首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
mAb directed against the TCR/CD3 complex activate resting T cells. However, TCR/CD3 signaling induces death by apoptosis in immature (CD4+CD8+) murine thymocytes and certain transformed leukemic T cell lines. Here we show that anti-TCR and anti-CD3 mAb induce growth arrest of cloned TCR-gamma delta + T cells in the presence of IL-2. In the absence of exogenous IL-2, however, the very same anti-TCR/CD3 mAb stimulated gamma delta (+)-clones to proliferation and IL-2 production. In the presence of exogenous IL-2, anti-TCR/CD3 mAb induced the degradation of DNA into oligosomal bands of approximately 200 bp length in cloned gamma delta + T cells. This pattern of DNA fragmentation is characteristic for the programmed cell death termed apoptosis. These results demonstrate that TCR/CD3 signaling can induce cell death in cloned gamma delta + T cells. In addition, this report is the first to show that apoptosis triggered by TCR/CD3 signaling is not restricted to CD4+CD8+ immature thymocytes and transformed leukemic T cell lines but can be also observed with IL-2-dependent normal (i.e., TCR-gamma delta +) T cells.  相似文献   

2.
We have analyzed the requirements for the induction of proliferative responses by thymic CD4-CD8- gamma delta T cells. Enriched populations of CD4-CD8- thymocytes from newborn mice, purified by negative selection with anti-CD4, anti-CD8, and anti-TCR alpha beta mAbs were found to contain approximately 20% gamma delta T cells that were p55IL-2R-. When these cells were cultured with a panel of lymphokines (IL-1, -2, -4, and -7), a small response was observed to some of the cytokines tested individually; however, combinations of certain lymphokines (IL-1 + 2, IL-1 + 7, and IL-2 + 7) were found to induce significant proliferation and the selective outgrowth (75-90%) of gamma delta T cells. These cells were IL-2R+, remained CD4-, yet expressed variable levels of CD8. A limited analysis with specific anti-V gamma and V delta mAb suggested that there had not been a selective expansion of preexisting V gamma 2, V gamma 3, or V delta 4 populations in response to the stimulatory lymphokine combinations. Thymic CD4-CD8- gamma delta T cells were unresponsive to stimulation with immobilized anti-pan gamma delta mAb alone. However, in the presence of immobilized anti-pan gamma delta mAb and IL-1, IL-2, or IL-7, but not IL-4, a vigorous proliferative response was observed. Phenotypic analysis showed that 80 to 95% of the proliferating cells were polyclonally expanded gamma delta T cells, expressed the p55IL-2R, and the majority remained CD4-CD8-. Blocking studies with anti-IL-2R mAb showed that stimulation with anti-pan gamma delta + IL-1, but not anti-pan gamma delta + IL-7 was dependent on endogenously produced IL-2. Collectively, these studies suggest that the activation requirements of newborn thymic gamma delta T cells differ markedly from alpha beta T cells in that gamma delta T cells 1) respond to combinations of cytokines in the absence of TCR cross-linking, 2) can respond to TCR cross-linking in the presence of exogenous cytokines, 3) but are unable to activate endogenous cytokine production solely in the presence of TCR cross-linking.  相似文献   

3.
Interleukin-2 (IL-2)-activated killer cells, also referred to as lymphokine-activated killer (LAK) cells, are stimulated by tumor cells to express cytotoxic activity and to also secrete cytokines such as interferon (IFN) and tumor necrosis factor (TNF ). We previously reported that secretion of cytokines by IL-2-activated T cells (LAK-T cells) is dependent on the initial cross-linking of the T cell receptor (TCR)-CD3-molecular complex, but the cross-linking of accessory molecules, such as LFA-1, CD2, CD44 and CD45, on LAK-T cells can enhance this cytokine production. We have developed an approach involving interspecific gene transfer to define further the contributions of LFA-1 and CD2 to the activation of LAK-T cells. The genes for huICAM-1 (a ligand for LFA-1) and huLFA-3 (a ligand for CD2) were transfected singly and in combination into a null mouse melanoma background, and clonal populations of cells that stably express ICAM-1 and/or LFA-3 were derived. Expression of the introduced ICAM-1 and/or LFA-3 by transfected cells enhanced their ability to bind LAK-T cells; the LFA-1/ICAM-1-mediated binding was not further enhanced by activation with phorbol 12-myristate 13-acetate. ICAM-1- and/or LFA-3-transfected cells, in the presence of immobilized anti-CD3, exhibited a greater ability to stimulate IFN secretion by LAK-T cells compared to the untransfected parental lines. This experimental system, which allows ICAM-1/LFA-1 and CD2/LFA-3 interactions to occur on the LAK-T cell at a site distal from the anti-CD3 signal, extends our understanding of LAK-T cell activation by establishing that both LFA-1/ICAM-1 and CD2/LFA-3 can mediate co-stimulation via adhesion and signaling events.  相似文献   

