首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 683 毫秒
1.
Summary Concentration Factors (ppm in animal: ppm in diet) are presented for lead, zinc and cadmium in the snail Cepaea hortensis, and for lead and zinc in the woodlice Oniscus asellus and Philoscia muscorum, sampled at roadside sites. For each species such factors were found to be extremely variable, affected not only by season, and size and/or age of animals, but also by the choice of data used in estimating metal levels in the diet. It is concluded that factors other than seasonal changes in metal levels of senescent vegetation are primarily responsible for withinsite variation in the lead, zinc and cadmium concentrations of invertebrate detritivores.  相似文献   

2.
Women with preeclampsia have been shown to have elevated blood levels of the metabolite homocysteine, and alterations in blood levels of zinc and copper have also been reported. This study measured plasma levels of zinc, copper, and homocysteine in women with preeclampsia and in women with healthy, normotensive pregnancies. For the patients with preeclampsia compared with controls, significantly higher mean plasma levels were found of homocysteine (16.39 vs 9.45 nmol/mL; p≤0.001), zinc (15.53 vs 11.93 μg/g protein; p < 0.05), and copper (47.90 vs 31.60 μg/g protein; p=0.001). The ratio of plasma Cu/Zn levels tended to be higher in preeclamptic women and could be taken as an index of inflammatory reaction, but the difference was not significant. Homocysteine concentrations correlated positively with plasma zinc concentrations in women with preeclampsia (r=0.588, p=0.003) but not in women with healthy pregnancies. No correlations were observed between plasma levels of homocysteine and copper. Thus, the present study found evidence that preeclampsia might be associated with hyperhomocysteinemia and elevated blood levels of zinc and copper. Furthermore, elevated blood levels of zinc were significantly associated with hyperhomocysteinemia in preeclampsia. More studies are warranted to investigate further any relationship between altered homocysteine metabolism and levels of zinc and copper in preeclampsia.  相似文献   

3.
Field and laboratory studies have been carried out on the tolerance to zinc of Stigeoclonium tenue growing in flowing waters. Thirty-four different sites in England, France and Germany were included, the majority of them being chosen to represent examples of zinc pollution resulting from past or present mining activities. S. tenue was sometimes abundant in zinc polluted waters, and was found at sites with up to 20·0 mg l-1 of zinc capable of passing through a filter. At sites with field mean zinc levels of about 0·2 mg l-1 and above, populations show increased resistance to zinc in comparison with populations from sites with lower zinc levels, this increased resistance being largely, if not entirely, the result of genetic adaptation. Assays of populations from sites with high calcium levels suggest that these are less tolerant of a particular level of zinc than are populations from sites with low calcium levels. Levels of zinc bringing about a marked reduction in total growth during assay have a relatively greater effect on the erect part of the thallus than on the basal system. Nevertheless in the field S. tenue was restricted to a basal growth form only at the site with the highest level of zinc.  相似文献   

4.
5.

In this study, we assessed concentrations of 13 trace metals in the scales of Notothenia coriiceps, Trematomus bernacchii and Gobionotothen gibberifrons caught off the coast of James Ross Island (Antarctic Peninsula). Overall, our results for scales broadly match those of previous studies using different fish and different organs, with most metals found at trace levels and manganese, aluminium, iron and zinc occurring at high levels in all species. This suggests that scales can serve as a useful, non-invasive bioindicator of long-term contamination in Antarctic fishes. High accumulation of manganese, aluminium, iron and zinc is largely due to high levels in sediments associated with nearby active volcanic sites. Manganese, vanadium and aluminium showed significant positive bioaccumulation in T. bernacchii (along with non-significant positive accumulation of iron, zinc, cobalt and chromium), most likely due to greater dietary specialisation on sediment feeding benthic prey and higher trophic species. Levels of significance in bioaccumulation regressions were strongly affected by large-scale variation in the data, driven largely by individual differences in diet and/or changes in habitat use and sex differences associated with life stage and reproductive status. Increased levels of both airborne deposition and precipitation and meltwater runoff associated with climate change may be further adding to the already high levels of manganese, aluminium, iron and zinc in Antarctic Peninsula sediments. Further long-term studies are encouraged to elucidate mechanisms of uptake (especially for aluminium and iron) and possible intra- and interspecific impacts of climate change on the delicate Antarctic food web.

