. The medulla oblongata, thalamus, and pituitary gland responded most sensitively, the septum, hypothalamus, pons, midbrain and olfactory bulb responded moderately, but neocortex, cerebellum, striatum and hippocampus were unresponsive to ANF. The most responsive regions in spontaneously hypertensive rats brains showed 2 to 5 times higher cyclic GMP production than those from the control Wistar-Kyoto rats. These findings provide evidence for biological action of ANF on brain tissues, and indicate the action of ANF produced in the brain.  相似文献   

9.
衰老对大鼠脑区氨基酸水平的影响   总被引:4,自引:1,他引:3  
本文测定了正常青龄组(3月龄)和老龄组(20月龄)大鼠不同脑区(皮层、小脑海马、纹状体和下丘脑)谷氨酸、天门冬氨酸、甘氨酸、r-氨基丁酸和牛磺酸的含量。结果表明:在衰老过程中大鼠某些脑区谷氨酸、天门冬氨酸、甘氨酸和牛磺酸水平显著降低;而纹状体γ-氨基丁酸含量则显著升高。  相似文献   

10.
It is shown that the activity of enzymes participating in renin-angiotensin and brain kinin systems' metabolism depends on functional state of hypothalamo-pituitary-adrenocortical system. Under experimental hypocorticism the activity of angiotensin-converting enzyme and kininase I in the hypothalamus, hippocamp, corpus striatum and rat pituitary decreases; the renin-like enzyme activity decreases in the corpus striatum but increases in the hypothalamus and hippocamp. After hydrocortisone administration to adrenalectomized rats the angiotensin-converting enzyme activity of the hippocamp and pituitary is shown to be normalized as well as renin-like enzyme and kininase I of the hippocamp and corpus striatum. The activity of the studied enzymes in the hypothalamus decreases in this case.  相似文献   

11.
Effects of opioid peptides on immunoreactive corticotropin-releasing factor (I-CRF) release from the rat hypothalamus were examined using a rat hypothalamic perifusion system and a rat CRF RIA in vitro. beta-Endorphin (0.3 - 30 nM), dynorphin (0.3 - 30 nM) and FK 33-824 (1 - 10 microM) suppressed basal I-CRF release in a dose-dependent fashion. At 2.2 nM concentrations of these peptides, mean percent inhibition was 56% for beta-endorphin; less than 5% for alpha-endorphin; 44% for dynorphin; 23% for leucine-enkephalin; 6% for methionine-enkephalin; less than 5% for FK 33-824; and less than 5% for D-ala2, D-leu5-enkephalin. The inhibitory effects of beta-endorphin and enkephalins were completely blocked by naloxone, but those of dynorphin were only partially blocked. These results suggest that opioid peptides act through opioid receptors and inhibit I-CRF release from the hypothalamus under our conditions. Therefore, endogenious opioid peptides may have a physiological role in the CRF-releasing mechanism of the hypothalamus.  相似文献   

12.
N Zisapel  I Nir  M Laudon 《FEBS letters》1988,232(1):172-176
The binding of 125I-melatonin to synaptosomes prepared from whole brains of male rats of the CD strain and from the brain, hypothalamus and striatum of male rats of the Sabra-Wistar strain was assessed throughout a 24 h period. The animals were maintained under a daily schedule of 14 h light (05:00-19:00 h) and 10 h darkness. In whole brain preparations the density of binding sites at 18:00 h was higher by about 70% than at 02:00 h with no variations in apparent affinity of the binding sites throughout the daily period. Specific binding of 125I-melatonin was found in both hypothalamus and striatum of the male rat with a distinct diurnal variation in binding site density in the hypothalamus only. The density of 125I-melatonin-binding sites in the hypothalamus was maximal between 10:00 and 18:00 h and dropped sharply after the lights went off. The apparent 125I-melatonin-binding affinities in these regions were constant and very similar to those in whole brain preparations. The daily variations in densities of 125I-melatonin-binding sites in discrete brain areas may represent a diurnal rhythmicity in the responsiveness of the neuroendocrine axis to melatonin.  相似文献   