4.
5.
To elucidate the Th cell activation mechanism through the TCR/CD3 complex, we examined the reactivity of T cell clones to soluble monovalent and divalent anti-CD3 without accessory cells or costimulatory factor. All T cell clones tested produced IL-2 in response to monovalent anti-CD3, although reactivity to divalent anti-CD3 was variable depending upon clones. IL-2 production of T cell clones induced by monovalent anti-CD3 was suppressed by cross-linking of the antibody with anti-hamster IgG. IL-2 mRNA expression and the increment of intracellular Ca2+ concentration were consistent with the IL-2 production. When T cell clones were stimulated with monovalent anti-CD3, they increased in size, although divalent anti-CD3 stimulation did not affect their size irrespective of their IL-2 production. These results indicate that monovalent anti-CD3 is more efficient than divalent anti-CD3 in induction of IL-2 production and that the cross-linkage of the TCR/CD3 complex is not necessarily required for the T cell clone activation.  相似文献   

6.
Intestinal intraepithelial lymphocytes (IEL) from mice are greater than 80% CD3+ T cells and could be separated into four subsets according to expression of CD4 and CD8. In our studies designed to assess the functions of IEL, namely, cytokine production, it was important to initially characterize the various subsets of T cells that reside in IEL. The major subset was CD4-, CD8+ (75% of CD3+ T cells), which contained approximately 45 to 65% gamma/delta TCR+ and 35 to 45% alpha/beta TCR+ T cells. Approximately 7.5% of IEL T cells were CD4-, CD8- (double negative) and gamma/delta+ population. On the other hand, CD4+, CD8+ (double positive) and CD4+, CD8- fractions represented 10% and 7.5% of CD3+ T cells, respectively, which were all alpha/beta TCR+. Inasmuch as CD3+, CD4-, CD8+ T cells are a major subset of IEL which contain both gamma/delta TCR or alpha/beta TCR-bearing cells, the present study was focused on the capability of this subset of IEL T cells to produce the cytokines IFN-gamma and IL-5. Both gamma/delta TCR+ and alpha/beta TCR+ IEL spontaneously produced IFN-gamma and IL-5, although higher frequencies of cytokine spot-forming cells were associated with the alpha/beta TCR+ subset. Approximately 30% of CD8+, gamma/delta TCR+ cells produced both cytokines, whereas approximately 90% of alpha/beta TCR+ T cells produced either IFN-gamma or IL-5. Both gamma/delta TCR+ and alpha/beta TCR+ IEL possessed large quantities of cytokine-specific mRNA, clearly showing that these IEL were programmed for cytokine production. When IEL were activated with anti-gamma/delta or anti-CD8 antibodies, higher numbers of IFN-gamma and IL-5 spot-forming cells were noted. The present study has provided direct evidence that a major function of IEL involves cytokine production, and this is the first evidence that gamma/delta TCR+ cells in IEL possess the capability of producing both IL-5 and IFN-gamma.  相似文献   