  相似文献   

6.
The level and/or form of dietary iron, dietary nickel, and the interaction between them affected the trace element content of rat liver. Livers were from the offspring of dams fed diets containing 10–16 ng, or 20 μg, of nickel/g. Dietary iron was supplied as ferric chloride (30 μg/g) or ferric sulfate (30 μg, or 60 μg). In nickel-deprived rats fed 60 μg of iron/g of diet as ferric sulfate, at age 35 days, levels of iron and zinc were depressed in liver and the level of copper was elevated. At age 55 days, iron was still depressed, copper was still elevated, but zinc also was elevated. In rats fed 30 μg of iron/g of diet as ferric chloride, liver iron content was higher in nickel-deprived than in nickel-supplemented rats at 30, but not at 50, days of age. Also manganese and zinc were lower in nickel-deprived than in nickel-supplemented rats at age 35 days if their dams had been on experiment for an extended period of time (i.e., since age 21 days). Thus, the levels of copper, iron, manganese, and zinc in liver were affected by nickel deprivation, but the direction and extent of the affects depended upon the iron status of the rat.  相似文献   

7.
We have determined the plasma concentrations of copper, zinc, copper/zinc ratio, and carbonic anhydrase activity in horses infected with Babesia equi. The study was conducted in 14 horses with the disease and 10 healthy animals that served as controls. The infection was confirmed by the clinical manifestations of the disease and by Giemsa staining of thin blood smears showing the parasites inside red blood cells. The horses with piroplasmosis had lower plasma levels of zinc, elevated copper, and increased activity of carbonic anhydrase. Consequently, the copper/zinc ratio was also higher than in the healthy controls.  相似文献   

8.
A perturbation of zinc metabolism has been noted in subjects with obesity. Zinc may also participate in the intracellular signal cascade by affecting cellular calcium influx and a change in the calcium-calmodulin (CaM)-cyclic adenosine monophosphate (cAMP) pathway. The possible effects of zinc on cellular concentrations of CaM, a major cytosolic calcium-binding protein, in the adipocytes derived from obese (ob/ob) mice and their lean counterparts were studied. Adipocytes derived from both phenotypes of mice were treated either with 0.2 mM of zinc sulfate or without any additive for 1 h of incubation; the cellular levels of CaM and cAMP were then determined. The results showed that the obese mice had lower CaM and cAMP levels in their adipocytes compared to the lean mice. Zinc treatment reduced CaM and increased cAMP levels in all mice, although this effect was more pronounced in the lean mice. This study indicated that there was an inverse interaction between CaM and cAMP in their cellular levels in the mouse adipocytes and that might be affected by exogenous zinc addition.  相似文献   

9.
Restoring native plant communities on sites formerly occupied by invasive nitrogen‐fixing species poses unique problems due to elevated soil nitrogen availability. Mitigation practices that reduce available nitrogen may ameliorate this problem. We evaluated the effects of tree removal followed by soil preparation or mulching on native plant growth and soil nitrogen transformations in a pine–oak system formerly occupied by exotic nitrogen‐fixing Black locust (Robinia pseudoacacia) trees. Greenhouse growth experiments with native grasses, Andropogon gerardii and Sorghastrum nutans, showed elevated relative growth rates in soils from Black locust compared with pine–oak stands. Field soil nutrient concentrations and rates of net nitrification and total net N‐mineralization were compared 2 and 4 years since Black locust removal and in control sites. Although soil nitrogen concentrations and total net N‐mineralization rates in the restored sites were reduced to levels that were similar to paired pine–oak stands after only 2 years, net nitrification rates remained 3–34 times higher in the restored sites. Other nutrient ion concentrations (Ca, Mg) and organic matter content were reduced, whereas phosphorus levels remained elevated in restored sites. Thus, 2–4 years following Black locust tree removal and soil horizon mixing achieved through site preparation, the concentrations of many soil nutrients returned to preinvasion levels. However, net nitrification rates remained elevated; cover cropping or carbon addition during restoration of sites invaded by nitrogen fixers could increase nitrogen immobilization and/or reduce nitrate availability, making sites more amenable to native plant establishment.  相似文献   

