首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have studied striatal dopamine (DA) metabolism in monoamine oxidase (MAO) B-deficient mice using brain microdialysis. Baseline DA levels were similar in wild-type and knock-out (KO) mice. Administration of a selective MAO A inhibitor, clorgyline (2 mg/kg), increased DA levels and decreased levels of its metabolites in all mice, but a selective MAO B inhibitor, l-deprenyl (1 mg/ kg), had no effect. Administration of 10 and 50 mg/kg L-DOPA, the precursor of DA, increased the levels of DA similarly in wild-type and KO mice. The highest dose of L-DOPA (100 mg/kg) produced a larger increase in DA in KO than wild-type mice. This difference was abolished by pretreating wild-type mice with l-deprenyl. These results suggest that in mice, DA is only metabolized by MAO A under basal conditions and by both MAO A and B at high concentrations. This is in contrast to the rat, where DA is always metabolized by MAO A regardless of concentration.  相似文献   

2.
The kinetic properties of type A and type B monoamine oxidase (MAO) were examined in guinea pig striatum, rat striatum, and autopsied human caudate nucleus using 3,4-dihydroxyphenylethylamine (dopamine, DA) as the substrate. MAO isozyme ratio in guinea pig striatum (28% type A/72% type B) was similar to that in human caudate nucleus (25% type A/75% type B) but different from that in rat striatum (76% type A/24% type B). Additional similarities between guinea pig striatum and human caudate nucleus were demonstrated for the affinity constants (Km) of each MAO) isozyme toward DA. Endogenous concentrations of DA, 3-methoxytyramine, 3,4-dihydroxyphenylacetic acid, and homovanillic acid were also measured in guinea pig and rat striatum following selective type A (clorgyline-treated) and type B (deprenyl-treated) MAO inhibition. In guinea pig, DA metabolism was equally but only partially affected by clorgyline or deprenyl alone. Combined treatment with clorgyline and deprenyl was required for maximal alterations in DA metabolism. By contrast, DA metabolism in rat striatum was extensively altered by clorgyline but unaffected by deprenyl alone. Finally, the deamination of DA in synaptosomes from guinea pig striatum was examined following selective MAO isozyme inhibition. Neither clorgyline nor deprenyl alone reduced synaptosomal DA deamination. However, clorgyline and deprenyl together reduced DA deamination by 94%. These results suggest that the isozyme localization and/or isozyme affinity for DA, rather than the absolute isozyme content, determines the relative importance of type A and type B MAO in synaptic DA deamination. Moreover, based on the enzyme kinetic properties of each MAO isozyme, guinea pig striatum may serve as a suitable model of human DA deamination.  相似文献   

3.
The effects of a number of biochemical and pharmacological manipulations on amphetamine (AMPH)-induced alterations in dopamine (DA) release and metabolism were examined in the rat striatum using the in vivo brain microdialysis method. Basal striatal dialysate concentrations were: DA, 7 nM; dihydroxyphenylacetic acid (DOPAC), 850 nM; homovanillic acid (HVA), 500 nM; 5-hydroxyindoleacetic acid (5-HIAA), 300 nM; and 3-methoxytyramine (3-MT), 3 nM. Intraperitoneal injection of AMPH (4 mg/kg) induced a substantial increase in DA efflux, which attained its maximum response 20-40 min after drug injection. On the other hand, DOPAC and HVA efflux declined following AMPH. The DA response, but not those of DOPAC and HVA, was dose dependent within the range of AMPH tested (2-16 mg/kg). High doses of AMPH (greater than 8 mg/kg) also decreased 5-HIAA and increased 3-MT efflux. Depletion of vesicular stores of DA using reserpine did not affect significantly AMPH-induced dopamine efflux. In contrast, prior inhibition of catecholamine synthesis, using alpha-methyl-p-tyrosine, proved to be an effective inhibitor of AMPH-evoked DA release (less than 35% of control). Moreover, the DA releasing action of AMPH was facilitated in pargyline-pretreated animals (220% of control). These data suggest that AMPH releases preferentially a newly synthesised pool of DA. Nomifensine, a DA uptake inhibitor, was an effective inhibitor of AMPH-induced DA efflux (18% of control). On the other hand, this action of AMPH was facilitated by veratrine and ouabain (200-210% of control). These results suggest that the membrane DA carrier may be involved in the actions of AMPH on DA efflux.  相似文献   