7.
The expression of the TCR/CD3 complex and the IL-2R alpha chain (p55) on fetal thymocytes has been analyzed by flow cytometry (FCM). Two-parameter immunofluorescence identified three subpopulations which were respectively IL-2R alpha-/CD3+, IL-2R alpha+/CD3-, or IL-2R alpha-/CD3-; no detectable population of IL-2R alpha+/CD3+ cells was found in unstimulated fetal thymocytes. Fractionation by "panning" and by sterile flow cytometric separation was used to characterize the functional responsiveness of these three subpopulations to a variety of stimuli. All three populations proliferated in response to PMA + ionomycin + rIL-2. In contrast, stimulation with anti-CD3 + IL-2 induced proliferation in IL-2R alpha-/CD3+ and IL-2R alpha-/CD3- but not in IL-2R alpha+/CD3- thymocytes. IL-2R alpha- cells, including sorted IL-2R alpha-/CD3- thymocytes, underwent a phenotypic change in response to in vitro stimulation with anti-CD3 + IL-2, resulting in the appearance of an IL-2R alpha+/CD3+ population that was not detected in freshly isolated thymocytes. The ability of fractionated fetal thymocytes to produce lymphokine in response to PMA + ionomycin was also evaluated. Only the IL-2R alpha-/CD3- fraction generated detectable IL-2. These findings demonstrate for the first time that CD3 and IL-2R alpha are expressed in a mutually exclusive fashion in fetal thymocytes and define three subpopulations of thymocytes that differ significantly in their proliferative and differentiative responses to TCR-mediated, IL-2R-mediated, and pharmacologic stimulation.  相似文献   

8.
CD4-mediated signals induce T cell dysfunction in vivo.   总被引:1,自引:0,他引:1  
Triggering of CD4 coreceptors on both human and murine T cells can suppress TCR/CD3-induced secretion of IL-2. We show here that pretreatment of murine CD4+ T cells with the CD4-specific mAb YTS177 inhibits the CD3-mediated activation of the IL-2 promoter factors NF-AT and AP-1. Ligation of CD4 molecules on T cells leads to a transient stimulation of extracellular signal-regulated kinase (Erk) 2, but not c-Jun N-terminal kinase (JNK) activity. Pretreatment with anti-CD4 mAb impaired anti-CD3-induced Erk2 activation. Costimulation with anti-CD28 overcame the inhibitory effect of anti-CD4 Abs, by induction of JNK activation. The in vivo relevance of these studies was demonstrated by the observation that CD4+ T cells from BALB/c mice injected with nondepleting anti-CD4 mAb were inhibited in their ability to respond to OVA Ag-induced proliferation and IL-2 secretion. Interestingly, in vivo stimulation with anti-CD28 mAb restored IL-2 secretion. Furthermore, animals pretreated with anti-CD4 elicited enhanced IL-4 secretion induced by OVA and CD28. These observations suggest that CD4-specific Abs can inhibit T cell activation by interfering with signal 1 transduced through the TCR, but potentiate those delivered through the costimulatory molecule CD28. These studies have relevance to understanding the mechanism of tolerance induced by nondepleting anti-CD4 mAb used in animal models for allograft studies, autoimmune pathologies, and for immunosuppressive therapies in humans.  相似文献   

9.
The requirements for activation of the lytic machinery through CD2 of TCR gamma delta+/CD3+ cells were examined, by utilizing bispecific heteroconjugates containing anti-CD2 mAb cross-linked to anti-DNP. Contrary to the CD2 activation requirements in TCR alpha beta+/CD3+ cells, cytotoxic activity in TCR gamma delta+/CD3+ clones and TCR-/CD3- NK cell clones can be induced by heteroconjugates containing a single anti-CD2 (OKT11.1) mAb. Activation of TCR gamma delta+/CD3+ cells via CD2 is independent of heteroconjugates binding to CD16 (Fc gamma RIII), because heteroconjugates prepared from Fab fragments induced equal levels of lysis. Moreover, anti-CD16 mAb did not inhibit triggering via CD2 in TCR gamma delta+/CD3+ cells. In TCR-/CD3- NK cells, however, induction of cytotoxicity via CD2 is co-dependent on interplay with CD16. Anti-CD3 mAb blocked the anti-CD2 x anti-DNP heteroconjugate-induced cytotoxicity of TCR gamma delta+/CD3+ cells, indicating a functional linkage between CD2 and CD3 on these cells. We conclude that induction of lysis via CD2 shows qualitatively different activation requirements in TCR gamma delta+/CD3+, TCR alpha beta+/CD3+ CTL and TCR-/CD3- NK cells.  相似文献   