10.
Metal hyperaccumulation in plants is an ecological trait whose biological significance remains debated, in particular because the selective pressures that govern its evolutionary dynamics are complex. One of the possible causes of quantitative variation in hyperaccumulation may be local adaptation to metalliferous soils. Here, we explored the population genetic structure of Arabidopsis halleri at fourteen metalliferous and nonmetalliferous sampling sites in southern Poland. The results were integrated with a quantitative assessment of variation in zinc hyperaccumulation to trace local adaptation. We identified a clear hierarchical structure with two distinct genetic groups at the upper level of clustering. Interestingly, these groups corresponded to different geographic subregions, rather than to ecological types (i.e., metallicolous vs. nonmetallicolous). Also, approximate Bayesian computation analyses suggested that the current distribution of A. halleri in southern Poland could be relictual as a result of habitat fragmentation caused by climatic shifts during the Holocene, rather than due to recent colonization of industrially polluted sites. In addition, we find evidence that some nonmetallicolous lowland populations may have actually derived from metallicolous populations. Meanwhile, the distribution of quantitative variation in zinc hyperaccumulation did separate metallicolous and nonmetallicolous accessions, indicating more recent adaptive evolution and diversifying selection between metalliferous and nonmetalliferous habitats. This suggests that zinc hyperaccumulation evolves both ways—towards higher levels at nonmetalliferous sites and lower levels at metalliferous sites. Our results open a new perspective on possible evolutionary relationships between A. halleri edaphic types that may inspire future genetic studies of quantitative variation in metal hyperaccumulation.  相似文献   

11.
Extremely high degrees of lead tolerance, measured by comparing rates of root extension in culture solutions, are reported from populations of Festuca ovina growing at two lead-mining sites (Westschacht and Keldenich-II) near Mechernich in the Eifel Mountains, Germany. Other populations from nearby heavy metal-contaminated areas show a considerably smaller degree of lead tolerance. Samples of Festuca ovina collected in the field at Westschacht and Keldenich-II contain higher levels of lead in their aerial organs than do those from other lead-contaminated sites. The main soil factor determining the high degree of lead tolerance is the high Pb/Ca ratio. Populations from soils with a low Pb/Ca ratio display a very low degree of tolerance. It is therefore concluded that in Westschacht and Keldenich-II plants, a genuine intracellular tolerance mechanism is present, allowing the accumulation of lead in aerial organs.Leaf samples of zinc-tolerant Festuca contain higher levels of zinc than do samples of non-tolerant plants. Lead and zinc amounts in leaves are correlated with the soil ratios of Pb/Ca and Zn/Ca, respectively, rather than with the absolute soil-metal levels.In a slightly lead-tolerant, but highly zinc-tolerant clone of Festuca ovina from a site contaminated with large amounts of lead and zinc (Plombières), lead was found to be the major factor affecting the inhibition of root extension with combined treatments of lead and zinc in culture solutions. In the highly lead-tolerant, zinc-sensitive population from Westschacht, zinc governs the response of root growth to combinations of the two metals. The results are discussed in terms of discriminating distinct types of heavy-metal tolerance.  相似文献   

12.
Zinc,ethanol, and lipid peroxidation in adult and fetal rats   总被引:1,自引:0,他引:1  
Studies were performed on adult and fetal rats receiving either a zinc-deficient (<0.5 ppm) diet and/or ethanol (20%) throughout pregnancy. Liver zinc levels were depressed in fetuses exposed toin utero zinc deficiency, but brain zinc levels were unchanged. Ethanol had no effect on the concentration of zinc in the several fetal and adult tissues studies. Lipid peroxidation, as measured by endogenous levels of malondialdehyde (MDA) increased following food restriction, zinc improverishment, and alcoholism in adult and fetal livers, but not in fetal brains. Generally, levels of MDA were highest when both zinc deficiency and the ingestion of alcohol occurred concurrently. Glutathione (GSH) was depressed by zinc restriction in several adult and fetal tissues, but not in the fetal brain. Ethanol alone had no effect on GSH levels. The activity of the enzyme glutathione peroxidase (GSH-Px) was not changed in either organism by alcohol or zinc deficiency. Overall, the data point to increased lipid peroxidation in maternal and fetal rat tissues following zinc depletion and/or treatment with alcohol and draw attention to the apparent vulnerability of the fetal liver toin utero alcoholism. By contrast, the fetal brain seems to be especially resistant to alcohol and zinc-related lipoperoxidation. An association is suggested between the increased lipoperoxidation accompanying zinc deficiency and reduced levels of GSH, but this does not appear to relate to changes in the activity of GSH-Px. A similar relationship is not evident with respect to the increased levels of MDA in fetal and adult livers following chronic alcohol intoxication. A possible basis for the zinc-GSH interaction is discussed.  相似文献   

