首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 981 毫秒
1.
2.
Chloramphenicol-resistant strains of Staphylococcus aureus contain an inducible enzyme which inactivates chloramphenicol by acetylation in the presence of acetyl coenzyme A. The products of acetylation are chromatographically indistinguishable from those obtained with chloramphenicol-resistant Escherichia coli harboring an R factor. The kinetics of induction of chloramphenicol acetyltransferase are complicated by the inducer's effect on protein biosynthesis and its fate as chloramphenicol 3-acetate, which is not an inducer of the enzyme. The E. coli and S. aureus enzymes have been compared, with the conclusion that they are identical with respect to molecular weight (approximately 78,000) and pH optimum (7.8), but differ with respect to heat stability, substrate affinity, electrophoretic mobility, and immunological reactivity. Antiserum prepared against enzyme from E. coli contains precipitating antibody, which inactivates the E. coli enzyme, but neither precipitates nor neutralizes the activity of S. aureus enzyme.  相似文献   

3.
The mechanism of chloramphenicol resistance in several multiple-resistant Staphylococcus epidermidis strains has been studied and shown to be due to the presence of the enzyme, chloramphenicol acetyltransferase. As with S. aureus, the inactivating enzyme in S. epidermidis appears to be the product of a structural gene on the chloramphenicol plasmid because resistance and enzyme activity are concurcurrently lost after growth in acridine orange or at elevated temperatures. The synthesis of chloramphenicol acetyltransferase in S. epidermidis has been compared with the function of a similar enzyme in chloramphenicol-resistant S. aureus with the conclusion that the kinetics of induction, products of the reaction, and general properties of the enzymes are identical. The chloramphenicol acetylating enzyme from S. epidermidis has been purified to a state of homogeneity and compared with the analogous purified S. aureus enzyme. Both purified preparations consist of native enzymes with molecular weights of 80,000, and evidence is presented that is consistent with their being made up of four identical subunits of 20,000 each. The two staphylococcal enzymes are identical with respect to pH optimum, apparent affinity (Km) for chloramphenicol, heat denaturation, and immunological reactivity, but they differ in electrophoretic mobility, chromatographic behavior, substrate specificity, and sensitivity to inhibition by mercuric ion.  相似文献   

4.
5.
6.
7.
An unusual regulatory system of cephalosporinase synthesis in Citrobacter freundii has been found. When the bacteria are grown at 20 C, the cephalosporinase is synthesized as a typical inducible enzyme and benzylpenicillin acts as an effective inducer. The enzyme, however, is synthesized in the absence of the inducer at growth temperatures above 25 C. when the growth temperature is shifted from 20 C to 37 C, the induction of enzyme synthesis is observed after about one half of the organism doubling time, but it does not occur in the presence of chloramphenicol. The reverse control mutants, the enzyme constitutive synthesis of which is markedly depressed by benzylpenicillin, were isolated from the C. freundii wild strain. The possibility that the enzyme synthesis is governed by a regulatory system analogous to the its mutant of the lac operon in Escherichia coli was suggested.  相似文献   

8.
The plasmid gene cat-86 and the cat gene resident on pC194 each encode chloramphenicol-inducible chloramphenicol acetyltransferase activity in Bacillus subtilis. Chloramphenicol induction has been proposed to result from chloramphenicol binding to ribosomes, which then permits the drug-modified ribosomes to perform events essential to induction. If this proposal were correct, B. subtilis mutants containing chloramphenicol-insensitive ribosomes should not permit chloramphenicol induction of either cat-86 or pC194 cat. However, we and others have been unable to isolate chloramphenicol-resistant ribosomal mutants of B. subtilis 168. We therefore developed a simple procedure for screening other antibiotics for the potential to induce cat-86 expression. One antibiotic, amicetin, was found to be an effective inducer of cat-86 but not of the cat gene on pC194. Amicetin and chloramphenicol each interact with the 50S ribosomal subunit, and the mechanism of cat-86 induction by both drugs may be similar. Amicetin-resistant mutants of B. subtilis were readily isolated, and in none of six mutants tested was cat-86 detectably inducible by amicetin, although the chloramphenicol-inducible phenotype was retained. The ami-1 mutation which is present in one of these amicetin-resistant mutants was mapped by PBS1 transduction to the "ribosomal gene cluster" adjacent to cysA. Additionally, ribosomes from cells harboring the ami-1 mutation contained an altered BL12a protein, as detected in two-dimensional polyacrylamide gel electrophoresis. Lastly, an in vitro protein-synthesizing system that uses ribosomes from an ami-1-containing cell line was more resistant to amicetin than a system that uses ribosomes from an amicetin-sensitive but otherwise isogenic strain. These results indicate that the host mutation, ami-1, which effectively abolished the inducibility of cat-86 by amicetin, altered a ribosomal component.  相似文献   