10.
A costimulatory member of the TNFR family, 4-1BB, is expressed on activated T cells. Although some reports have suggested that 4-1BB is primarily involved in CD8 T cell activation, in this report we demonstrate that both CD4 and CD8 T cells respond to 4-1BB ligand (4-1BBL) with similar efficacy. CD4 and CD8 TCR transgenic T cells up-regulate 4-1BB, OX40, and CD27 and respond to 4-1BBL-mediated costimulation during a primary response to peptide Ag. 4-1BBL enhanced proliferation, cytokine production, and CTL effector function of TCR transgenic T cells. To compare CD4 vs CD8 responses to 4-1BBL under similar conditions of antigenic stimulation, we performed MLRs with purified CD4 or CD8 responders from CD28(+/+) and CD28(-/-) mice. We found that CD8 T cells produced IL-2 and IFN-gamma in a 4-1BBL-dependent manner, whereas under the same conditions the CD4 T cells produced IL-2 and IL-4. 4-1BBL promoted survival of CD4 and CD8 T cells, particularly at late stages of the MLR. CD4 and CD8 T cells both responded to anti-CD3 plus s4-1BBL with a similar cytokine profile as observed in the MLR. CD4 and CD8 T cells exhibited enhanced proliferation and earlier cell division when stimulated with anti-CD3 plus anti-CD28 compared with anti-CD3 plus 4-1BBL, and both subsets responded comparably to anti-CD3 plus 4-1BBL. These data support the idea that CD28 plays a primary role in initial T cell expansion, whereas 4-1BB/4-1BBL sustains both CD4 and CD8 T cell responses, as well as enhances cell division and T cell effector function.  相似文献   

11.
The tumour-associated antigen, Ep-CAM, is over-expressed in colorectal carcinoma (CRC). In the present study, a recombinant Ep-CAM protein or a human anti-idiotypic antibody (anti-Id) mimicking Ep-CAM, either alone or in combination, was used for vaccination of CRC patients (n=9). GM-CSF was given as an adjuvant cytokine. A cellular immune response was assessed by measuring anti-Ep-CAM lymphoproliferation, IFN- production (ELISPOT) and by analysing the TCR BV gene usage within the CD4+ and CD8+ T-cell subsets followed by CDR3 fragment analysis. A proliferative and/or IFN- T-cell response was induced against the Ep-CAM protein in eight out of nine patients, and against Ep-CAM-derived peptides in nine out of nine patients. Analysis of the TCR BV gene usage showed a significantly higher usage of BV12 family in CD4+ T cells of patients both before and after immunisation than in those of healthy control donors (p<0.05). In the CD8+ T-cell subset, a significant (p<0.05) increase in the BV19 usage was noted in patients after immunisation. In individual patients, a number of TCR BV gene families in both CD4+ and CD8+ T cells were over-expressed mainly in post-immunisation samples. Analysis of the CDR3 length polymorphism revealed a higher degree of clonality in post-immunisation samples than in pre-immunisation samples. In vitro stimulation with Ep-CAM protein confirmed the expansion of anti-Ep-CAM T-cell clones. The results indicate that immunisation with the Ep-CAM protein and/or anti-Id entails the induction of an anti-Ep-CAM T-cell response in CRC patients, and suggest that BV19+ CD8+ T cells might be involved in a vaccine-induced immune response.  相似文献   