4.
Abstract: Acute inhibition of monoamine oxidase B (MAO-B) in the rat does not affect striatal dopamine (DA) metabolism, but chronic MAO-B inhibition with deprenyl has been reported to increase the release of striatal DA, as shown using in vitro techniques. To see whether chronic MAO-B inhibition also causes an increase in DA release in vivo, rats were treated for 21 days with either deprenyl (0.25 mg/kg), TVP-1012 [R(+)-N-propargyl-1-aminoindan mesylate; 0.05 mg/kg), an irreversible inhibitor of MAO-B that is not metabolized to amphetamines, clorgyline (0.2 mg/kg), or saline (all doses once daily by subcutaneous injection). Concentric 4-mm-long microdialysis probes were implanted in the left striatum under pentobarbital/chloral hydrate anesthesia on day 21, and microdialysate DA, 3,4-dihydroxyacetic acid (DOPAC), and 4-hydroxy-3-methoxyphenyl acetic acid (HVA) were determined in the conscious animals on day 22. Baseline levels of DA were as follows: control, 0.34 ± 0.04 (n = 13); deprenyl, 0.88 ± 0.10 (n = 8, p < 0.01); TVP-1012, 0.94 ± 0.20 (n = 7, p < 0.01); clorgyline, 0.90 ± 0.12 (n = 7, p < 0.01) pmol/20 min. Levels of DOPAC and HVA were reduced only in the clorgyline-treated group. The incremental release of DA induced by depolarizing concentration of K+ (100 mM bolus of KCl in perfusate) was significantly greater in clorgyline- and deprenyl-treated rats and elevated (nonsignificantly) in TVP-1012-treated rats. Chronic treatment with the MAO-B inhibitors reduced striatal MAO-B activity by 90%, with 15% (TVP-1012) or 40% (deprenyl) inhibition of MAO-A. Clorgyline inhibited MAO-A by 95%, with 30% inhibition of MAO-B. A single dose of deprenyl (0.25 mg/kg, 24 h before microdialysis) had no significant effect on striatal efflux of DA. The results show that DA metabolism was reduced only by clorgyline, whereas neuronal release of DA was enhanced by both MAO-A and MAO-B inhibitors on chronic administration. The enhanced DA release by chronic MAO-B inhibition does not appear to be dependent on production of amphetamine-like metabolites of the inhibitor. Possible mechanisms for the release-enhancing effect of the MAO-B inhibitors include elevation in levels of endogenous β-phenylethylamine, or an inhibition of DA reuptake, which develops only on chronic administration, because both deprenyl and TVP-1012 have only very weak effects on amine uptake in acute experiments.  相似文献   

5.
The inhibition of type A and B monoamine oxidase (MAO A and B) in rat brain, liver and heart by MD780515, 3-[4-(3 cyanophenylmethoxy) phenyl]-5-(methoxymethyl)-2-oxazolidinone, has been investigated ex vivo with 5-hydroxytryptamine (5-HT) and β-phenylethylamine (PEA) as substrates. MAO A was strongly inhibited for four hours after oral administration of 10 mg/kg MD780515 (maximum inhibition : 72%, 86% and 83% in brain, liver and heart respectively. In contrast, in heart where PEA is deaminated by type A MAO, the predominant form of MAO in that tissue, the inhibition was 68% 30 minutes after administration of the compound. In all cases, MAO activities reached control values 24 hours after drug administration (10 mg/kg), whereas some inhibitory activity was still present 24 hours after oral administration of higher doses. The strong MAO A inhibition (68 to 83%) remaining in the three tissues 24 hours after oral administration of clorgyline (5 mg/kg) was completely removed by pretreatment with MD780515 (10 mg/kg). In the same conditions, MD780515 protected against the inhibition (53%) by clorgyline of PEA deamination in heart. Oral pretreatment with increasing doses of MD780515 (2.6 to 84 mg/kg) gradually removed brain MAO A inhibition caused by clorgyline (92%, 28.2 mg/kg) or tranylcypromine (88%, 4.8 mg/kg), the complete removal being observed at the dose of 21 mg/kg of MD780515 for clorgyline, and at 42 mg/kg for tranylcypromine. Inhibition of brain MAO B by tranylcypromine (96%) was not modified by pretreatment with the same range of oral doses of MD780515. The results are consistent with a specific and reversible inhibition of MAO A activity by MD780515 which can protect against long acting MAO A inhibitory effects of clorgyline and tranylcypromine. MD780515 enhances the selectivity of tranylcypromine.  相似文献   