9.
In Streptomyces venezuelae, chloramphenicol is derived by an unusual diversion of chorismate, the branchpoint intermediate of the pathway involved in the biosynthesis of aromatic amino acids. In the chloramphenicol-producing organism, the DAHP synthetase was neither feedback inhibited nor repressed. Chorismate mutase was not repressed or inhibited by the intermediates or end-products of the shikimate-chorismate pathway. However, anthranilate synthetase and prephenate dehydratase are feedback inhibited by tryptophan and phenylalanine, respectively. During growth, when primary metabolism is not perfectly coordinated, decreasing demand for aromatic amino acids results in shunting of chorismate towards chloramphenicol biosynthesis.The endogenous synthesis of chloramphenicol produced by Streptomyces venezuelae is inhibited by the increasing concentration of chloramphenicol in the medium. Arylamine synthetase, the first enzyme involved in chloramphenicol biosynthesis, is repressed by the secreted chloramphenicol, by dl-p-aminophenylalanine and l-threo-p-aminophenylserinol. The excess intracellular chorismate pool is diverted to other aromatic shunt metabolites if biosynthesis of chloramphenicol is inhibited. There appears to be a glutamine binding protein subunit which is shared by several enzymes involved in amination of the aromatic ring of chorismate.Chloramphenicol producing organism also inactivated intracellular chloramphenicol. However, the resistance of the streptomycetes is due to inducible impermeability of the organism to chloramphenicol during antibiotic production. Streptomyces venezuelae is sensitive to chloramphenicol when it is not engaged in antibiotic production. The resistance to and production of chloramphenicol are induced simultaneously.A linkage map for 17 marker loci using Streptomyces venezuelae has been constructed. Restriction enzyme map of a plasmid from the chloramphenicol-producing streptomycetes has also been developed. The role of the plasmid in chloramphenicol biosynthesis and the life-cycle of the Streptomyces venezuelae is not yet understood.  相似文献   

10.
11.
To determine the inducer(s) of the biodegradative threonine deaminase in Escherichia coli, the effects of various amino acids on the synthesis of this enzyme were investigated. The complex medium used hitherto for the enzyme induction can be completely replaced by a synthetic medium composed of 18 natural amino acids. In this synthetic medium, the omission of each of the seven amino acids threonine, serine, aspartic acid, methionine, valine, leucine, and arginine resulted in the greatest loss of enzyme formation. These seven amino acids did not significantly influence the uptake of other amino acids into the cells. Furthermore, they did not stimulate the conversion of inactive enzyme into an active form, since they did not affect the enzyme level in cells in which protein synthesis was inhibited by chloramphenicol. Threonine, serine, aspartic acid, and methionine failed to stimulate enzyme production in cells in which messenger ribonucleic acid synthesis was arrested by rifampin, whereas valine, leucine, and arginine stimulated enzyme synthesis under the same conditions. Therefore, the first four amino acids appear to act as inducers of the biodegradative threonine deaminase in E. coli and the last three amino acids appear to be amplifiers of enzyme production. The term "multivalent induction" has been proposed for this type of induction, i.e., enzyme induction only by the simultaneous presence of several amino acids.  相似文献   