12.
To induce better stimulation of T cells during recombinant interleukin-2 (rIL-2) therapy of renal cell carcinoma patients, pretreatment with low-dose CD3 monoclonal antibody (mAb) has been proposed. However, in our clinic, such a treatment did not induce additional activation of T cells. To investigate this we performed whole blood cell cultures with rIL-2 or CD3 mAb as a stimulant. Cultures using isolated blood mononuclear cells were used as a control. When stimulated by the addition of rIL-2, the lymphocyte composition and activation of whole blood cultures did not differ from those of mononuclear cell (MNC) cultures. However, when stimulation was performed with CD3 mAb, CD8bright+ cells in whole blood cultures were not or only minimally induced to express CD25 or IL-2 receptor (IL-2R\). This is in contrast to the situation found in MNC cultures where all CD8bright+ cells expressed CD25 or IL-2Rß to a high extent at the end of culture. When rIL-2 or recombinant interferon (rIFN) was added to whole blood cultures together with CD3 mAb, significantly more CD8bright+ cells were induced to express CD25 or IL-2Rß. These results suggest that whole blood cultures represent the in vivo situation better than MNC cultures. In addition, the results suggest that, also in vivo, administration of low-dose CD3 mAb alone might not be sufficient to induce IL-2R expression on CD8bright+ cells, and would therefore not induce additional specific T cell activation in rIL-2-based immunotherapy. The presented results suggest that in vivosimultaneous administration of rIFN or rIL-2 with low-dose CD3 mAb might induce better stimulation of CD8+ T cells than CD3 mAb only.  相似文献   

13.
TGF-beta modulates immune responses by regulating T cell function. The Smad family of proteins has been recently shown to transduce signals for the TGF-beta superfamily and Smad2 mediates TGF-beta signaling. Here, we showed that TGF-beta phosphorylated Smad2 and induced interaction between Smad2 and Smad4 in primary T cells and the Jurkat T cell line. Interestingly, ligation of the T cell receptor (TCR)/CD3 complex with anti-CD3 mAb also phosphorylated Smad2, but failed to induce interaction between Smad2 and Smad4 in the Jurkat T cell line. Phosphorylation of Smad2 via the TCR/CD3 complex was not abrogated by treatment with neutralizing antibody against TGF-beta. Furthermore, PD98059, a MEK inhibitor, suppressed Smad2 phosphorylation by stimulation with anti-CD3 mAb in Jurkat T cell line. These findings indicated that not only TGF-beta but also stimulation via the TCR/CD3 complex phosphorylated Smad2 through mitogen-activated protein (MAP) kinase cascades, suggesting that Smad2 may function in both TGF-beta- and TCR/CD3 complex-mediated signaling pathways in T cells.  相似文献   

14.
EphB6 is the most recently identified member of the Eph receptor tyrosine kinase family. EphB6 is primarily expressed in thymocytes and a subpopulation of T cells, suggesting that it may be involved in regulation of T lymphocyte differentiation and functions. We show here that overexpression of EphB6 in Jurkat T cells and stimulation with the EphB6 ligand, ephrin-B1, results in the selective inhibition of TCR-mediated activation of JNK but not the MAPK pathway. EphB6 appears to suppress the JNK pathway by preventing T cell receptor (TCR)-induced activation of the small GTPase Rac1, a critical event in initiating the JNK cascade. Furthermore, EphB6 blocked anti-CD3-induced secretion of IL-2 and CD25 expression in a ligand-dependent manner. Dominant negative EphB6 suppressed the inhibitory activity of the endogenous receptor and enhanced anti-CD3-induced JNK activation, CD25 expression, and IL-2 secretion, confirming the requirement for EphB6-specific signaling. Activation of the JNK pathway and the establishment of an IL-2/IL-2R autocrine loop have been shown to play a role in the negative selection of CD4(+)CD8(+) self-reacting thymocytes. In agreement, stimulation of murine thymocytes with ephrin-B1 not only blocked anti-CD3-induced CD25 up-regulation and IL-2 production, but also inhibited TCR-mediated apoptosis. Thus, EphB6 may play an important role in regulating thymocyte differentiation and modulating responses of mature T cells.  相似文献   

15.
Jak3 is responsible for growth signals by various cytokines such as interleukin (IL)-2, IL-4, and IL-7 through association with the common gamma chain (gammac) in lymphocytes. We found that T cells from Jak3-deficient mice exhibit impairment of not only cytokine signaling but also early activation signals and that Jak3 is phosphorylated upon T cell receptor (TCR) stimulation. TCR-mediated phosphorylation of Jak3 is independent of IL-2 receptor/gammac but is dependent on Lck and ZAP-70. Jak3 was found to be assembled with the TCR complex, particularly through direct association with CD3zeta via its JH4 region, which is a different region from that for gammac association. These results suggest that Jak3 plays a role not only in cell growth but also in T cell activation and represents cross-talk of a signaling molecule between TCR and growth signals.  相似文献   