6.
We evaluated the effects of pretreatment with clorgyline, an irreversible monoamine oxidase (MAO)-A inhibitor, on morphine-induced hyperlocomotion and antinociception. A single administration of morphine (30 mg/kg, i.p.) to male ICR mice induced a hyperlocomotion. ANOVA analysis revealed the statistical significance of the morphine effect on horizontal locomotion and of the clorgyline pretreatment × morphine interaction effect, but not of the effect of clorgyline pretreatment. The initial (5 min after challenge) phase of morphine actions vs. saline challenge appeared as if morphine had a strong inhibitory effect on locomotor activity in combination with different doses of clorgyline. The mice administered with morphine in combination of clorgyline (1 and 10 mg/kg) did not show any stereotypic behaviors. Clorgyline at a dose of 0.1 mg/kg but not other doses tested significantly potentiated morphine-induced antinociception evaluated by tail flick but not hot plate test. During the measurements of locomotor activity and antinociception, clorgyline at doses of 1 and 10 mg/kg significantly inhibited monoamine metabolism through MAO. These results suggest that clorgyline showed an inhibitory effect on morphine-induced hyperlocomotion, but not antinociception, through MAO inhibition. There is not a possibility that clorgyline pretreatment enhanced morphine action on motor activity, resulting in the abnormal behavior from hyperlocomotion to stereotypic movements.  相似文献   

7.
A simple and selective assay for the evaluation of in vivo inhibition of rat brain monoamine oxidases (MAO) A and B following a single dose of MAO inhibitors was developed through the simultaneous determination of endogenous 5-hydroxy tryptamine, 5-hydroxyindole-3-acetic acid (5-HIAA), tryptophane, and 2-phenethylamine (PEA) in rat brain using liquid chromatography-tandem mass spectrometry (LC/MS/MS). These analytes were separated on a Zorbax SB-C18 column using a gradient elution with acetonitrile and 0.2% formic acid and detected on an electrospray ionization mass spectrometer in positive-ion multiple-reaction-monitoring mode. The susceptibility and variability of these analytes as potential biomarkers in response to MAO inhibition in vivo were evaluated after application to three MAO inhibitors, tranylcypromine, clorgyline, and pargyline. A dramatic increase (about 40-fold) in PEA brain level and a decrease in 5-HIAA by more than 90% were observed after administration of 15 mg/kg of the nonselective MAO inhibitor tranylcypromine. As expected, the brain level of PEA escalated to about 6-fold, while the 5-HIAA level remained unchanged following a dose of the MAO B inhibitor pargyline at 2mg/kg. In contrast, the brain level of 5-HIAA reduced by approximately 53%, but the PEA level was unaffected following the same dose of the MAO A inhibitor clorgyline. The results indicated that 5-HIAA and PEA were susceptible and effective biomarkers in the rat brain in response to MAO A and B inhibition, respectively. The LC/MS/MS method is useful not only for the determination of inhibitory potency but also for the differentiation of the selectivity of a MAO inhibitor against rat brain MAO A and B in vivo.  相似文献   