13.
H N Bhargava  S Das  M Bansinath 《Peptides》1987,8(2):231-235
The binding of [3H] [3-MeHis2] thyrotropin releasing hormone [( 3H]MeTRH) to brain membranes prepared from 8 week old spontaneously hypertensive (SHR) and normotensive Wistar-Kyoto (WKY) rats was determined. [3H]MeTRH bound specifically to rat brain membranes at a single high affinity site. The density (Bmax value) of [3H]MeTRH binding sites was significantly greater (28%) in SHR rats compared to WKY rats. The apparent dissociation constants (Kd values) for the binding of [3H]MeTRH in SHR and WKY rats did not differ. Binding in the various brain regions revealed that the density of [3H]MeTRH was highest in the hypothalamus followed in decreasing order by pons + medulla, midbrain, cortex and striatum. The binding of [3H]MeTRH was approximately 25% greater in cortex, hypothalamus and striatum of SHR rats in comparison to WKY rats. The binding in pons + medulla, midbrain and pituitary of SHR and WKY rats did not differ. To assess the significance of increased binding sites for [3H]MeTRH in some brain regions of SHR rats, the binding studies were carried out during normotensive and hypertensive stages of postnatal age in the two strains. In 3 and 4 week old SHR rats there was neither an increase in blood pressure nor any increase in [3H]MeTRH binding in the hypothalamus and striatum as compared to age matched WKY rats. With the development of elevated blood pressure at 6 weeks, an increase in [3H]MeTRH binding in the hypothalamus and striatum of SHR rats in comparison to the tissues from WKY rats was observed. The results provide, for the first time, evidence for a parallel increase in the density of brain TRH receptors with elevation of blood pressure, and suggest that brain TRH receptors may play an important role in the pathophysiology of hypertension.  相似文献   

14.
beta-Endorphin-like immunoreactivity in whole brains of Sprague-Dawley rat fetuses of different gestational ages was measured by radioimmunoassay and found to increase throughout the gestational period studied. The immunoreactivity in various brain parts (forebrain, midbrain, hindbrain, hypothalamus and pituitary) of late prenatal, early postnatal, young mature and retired breeder rats was also determined. In all the brain parts studied, a maximum in the content and concentration of beta-endorphin-like immunoreactivity was attained when the rats were about 3-4 months old.  相似文献   

15.
This study was designed to explore the hormonal regulation of CNS opioid peptide levels in female Sprague Dawley rats. Forty-eight animals were divided into 2 equal groups for acute and chronic studies. Each group was further divided into 4 subgroups, each containing 6 animals. Each rat in the control group received an inert pill (in 0.25 ml corn oil daily by gavage); the second group, 15 micrograms norethindrone (NE, a potent progestin present in the oral contraceptive Micronor); the third group, 15 micrograms NE and 1 microgram ethinyl estradiol, EE2 (present in the oral contraceptive Modicon) and the fourth group, 10 times the dose of the third group. Rats were treated either acutely for 5 days or chronically for 7 weeks. Opioid peptides were estimated by radioimmunoassay. Acute administration of 150 micrograms NE + 10 micrograms EE2 decreased the levels of methionine-enkephalin (ME), leucine-enkephalin (LE), dynorphin (DYN) and beta-endorphin like immunoreactivity (beta-EI) by about 50% in the pituitary. The same dose on chronic administration also decreased DYN, but increased the levels of ME and LE in the pituitary by 331 and 69%, respectively. In the hypothalamus, chronic administration of NE + EE2 increased the level of ME (155%) and LE (87%) as well as of DYN (97%). In the striatum, the levels of LE (33%) and DYN (115%) were elevated during chronic administration. It is concluded that the acute administration of NE + EE2, in general, reduces the levels of ME, LE, DYN and beta-EI.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Immunoreactive (ir) beta-endorphin (b-END) and dynorphin (DYN) in rat brain and pituitary were measured after food and water deprivation and from brains taken during either day or night. In other rats, eating and drinking were measured following lesions in the arcuate n. Ir-DYN levels are higher in hypothalamus and lower in pituitary at night. Deprivation, particularly water deprivation, increases hypothalamic, day-time ir-DYN. Water deprivation decreases pituitary levels of ir-DYN. Arcuate-lesions, depleting both ir-b-END and ir-DYN, do not modify total daily intake of water or food but does modify circadian rhythmicity of eating and drinking. These data support the conclusion that b-END and DYN are involved in maintaining day-night patterns of eating and drinking.  相似文献   