16.
In a previous study, we established CD8+ suppressor T cell (Ts) clone 13G2 which produced the suppressive lymphokine, interleukin-10 (IL-10). In this study, we examined what physiological activator could induce both production of IL-10 from 13G2 and the proliferation of 13G2. Both the antigenic stimulation mimicked by the anti-CD3 antibody and the T cell growth factor interleukin-2 (IL-2) induced IL-10 production from the 13G2 clone equally well. 13G2 cells proliferated remarkably with IL-2 stimulation, while anti-CD3 only slightly induced proliferation of the clone. 13G2 cells also produced IL-10 in the presence of hydroxyurea which blocked transit of cells from G1 to S phase. However, cycloheximide blocked the production of IL-10 from the Ts clone. The study demonstrates that both the anti-CD3 antibody and IL-2 induced IL-10 synthesis of the Ts clone equally well, and the proliferative response of Ts cells was induced more by IL-2 than by anti-CD3. IL-2 proved to be a good stimulator for Ts cells to produce suppressive lymphokine and to multiply their population.Abbreviation Ts suppressor T cell - Th helper T cell - Ag antigen - APC antigen presenting cell - IL interleukin - TCR T cell receptor - mAb monoclonal antibody  相似文献   

17.
The molecular basis of X-linked lymphoproliferative (XLP) disease has been attributed to mutations in the signaling lymphocytic activation molecule-associated protein (SAP), an src homology 2 domain-containing intracellular signaling molecule known to interact with the lymphocyte-activating surface receptors signaling lymphocytic activation molecule and 2B4. To investigate the effect of SAP defects on TCR signal transduction, herpesvirus saimiri-immortalized CD4 Th cells from XLP patients and normal healthy individuals were examined for their response to TCR stimulation. CD4 T cells of XLP patients displayed elevated levels of tyrosine phosphorylation compared with CD4 T cells from healthy individuals. In addition, downstream serine/threonine kinases are constitutively active in CD4 T cells of XLP patients. In contrast, TCR-mediated activation of Akt, c-Jun-NH(2)-terminal kinases, and extracellular signal-regulated kinases in XLP CD4 T cells was transient and rapidly diminished when compared with that in control CD4 T cells. Consequently, XLP CD4 T cells exhibited severe defects in up-regulation of IL-2 and IFN-gamma cytokine production upon TCR stimulation and in MLRs. Finally, SAP specifically interacted with a 75-kDa tyrosine-phosphorylated protein upon TCR stimulation. These results demonstrate that CD4 T cells from XLP patients exhibit aberrant TCR signal transduction and that the defect in SAP function is likely responsible for this phenotype.  相似文献   

18.

Background

Virus infections are the major cause of asthma exacerbations. CD8+ T cells have an important role in antiviral immune responses and animal studies suggest a role for CD8+ T cells in the pathogenesis of virus-induced asthma exacerbations. We have previously shown that the presence of IL-4 during stimulation increases the frequency of IL-5-positive cells and CD30 surface staining in CD8+ T cells from healthy, normal subjects. In this study, we investigated whether excess IL-4 during repeated TCR/CD3 stimulation of CD8+ T cells from atopic asthmatic subjects alters the balance of type 1/type 2 cytokine production in favour of the latter.

Methods

Peripheral blood CD8+ T cells from mild atopic asthmatic subjects were stimulated in vitro with anti-CD3 and IL-2 ± excess IL-4 and the expression of activation and adhesion molecules and type 1 and type 2 cytokine production were assessed.

Results

Surface expression of very late antigen-4 [VLA-4] and LFA-1 was decreased and the production of the type 2 cytokines IL-5 and IL-13 was augmented by the presence of IL-4 during stimulation of CD8+ T cells from mild atopic asthmatics.