8.
A dialysis cannula was implanted into rat striatum while the animals were anesthetized, and the area was perfused with Ringer solution while the animals were unanesthetized after at least 3 days following surgery. Concentrations of the metabolites of 3,4-dihydroxyphenylethylamine (DA) and 5-hydroxytryptamine (5-HT) in the perfusate were determined by HPLC with electrochemical detection. Levels of the DA metabolites 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) in the perfusate significantly decreased after pargyline administration (50 mg/kg i.p.), which may inhibit not only monoamine oxidase (MAO)-B but also MAO-A in these high doses. The level of the 5-HT metabolite 5-hydroxyindoleacetic acid (5-HIAA) also decreased after pargyline treatment, although change in the relative level of 5-HIAA was less than that of DOPAC or HVA. To clarify the mechanisms for the metabolism of monoamines in rat striatum, highly specific MAO-A and -B inhibitors were used in the following experiments. Treatment with l-deprenyl (10 mg/kg), a specific inhibitor for MAO-B, did not cause any statistically significant change in DOPAC, HVA, and 5-HIAA levels. No significant change was found in rat striatal homogenates at 2 h after the same treatment with l-deprenyl. In contrast, low-dose treatment (1 mg/kg) with clorgyline, a specific inhibitor for MAO-A, caused a significant decrease in levels of these three metabolites in both the perfusates and tissue homogenates. In addition to the above three metabolites, the level of 3-methoxytyramine, which is an indicator of the amount of DA released, greatly increased after treatment with a low dose (1 mg/kg) of clorgyline.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Abstract: The effect of selective inhibition of monoamine oxidase (MAO) subtypes A and B on striatal metabolism of DOPA to dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC), and 4-hydroxy-3-methoxyphenylacetic acid (homovanillic acid; HVA) was studied in halothane-anesthetized rats 3 weeks after unilateral 6-hydroxydopamine lesion of the substantia nigra. Implantation of bilateral microdialysis probes allowed simultaneous quantitation of metabolite production on lesioned and control sides. The DOPA was administered as a 15-min bolus of 1 m M solution in the striatal microdialysate. Rats were pretreated with the selective MAO-A inhibitor clorgyline, or the selective MAO-B inhibitors deprenyl or TVP-101 [2,3-dihydro- N -2-propynyl-1 H -inden-1-amine-(1 R )-hydrochloride]. Intrastriatal infusion of DOPA caused an increased efflux of DA, DOPAC, and HVA, which was greater on the intact side. Clorgyline, but not deprenyl or TVP-101, increased post-DOPA DA efflux on both intact and lesioned sides. Clorgyline also caused a marked suppression of post-DOPA DOPAC and HVA effluxes, whereas only mild effects were produced by the MAO-B inhibitors. There was no evidence for a differential effect of MAO-B inhibition on efflux of DA or metabolites in the lesioned as compared with the control striatum. The results indicate a major role for MAO-A in DA metabolism both intra- and extraneuronally in the rat striatum.  相似文献   

10.
The role of monoamine oxidase (MAO) type A and B on the metabolism of dopamine (DA) in discrete regions of the monkey brain was studied. Monkeys were administered (–)-deprenyl (0.25 mg/kg) or clorgyline (1.0 mg/kg) or deprenyl and clorgyline together by intramuscular injections for 8 days. Levels of DA and its metabolites, dihydroxy phenylacetic acid (DOPAC) and homovanillic acid (HVA) were estimated in frontal cortex (FC), motor cortex (MC), occipital cortex (OC), entorhinal cortex (EC), hippocampus (HI), hypothalamus (HY), caudate nucleus (CN), globus pallidus (GP) and substantia nigra (SN). (–)-Deprenyl administration significantly increased DA levels in FC, HY, CN, GP and SN (39–87%). This was accompanied by a reduction in the levels of DOPAC (37–66%) and HVA (27–79%). Clorgyline administration resulted in MAO-A inhibition by more than 87% but failed to increase DA levels in any of the brain regions studied. Combined treatment of (–)-deprenyl and clorgyline inhibited both types of MAO by more than 90% and DA levels were increased (57–245%) in all brain regions studied with a corresponding decrease in the DOPAC (49–83%) and HVA (54–88%) levels. Our results suggest that DA is metabolized preferentially, if not exclusively by MAO-B in some regions of the monkey brain.  相似文献   

11.
Abstract: Pretreatment of rat striatal slices with the selective type A monoamine oxidase (MAO) inhibitor clorgyline was found to produce significant inhibition of dopamine (DA) synthesis. DA synthesis was reduced by nearly 50%, but not until more than 90% of the type A enzyme was inhibited. In contrast, complete inhibition of the type B MAO following deprenyl treatment had no effect. It is suggested that interneuronal accumulation of DA following inhibition of type A MAO leads to feedback inhibition at the rate-limiting step in DA biosynthesis, tyrosine hydroxylation. These results are also consistent with the presence of a type A MAO within DA-containing neurons and provide evidence of a regulatory role for type A MAO in the synthesis of brain DA.  相似文献   