17.
The purpose of the present study was to examine the effect of altering the concentration of 5-hydroxytryptamine (5-HT) on beta-endorphin (beta-Ep) content in the hypothalamus, thalamus, and periaqueductal gray (PAG)-rostral pons regions of the rat brain. The selective 5-HT reuptake inhibitor, fluoxetine (10 mg/kg), significantly lowered beta-Ep content in the hypothalamus and the PAG. Parachlorophenylalanine, which inhibits 5-HT synthesis, significantly elevated beta-Ep in all brain parts studied. Intracisternal injections of the neurotoxin, 5',7'-dihydroxytryptamine, with desmethylimipramine pretreatment, significantly increased beta-Ep content in the hypothalamus and the PAG. In adrenalectomized rats, fluoxetine significantly decreased beta-Ep levels in the hypothalamus and increased the levels in the PAG. The results indicate that 5-HT may modulate the levels of brain beta-Ep.  相似文献   

18.
W Knepel  D Nutto  G Hertting 《Life sciences》1983,33(17):1703-1709
Several lines of evidence indicate that beta-endorphin inhibits the release of vasopressin during foot shock-induced stress in the rat. This study was to evaluate the relative importance of the hypothalamic versus the pituitary pool of beta-endorphin. Neonatal treatment with monosodium glutamate (MSG) reduced drastically the content of beta-endorphin-like immunoreactivity (beta-EI) of hypothalamus but not the beta-EI concentration in the pituitary; the content of vasopressin in the hypothalamus and the pituitary was not altered by MSG treatment. MSG treatment had no effect on the plasma vasopressin response to inescapable electric foot shock stress, when compared to controls. Naloxone enhanced vasopressin release during stress both in MSG-treated rats and in controls. These results suggest that hypothalamic beta-endorphin is not involved in the control of vasopressin release during foot shock-induced stress in the rat.  相似文献   

19.
H N Bhargava  S Das 《Life sciences》1986,39(26):2593-2600
The binding of tritiated ligands for various opiate receptor subtypes to brain membranes prepared from spontaneously hypertensive rats and normotensive Wistar-Kyoto rats was determined. The density (Bmax) or the apparent dissociation constant (Kd) for the binding of the mu-ligand (naltrexone) and delta-ligand (Tyr-D-Ser-Gly-Phe-Leu-Thr) to brain membranes of hypertensive and normotensive rats did not differ. However, the Bmax for the binding of kappa-ligand (ethylketocyclazocine, EKC) to brain membranes after the suppression of mu and delta-sites by 100 nM each of unlabeled D-Ala2-MePhe4-Gly-ol5-enkephalin and D-Ala2-D-Leu5-enkephalin, respectively, was significantly greater in hypertensive rats compared to normotensive rats. The Kd values for the binding of 3H-EKC in the two groups did not differ. The binding of 3H-EKC in brain regions was in the order: hypothalamus greater than midbrain greater than striatum greater than cortex greater than pons + medulla. The increase in the binding of 3H-EKC in the brain of hypertensive rats compared to normotensive rats was due to increased binding in the hypothalamus and cortex. These results provide for the first time evidence of selective proliferation of kappa-opiate receptors in the brain of hypertensive rats, and suggest that brain kappa-opiate receptors may play an important role in the pathophysiology of hypertension.  相似文献   

20.
自从1975年(Hughes et al. 1975)发现脑啡肽以来,经多方面研究已认为脑啡肽可能是一种神经递质,它具有多种生理功能(范少光、汤健,1978)。据新近文献报道,脑啡肽与催产素及加压素三者具有共同存在的并存关系(Martin and Voigt。1981)。 已经证明,刺激迷走神经向中端,可引起脑内释放乙酰胆硷,从而促使神经垂体释放压加素和催产素,肾上腺释放肾上腺素(Chang, et al. 1937;1961,1964;吕运明等1965,1977;唐正荣1981)。但是,刺激迷走神经向中端,是否也能引起脑内脑啡肽的释放,迷走神经传入纤维与脑内脑啡肽能神经原之间,是否存有机能上的联系?关于这个  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号