12.
I G Shvidenko 《Antibiotiki》1979,24(5):345-348
Data on chloramphenicol sensitivity of clinical Proteus strains isolated within 1970--1975 and some mechanisms of their resistance to this antibiotic are presented. It was found that most of the Proteus strains (62.82 +/- 2.15 per cent) were resistant to chloramphenicol. 75 per cent of the isolates had resistance of transmissive character. Resistance of the Proteus cultures to chloramphenicol was not a stable feature and was lost during storage under laboratory conditions. Direct correlation between stability of the antibiotic resistance in the Proteus, the resistance level and the period of the culture storage was found. It was shown that the transmissive resistance to chloramphenicol in the Proteus cultures was due to synthesis of a highly active constituitive chloramphenicol-inactivating enzyme. Direct relation between the Proteus resistance level to chloramphenicol and the rate of the enzyme synthesis was noted. A number of the Proteus strains phenotypically sensitive to this antibiotic was capable of its inactivation. Still, the activity of the enzyme was low. The rate of the enzyme synthesis and the level of the acquired resistance in the chloramphenicol resistant mutants depended on the presence or absence of the enzyme in the cells of the initial sensitive strain. The capacity for chloramphenicol accumulation in a number of the chloramphenicol resistant mutants of the Proteus was decreased.  相似文献   

13.
Chloroplast transformation remains a demanding technique and is still restricted to relatively few plant species. The limited availability of selectable marker genes and the lack of selection markers that would be universally applicable to all plant species represent some of the most serious technical problems involved in extending the species range of plastid transformation. Here we report the development of the chloramphenicol acetyltransferase gene cat as a new selectable marker for plastid transformation. We show that, by selecting for chloramphenicol resistance, tobacco chloroplast transformants are readily obtained. Transplastomic lines quickly reach the homoplasmic state (typically in one additional regeneration round), accumulate the chloramphenicol acetyltransferase enzyme to high levels and transmit their plastid transgenes maternally into the next generation. No spontaneous antibiotic resistance mutants appear upon chloramphenicol selection. Several lines of evidence support the assumption that plant mitochondria are also sensitive to chloramphenicol suggesting that the chloramphenicol acetyltransferase may be a good candidate selectable marker for plant mitochondrial transformation.  相似文献   

14.
15.
A method has been developed to transform plasmid deoxyribonucleic acid into protoplasts of the insect pathogen Bacillus thuringiensis. Protoplasts were formed by treatment of cells with lysozyme. The efficiency of formation of protoplasts was affected by the strain, the media, and the cell density. Deoxyribonucleic acid uptake was induced by polyethylene glycol. Deoxyribonucleic acid from the Staphylococcus aureus plasmid pC194 was used for transformation. Although this plasmid could not be isolated as a stable extrachromosomal element, its chloramphenicol resistance was transferred to the recipient protoplasts. This was confirmed by assay for the enzyme chloramphenicol acetyltransferase, which confers resistance to chloramphenicol. This suggested that pC194 acts as an insertion element in B. thuringiensis.  相似文献   

16.
Bacteria carrying temperature-sensitive mutant R factors for chloramphenicol resistance were isolated. In the presence of chloramphenicol, these bacteria grew at 34 C but not at 43 C. The mutations in the chloramphenicol resistance gene of the R factors affected neither the resistance of the bacteria to dihydrostreptomycin and tetracycline nor the stability of the R factors at 43 C. The chloramphenicol acetyltransferase obtained from Escherichia coli K-12 carrying the mutant R factors was heat-labile as compared with that from a strain carrying the wild-type R factor. We could not find chloramphenicol acetyltransferase activity in 17 chloramphenicol-sensitive and 5 -resistant strains (selected in vitro) of E. coli examined. The results strongly suggest that the chloramphenicol resistance gene of the R factors is the structural gene of the chloramphenicol acetyltransferase rather than the genome controlling the expression of a chromosomal determinant for the enzyme. Furthermore, the studies confirm that the existence of the chloramphenicol acetyltransferase is the primary cause of chloramphenicol resistance of bacteria carrying the R factor. Both the enzyme activity producing the monoacetyl derivative from chloramphenicol and the subsequent formation of the diacetate from the monoacetyl product were heat-labile to the same degree. The results suggest that only one enzyme participates in two steps of chloramphenicol acetylation.  相似文献   