13.
Two-wk-old broiler chicks were inoculated via crop intubation withEimeria acervulina at two doses: 105 or 106 sporulated oocysts/bird or withEimeria tenella at a dose of 105 sporulated oocysts/bird. Serum and liver samples were collected on days 3 and 6 post-inoculation (PI). There were no significant changes in serum or liver zinc, copper, and iron concentrations in any of the infected groups by 3 d PI. However, on d 6, PI serum protein was significantly reduced in all of the infected groups compared to their pair-fed controls. The chicks infected withE. tennella had significantly reduced serum zinc (1.20 vs 1.77 μg/mL) and iron (0.44 vs 1.28 μg/mL) concentrations and significantly elevated serum copper (0.28 vs 0.17 μg/mL) and ceruloplasmin levels (20.33 vs 11.11 μg/mL) compared to their pair-fed counterparts. Those chicks infected withE. acervulina (106 oocysts/bird) exhibited significantly reduced serum iron concentration by 6 days PI (0.90 vs 1.14 μg/mL). Liver zinc was significantly increased in the chicks infected withE. tenella (349 vs 113 μg/g dry liver wt), as was copper (24 vs 19 μg/g), whereas liver iron concentration was significantly reduced (172 vs 243 μg/g) compared to pair-fed controls. At both dose levels, the chicks infected withE. acervulina exhibited a significant reduction in liver iron by 6 d PI. Hepatic cytosol metals generally reflected whole tissue levels. Metallothionein (MT)-bound zinc was significantly elevated in the chicks infected withE. tenella. Iron bound to a high molecular weight, heat-stable protein fraction (presumably cytoplasmic ferritin) was significantly reduced in chicks infected withE. acervulina, as well as those infected withE. tenella. Collectively, the changes in serum zinc, copper, and iron concentrations, as well as the changes in hepatic zinc and MT-zinc concentrations in the chicks infected withE. tenella were similar to changes evoked during an acute phase response to infection. It is possible that a secondary bacterial infection or inflammation stemming from erosion of the lining of the cecum may play a role in the response of trace element metabolism to theE. tenella infection. Mentions of a trademarkr, proprietary product or specific equipment does not consitute a guarantee or warranty by the US Department of Agriculture and does not imply its approval to the exclusion of other products.  相似文献   

14.
15.
Physiological and structural changes in cells of Synechocystis aquatilis f. aquatilis acclimated to grow in the presence of high zinc levels (2.20–3.30 mg·L?1) were investigated. Growth of these cells showed a decreased specific growth rate and final yield of about 60% and 50%, respectively, of the values found for cells grown in the presence of 0.21 mg zinc·L?1 (control culture). The higher the zinc concentration in the culture medium, the more pronounced the reduction in the chl a content. Regardless of zinc concentration, S. aquatilis possessed three distinct carotenoids. A decrease in carotenoid content accompanied the decrease of chl a, and the proportions of the pigments to each other were not affected by zinc. The photosynthetic performance of cells cultured in the presence of high zinc levels showed a decline in both the apparent photosynthetic efficiency and the photosynthetic maximal rate. In these cells the PSII reaction centers became partially closed, and the electron transport activity around PSII and PSI was reduced to 61% and 38% of the control values, respectively, which may indicate an altered PSII/PSI stoichiometry. In addition, electron micrographs revealed a reduced amount of thylakoid membranes, indicating that acclimation to high zinc levels led to a decrease in the overall number of photosynthetic units. On the other hand, light microscopic observation of negative‐stained cells revealed the presence of a thick mucilaginous layer surrounding the high zinc‐acclimated cells. This extracellular material could retain high amounts of metal ions from the medium, thus providing the Synechocystis cells a mechanism to circumvent toxic levels of zinc.  相似文献   

16.
Understanding relationships between cationic metals such as cadmium, copper, nickel, lead and zinc, and amorphous iron sulfides, measured as acid volatile sulfide (AVS), is key to predicting metal bioavailability and toxicity insediments. The objective of the present study was to assess seasonal and spatial variations of AVS in freshwater sediments contaminated with zinc. Sediments were sampled from three streams with varying levels of zinc contamination at two different times, March and June of 1995, representing cold- and warm-weather situations. Interstitial (pore) water concentrations of zinc, and solid phase concentrations of AVS and zinc were measured in surficial and deep sediment horizons. Toxicity tests (10-d) with the amphipodHyalella azteca were conducted using intact cores. Sediment zinc concentrations from six sites within the primary test stream differed by about five-fold, and also varied seasonally. Acid volatile sulfide concentrations were generally lower than those of zinc, and pore water zinc concentrations typically were elevated. There was a positive correlation between solid-phase AVS and zinc concentrations, suggesting that the system was dominated by zinc, as opposed to iron sulfides. In contrast to expectations arising from some studies of seasonal variations of AVS in iron-dominated systems, AVS concentrations were smaller in June than in March. However, this was likely due to a major storm event and associated sediment scouring before the June sampling, rather than to seasonal processes related to variations in temperature and dissolved oxygen. Based upon an indirect analysis of depth variations in AVS, there was some indication that zinc sulfide might be less prone to oxidation than iron sulfide. There was a strong correlation between toxicity of the sediment samples toH. azteca and interstitial water concentrations of zinc; however, the possible contribution of other contaminants to sediment toxicity cannot be dismissed.  相似文献   