12.
The effects of brofaromine, clorgyline (reversible and irreversible type A MAO inhibitors, respectively) and tranylcypromine (non-selective MAO inhibitor) on rat striatal levels of phenylethylamine, tryptamine, m-tyramine and p-tyramine were determined. Brofaromine and clorgyline increased m- and p-tyramine levels, but not phenylethylamine levels. Brofaromine given at a dose of 100 mg/kg did increase tryptamine levels. Tranylcypromine increased the levels of all four amines greatly. The effects of chronic treatment with brofaromine on amine levels were not different from those following acute treatment. By contrast, chronic treatment with clorgyline caused greater increases in striatal m- and p-tyramine levels than did acute clorgyline. These data show that changes in the rat striatal levels of m-tyramine and p-tyramine may be used as in vivo indicators of the selectivity and reversiblity of inhibition of type A MAO, while tryptamine levels reflect non-selective inhibition of both types of MAO.  相似文献   

13.
Repeated administration of the dopamine agonist quinpirole induces behavioral sensitization in rats that is characterized by a four- to eight-fold increase in the amount of locomotion compared to an acute dose of quinpirole, in the absence of any increases in mouthing behavior. The monoamine oxidase (MAO) inhibitor, clorgyline, switches behavioral sensitization to quinpirole from that of locomotion to self-directed mouthing. The mechanism by which clorgyline produces this switch in behavioral sensitization is unknown, but is independent of the known effects of clorgyline, namely, inhibition of MAO, inhibition of striatal dopamine uptake, or stimulation of sigma and I(2) receptors. Because clorgyline also inhibits hypothalamo-pituitary-adrenal (HPA) axis function, and increased HPA activity facilitates the behavioral effects of psychostimulant drugs, the effects of clorgyline on quinpirole sensitization are possibly due to an inhibition of HPA function. Therefore, the present study examined whether HPA activity is required for sensitization to quinpirole, and whether clorgyline exerts its effects on quinpirole sensitization via inhibition of HPA function. Control and hypophysectomized rats were administered clorgyline (1 mg/kg, s.c.) or vehicle 90 min before each injection of quinpirole (0.5 mg/kg x 8, twice weekly) or saline. To assess the level of sensitization reached by control and hypophysectomized rats, test injections of quinpirole (0.0, 0.07, and 0.2 mg/kg) were administered. Chronic quinpirole administration produced equivalent levels of locomotor sensitization in control and hypophysectomized rats. Clorgyline was equally effective in blocking the development of locomotor sensitization in control and hypophysectomized rats, and in sensitizing self-directed mouthing. The present study suggests that (1). HPA function is not necessary for the development of quinpirole sensitization and, (2). clorgyline does not produce its effects on behavioral sensitization to quinpirole via an inhibition of HPA activity. Moreover, the observation that quinpirole sensitization develops normally in the absence of any pituitary endocrine function suggests that pituitary-gonadal and pituitary-thyroid axes activity are also not necessary for quinpirole sensitization to occur.  相似文献   

14.
N-[methyl-14C]N,N-dimethylphenylethylamine (DMPEA) was synthesized and its availability as a selective radiotracer for in vivo measurement of mouse brain monoamine oxidase (MAO) activity was examined. Relatively high incorporation of labelled DMPEA into brain (about 10% of the injected dose/per gram of brain) was observed just after its injection; however, radioactive dimethylamine, a metabolite produced from labelled DMPEA in the brain 1 h after DMPEA injection, was reduced in a dose-dependent manner by pretreatment with various doses of a specific MAO-B inhibitor, 1-deprenyl, but was not reduced appreciably by pretreatment with a specific MAO-A inhibitor, clorgyline. Pretreatment with 1-deprenyl did not affect significantly the rate of incorporation of the radiotracer DMPEA into the brain, suggesting that reduction of the radioactivity in brain by this compound might be due to a decrease in the rate of production of the radioactive metabolite dimethylamine by brain MAO-B. The amount of the radioactive metabolite trapped in the brain was found to be proportional to the brain MAO-B activity remaining after pretreatment with 1-deprenyl. In vitro deamination of DMPEA by mouse brain MAO showed a higher sensitivity to inhibition by 1-deprenyl than that by clorgyline. These results indicate that DMPEA is a selective substrate for mouse brain MAO-B both in vivo and in vitro and that the positron emitter [11C]DMPEA might be used instead of [14C]DMPEA as a radiotracer for in vivo measurement of MAO-B activity in human brain.  相似文献   