17.
The elective isolation of a soil microorganism, tentatively assigned to the genus Arthrobacter, which produced an extracellular neuraminidase is described. The secretion of neuraminidase from washed cells in minimal medium required the presence of sialo-containing glycoproteins, whereas free N-acetyl-neuraminic asid of N-acetylmannosamine were poor inducers. No enzyme could be dected in the induction fitrated of cells, in the absence of inducer or in the culture filtrate of cells grown in a complete medium. The routine enzyme inducer was a hot-water extract of "edible bird's nest." Mild acid treatment (0.05 N H2SO4) of this extract increased enzyme activity two--to threefold and the specific activity about eightfold. Neuraminidase induction with acid-treated bird's nest was manifested at a linear rate for 6 h without increase in cell number. No other anticipated glycohydrolase or protease activities were foud. The amount of enzyme located within the cells was barely detectable as compared to that found in the induction filtrate. Experiments with chloramphenicol or chlortetracycline indicate that de novo protein synthesis was required for neuraminidase production and that this exoenzyme was not released from a preformed pool. Neuraminidase from this source has an apparent molecular weight of 87,000, a pH optimum of 5 to 6, and an apparent Km of 2.08 mg/ml for collocalia mucoid and 3.3 X 10(-3) M for N-acetylneuraminlactose and is insensitive both to Ca2+ ions and ethylenediaminetetraacetic acid. Preliminary studies indicate that the enzyme can hydrolyze alpha-2,3-, alpha-2,6-, or alph-2-8-N-acetylneuraminylglycosidic linkages. From total activity data and purification criteria, it would appear that this isolate can produce about 5 mg of enzyme per liter of induction medium.  相似文献   

18.
Exposure of dark-grown restingEuglena gracilis Klebs var.bacillaris Cori to light, ethanol, or malate produced an increase in the specific activity of fumarase (EC. 4.2.1.2) and succinate dehydrogenase (EC. 1.3.99.1) during the first 8–12 h of exposure to inducer, followed by a decrease in the specific activity of both mitochondrial enzymes between 12 and 72 h. The increased specific activity represented a net increase in the level of active enzyme, and it was dependent upon cytoplasmic protein synthesis. The photoinduction of fumarase required continuous illumination while the subsequent decrease in fumarase specific activity was independent of light. Light had little effect on the ethanol and malate induction of fumarase and succinate dehydrogenase. In the mutant W3BUL, which has no detectable protochlorophyll(ide) and chloroplast DNA, light induced both mitochondrial enzymes and the kinetics of enzyme induction were similar to the induction kinetics in wild-type cells. The induction of mitochondrial enzymes appears to be controlled by a non-chloroplast photoreceptor. Dark-grown resting cells of the plastidless mutant W10SmL have lost the ability to regulate fumarase levels. In this mutant, the specific activity of fumarase fluctuated and light had little effect on these fluctuations, indicating that fumarase synthesis was uncoupled from the nonchloroplast photoreceptor. Ethanol addition produced transient changes in fumarase specific activity in W10SmL indicating that in this mutant, mitochondrial enzymes are still inductible by metabolites. Fumarase synthesis in wild-type cells was not induced in the dark by levulinic acid, a chemical inducer of the breakdown ofEuglena storage carbohydrates. Taken together, our results indicate that the photoinduction of mitochondrial enzyme synthesis is not a result of the photoinduction of carbohydrate breakdown. The mechanisms by which light and organic carbon induce the synthesis ofEuglena mitochondria may differ.  相似文献   

19.
20.
The induction of paraffin oxidation in intact cells of Pseudomonas aeruginosa was investigated. Oxidation of (14)C-heptane by cell-free extracts of adapted cells showed that the activity of whole cells is a reliable reflection of the synthesis of the first enzyme in the degradation of n-alkanes. Induction was significantly affected by glucose and could be completely repressed by malate. The amino acids l-proline, l-alanine, l-arginine, and l-tyrosine exhibited a rather low repressor action. Malonate, a nonrepressive carbon source, allowed gratuitous enzyme synthesis. A number of compounds which did not sustain growth were found to be suitable substitutes for paraffins as an inducer. Among these were cyclopropane and diethoxymethane. The induction studied under conditions of gratuity with the latter compound as an inducer showed immediate linear kinetics only at saturating inducer concentrations. With n-hexane as the inducer, a lag time was always observed, even when high concentrations were used.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号