Conclusion

These data suggest that during a respiratory virus infection activated CD8+ T cells from asthmatic subjects may produce excess type 2 cytokines and may contribute to asthma exacerbation by augmenting allergic inflammation.  相似文献   

19.
This study follows our previous investigation describing the production of four cytokines (IL-2, IL-4, IFN-gamma, and TNF-alpha) by subsets of thymocytes defined by the expression of CD3, 4, 8, and 25. Here we investigate in greater detail subpopulations of CD4-CD8- double negative (DN) thymocytes. First we divided immature CD25-CD4-CD8-CD3- (CD25- triple negative) (TN) thymocytes into CD44+ and CD44- subsets. The CD44+ population includes very immature precursor T cells and produced high titers of IL-2, TNF-alpha, and IFN-gamma upon activation with calcium ionophore and phorbol ester. In contrast, the CD44- subset of CD25- TN thymocytes did not produce any of the cytokines studied under similar activation conditions. This observation indicates that the latter subset, which differentiates spontaneously in vitro into CD4+CD8+, already resembles CD4+CD8+ thymocytes (which do not produce any of the tested cytokines). We also subdivided the more mature CD3+ DN thymocytes into TCR-alpha beta- and TCR-gamma delta-bearing subsets. These cells produced cytokines upon activation with solid phase anti-CD3 mAb. gamma delta TCR+ DN thymocytes produced IL-2, IFN-gamma and TNF-alpha, whereas alpha beta TCR+ DN thymocytes produced IL-4, IFN-gamma, and TNF-alpha but not IL-2. We then studied alpha beta TCR+ DN T cells isolated from the spleen and found a similar cytokine production profile. Furthermore, splenic alpha beta TCR+ DN cells showed a TCR V beta gene expression profile reminiscent of alpha beta TCR+ DN thymocytes (predominant use of V beta 8.2). These observations suggest that at least some alpha beta TCR+ DN splenocytes are derived from alpha beta TCR+ DN thymocytes and also raises the possibility that these cells may play a role in the development of Th2 responses through their production of IL-4.  相似文献   

20.
IL-4 has been shown to act as a growth factor for human T cells. In addition, IL-4 can enhance CTL activity in MLC, but blocks IL-2 induced lymphokine activated killer cell activity in PBL. In our study, the cloning efficiencies, Ag-specific CTL activity and non-MHC-restricted cytotoxicity of CTL clones generated in IL-2 were compared to those generated in IL-4. In a first experiment, T cells were stimulated with the EBV-transformed B cell line JY and cloned 7 days later with feeder cells and either IL-2 or IL-4. In a second experiment, stimulation of the T cells was carried out in the presence of IL-2 plus anti-IL-4 antibodies or IL-4 plus anti-IL-2 antibodies in order to block the effects of IL-4 and IL-2, respectively, produced by the feeder cells. Although the cloning efficiencies in the second experiment were lower than those obtained in the first experiment, the cloning efficiencies obtained with IL-2 or IL-4 were similar in both experiments. The overall proportion of TCR alpha beta+ T cell clones cytotoxic for the stimulator cell JY established in IL-2 or IL-4 were comparable. A striking difference between the clones obtained in IL-2 or IL-4 was that a large proportion of the clones obtained in IL-4 expressed CD4 and CD8 simultaneously, whereas none of the clones isolated in IL-2 were double positive. Also gamma delta+ T cell clones could be established with IL-4 as a growth factor. TCR gamma delta+ T cell clones isolated in either IL-2 or IL-4 were CD4-CD8- or CD4-CD8+, but the proportion of CD4-CD8+ clones isolated in IL-4 was higher. Interestingly, one TCR gamma delta+ clone isolated in IL-2 was CD4+CD8-. Most of the TCR alpha beta+ and TCR gamma delta+ CTL-clones isolated in IL-2 lysed the NK cell sensitive target cell K562. In contrast, only a small proportion of the TCR alpha beta+ or TCR gamma delta+ CTL clones isolated in IL-4, lysed K562. One TCR gamma delta+ T cell clone (CD-124) isolated in IL-4 and subsequently incubated in IL-2 acquired lytic activity against K562.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号