15.
In male ICR mice, a single intraperitoneal administration of methamphetamine (METH) (10 mg/kg) induced stereotyped behavior such as continuous sniffing, circling, and nail biting, reaching a plateau level 20 min after the injection. Subcutaneous pretreatment with clorgyline, a monoamine oxidase (MAO)-A inhibitor, at a dose of 0.1 mg/kg 2 h prior to the drug challenge significantly decreased the initial (first 20 min) intensity of stereotypies and increased the latency to onset. The effect was not observed with either higher doses of clorgyline (1 and 10 mg/kg) or l-deprenyl, a MAO-B inhibitor, at doses of 0.1–10 mg/kg. In male Wistar rats, the inhibitory effect of clorgyline on METH-induced stereotypy was not observed. Pretreatment of the mice with clorgyline (0.1 mg/kg) had no effect on apparent serotonin and dopamine turnover in the striatum, although the higher doses of clorgyline (1 and 10 mg/kg) significantly decreased the turnover. These results suggest that a low dose of clorgyline tends to increase the latency and decrease the intensity of stereotypies induced by METH in a dopamine metabolism-independent manner in mice.  相似文献   

16.
Abstract: Studies were designed to evaluate specificity of the transmitter amines serotonin (5-hydroxytryptamine, 5-HT) and dopamine (DA), as well as the trace amines p -tyramine ( p -TA) and β -phenylethylamine (PEA) for types A and B monoamine oxidase (MAO) in rat striatum. 5-HT was found to be a specific substrate for the type A enzyme. However, the specificity of PEA for the type B enzyme was found to be concentration-dependent. When low concentrations of PEA and 5-HT were used to measure type B and type A activities, respectively, both clorgyline and deprenyl were highly selective for the sensitive form of MAO in vivo. However, as the concentration of PEA was increased, the type B inhibitor deprenyl became less effective in preventing deamination of PEA. Conversely, the type A inhibitor clorgyline became more effective in this regard. Kinetic analysis following selective in vivo inhibition showed PEA deamination by both forms of MAO with a 13-fold greater affinity for the type B enzyme. In vivo dose-response curves obtained with the common substrates DA and p -TA showed approximately 20% deamination by the B enzyme. Kinetic values for DA and p -TA deamination in in vivo -treated tissue possessing only type A or type B MAO activity, revealed a 2.5-fold greater affinity for the type A enzyme. These studies show the importance of concentration on substrate specificity in striatal tissue. The results obtained characterize the common substrate properties of DA and p -TA as well as of PEA in rat striatum. In addition, the presence of regional specificity for 5-HT deamination by only type A MAO is demonstrated.  相似文献   

17.
Abstract: Basal levels of endogenous 3,4-dihydroxyphenylalanine (DOPA) were detected by HPLC coupled with coulometric detection in dialysates from freely moving rats implanted 48–72 h earlier with transversal dialysis fibers in the dorsal caudate. Because decarboxylase inhibitor is absent in the Ringer's solution, this method allows monitoring of basal output of dopamine (DA) and 3,4-dihydroxyphenylacetic acid, as well as DOPA. Extracellular DOPA concentrations were reduced by the tyrosine hydroxylase inhibitor α-methylparatyrosine (200 mg/kg, i.p.) and by the dopaminergic agonist apomorphine (0.25 mg/kg, s.c.). The dopaminergic antagonist haloperidol (0.2 mg/kg, s.c.) stimulated DOPA output by about 60% over basal values. γ-Butyrolactone, at doses of 700 mg/kg, i.p., which are known to block dopaminergic neuronal firing and which reduce DA release, stimulated DOPA output maximally by 130% over basal values. Tetrodotoxin, which blocks DA release by blocking voltage-dependent Na+ channels, increased DOPA output maximally by 100% over basal values. The results indicate that basal DOPA can be detected and monitored in the extracellular fluid of the caudate of freely moving rats by transcerebral dialysis and can be taken as a dynamic index of DA synthesis in pharmacological conditions.  相似文献   