17.
Effects of elevated CO2 levels on the amino acid constituents of cotton aphid, Aphis gossypii (Glover), fed on transgenic Bacillus thuringiensis (Berliner) (Bt) cotton [Cryl A(c)], grown in ambient and double‐ambient CO2 levels in closed‐dynamics CO2 chambers, were investigated. Lower amounts of amino acids were found in cotton phloem under elevated CO2 than under ambient CO2 levels. However, higher amounts of free amino acids were found in A. gossypii fed on elevated CO2‐grown cotton than those fed ambient CO2‐grown cotton, and the contents of amino acids in honeydew were not significantly affected by elevated CO2 levels. A larger amount of honeydew was produced by cotton aphids feeding on leaves under elevated CO2 treatment than those feeding on leaves under ambient CO2 treatment, which indicates that A. gossypii ingests more cotton phloem because of the higher C:N ratio of cotton phloem under elevated CO2 levels. Moreover, the amino acid composition was similar in bodies of aphids ingesting leaves under both CO2 treatments, except for two alkaline amino acids, lysine and arginine. This suggests that the nutritional constitution of the phloem sap was important for A. gossypii. Our data suggest that more phloem sap will be ingested by A. gossypii to satisfy its nutritional requirement and balance the break‐even point of amino acid in elevated CO2. Larger amounts of honeydew produced by A. gossypii under elevated CO2 will reduce the photosynthesis and result in the occurrence of some Entomophthora spp.  相似文献   

18.
Erythrocyte metallothionein (E-MT) is considered a promising index of zinc status in humans, since it may be more sensitive than other biochemical indices to changes in dietary zinc. However, conditions of high zinc demand with substantial redistribution of tissue zinc and specific changes in hormone profile, such as pregnancy, may have an influence on E-MT levels in addition to dietary zinc. In this study, we compared E-MT concentrations in relation to other biochemical zinc indices in healthy pregnant women at delivery (n=40) and nonpregnant women (n=22) with similar habitual dietary zinc intakes (average 13.3 mg/d). Pregnant women had lower serum zinc and albumin-bound serum zinc, but higher levels of {ie115-1}-macroglobulin-bound serum zinc than the nonpregnant women. Erythrocyte zinc (E-Zn) was similar in both groups, but E-MT (mean±SE) was slightly but significantly (p<0.05) higher in the pregnant women (2.9±0.09 nmol/g protein) compared to nonpregnant women (2.6±0.06 nmol/g protein). A significant correlation was observed between E-MT and E-Zn in the nonpregnant women (r=0.70;p<0.001), consistent with the role of intracellular zinc in the regulation of metallothionein synthesis. However, such correlation was not observed in the pregnant women, suggesting that E-MT levels in pregnancy may be influenced by factors related to the pregnant state.  相似文献   

19.
20.
Michael Willis 《Hydrobiologia》1985,120(2):107-118
The life-cycle, growth, and reproductive success of a stream-dwelling Erpobdella octoculata (L.) were studied over a 19-month period at two sites, one above and one below an input of zinc pollution from mine-waste. Samples were collected monthly using quadrats. The blotted wet weight of all leeches was measured. An histological technique was employed to determine sexual maturity. Reproductive success was measured by estimating the numbers of cocoons and number of eggs per cocoon at each site. A wet ashing technique, followed by analysis using flame atomic absorption spectrometry, was used to determine the extent of bioaccumulation of zinc. Total zinc and other metals in the waters were similarly analysed.Differences were found between the populations at the two sites. The life-history of the Erpobdella above the contamination was comparable to that found for other stream-dwelling populations previously studied. Observed differences in densities of leeches between sites in the present and in previous studies by other workers may be due to recorded differences in the abundance of available food. At the polluted site, there was evidence that (a) there was a delay in cocoon deposition and hence hatching of young, (b) the adult leeches produced more misshapened and empty cocoons, (c) no relationship existed between the area of cocoons with eggs and number of eggs present, and (d) the proportion of young to adult leech was smaller at the polluted site. At the polluted site, higher levels of zinc were recorded in the tissues of Erpobdella and there was some evidence for the active intake of zinc by the leech.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号