18.
The catecholaldehyde hypothesis predicts that monoamine oxidase (MAO) inhibition should slow the progression of Parkinson’s disease, by decreasing production of the autotoxic dopamine metabolite 3,4-dihydroxyphenylacetaldehyde (DOPAL). Inhibiting MAO, however, diverts the fate of cytoplasmic dopamine toward potentially harmful spontaneous oxidation products, indicated by increased 5-S-cysteinyl-dopamine (Cys-DA) levels. 3,4-Dihydroxyphenylethanol (hydroxytyrosol) is an abundant anti-oxidant phenol in constituents of the Mediterranean diet. Whether hydroxytyrosol alters enzymatic or spontaneous oxidation of dopamine has been unknown. Rat pheochromocytoma PC12 cells were incubated with hydroxytyrosol (10 µM, 180 min) alone or with the MAO-A inhibitor clorgyline (1 nM) or the MAO-B inhibitors rasagiline or selegiline (0.5 µM). Hydroxytyrosol decreased levels of DOPAL by 30 % and Cys-DA by 49 % (p < 0.0001 each). Co-incubation with hydroxytyrosol prevented the increases in Cys-DA seen with all 3 MAO inhibitors. Hydroxytyrosol therefore inhibits both enzymatic and spontaneous oxidation of endogenous dopamine and mitigates the increase in spontaneous oxidation during MAO inhibition.  相似文献   

19.
Intracerebral dialysis was used to monitor the in vivo efflux of striatal dopamine (DA), homovanillic acid (HVA), dihydroxyphenylacetic acid (DOPAC) and 3-methoxytyramine (3-MT) in the pentobarbital anesthetized rat. In untreated rats, there were low levels of extra-cellular DA and 3-MT which were increased 15-fold by treatment with amphetamine. Under basal and drug-stimulated conditions, 3-MT concentrations were maintained at approximately 30% of the extracellular DA levels. These data agree with in vivo turnover estimates which indicate that 20 to 30% of DA turnover is through the 3-MT pool in the striatum. In contrast, extracellular DOPAC and HVA levels were reduced only slightly by amphetamine and with a delayed onset. Our data support the hypothesis that striatal DOPAC is an accurate index of intraneuronal DA metabolism and that 3-MT is an index of the extracellular concentration of DA.  相似文献   

20.
High doses of amphetamine (AMPH) are thought to disrupt normal patterns of action potential-dependent dopaminergic neurotransmission by depleting vesicular stores of dopamine (DA) and inducing robust non-exocytotic DA release or efflux via dopamine transporter (DAT) reversal. However, these cardinal AMPH actions have been difficult to establish definitively in vivo. Here, we use fast-scan cyclic voltammetry (FSCV) in the urethane-anesthetized rat to evaluate the effects of 10 and 20 mg/kg AMPH on vesicular DA release and DAT function in dorsal and ventral striata. An equivalent high dose of cocaine (40 mg/kg) was also examined for comparison to psychostimulants acting preferentially by DAT inhibition. Parameters describing exocytotic DA release and neuronal DA uptake were determined from dynamic DA signals evoked by mild electrical stimulation previously established to be reinforcing. High-sensitivity FSCV with nanomolar detection was used to monitor changes in the background voltammetric signal as an index of DA efflux. Both doses of AMPH and cocaine markedly elevated evoked DA levels over the entire 2-h time course in the dorsal and ventral striatum. These increases were mediated by augmented vesicular DA release and diminished DA uptake typically acting concurrently. AMPH, but not cocaine, induced a slow, DA-like rise in some baseline recordings. However, this effect was highly variable in amplitude and duration, modest, and generally not present at all. These data thus describe a mechanistically similar activation of action potential-dependent dopaminergic neurotransmission by AMPH and cocaine in vivo. Moreover, DA efflux appears to be a unique, but secondary, AMPH action.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号