首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 338 毫秒
1.
Acquired aplastic anemia(AA) is a bone marrow failure syndrome characterized by peripheral cytopenias and bone marrow hypoplasia. It is ultimately fatal without treatment, most commonly from infection or hemorrhage. Current treatments focus on suppressing immune-mediated destruction of bone marrow stem cells or replacing hematopoietic stem cells(HSCs) by transplantation. Our incomplete understanding of the pathogenesis of AA has limited development of targeted treatment options. Mesenchymal stem cells(MSCs) play a vital role in HSC proliferation; they also modulate immune responses and maintain an environment supportive of hematopoiesis. Some of the observed clinical manifestations of AA can be explained by mesenchymal dysfunction. MSC infusions have been shown to be safe and may offer new approaches for the treatment of this disorder. Indeed, infusions of MSCs may help suppress auto-reactive, T-cell mediated HSC destruction and help restore an environment that supports hematopoiesis. Small pilot studies using MSCs as monotherapy or as adjuncts to HSC transplantation have been attempted as treatments for AA. Here we review the current understanding of the pathogenesis of AA and the function of MSCs, and suggest that MSCs should be a target for further research and clinical trials in this disorder.  相似文献   

2.
Mesenchymal stem cells (MSCs) are capable of self-renewal and differentiation into multiple cell lineages. Presently, bone marrow is considered as a prime source of MSCs; however, there are some drawbacks and limitations in use of these MSCs for cell therapy. In this study, we demonstrate that human gingival tissue-derived MSCs have several advantages over bone marrow-derived MSCs. Gingival MSCs are easy to isolate, homogenous and proliferate faster than bone marrow MSCs without any growth factor. Importantly, gingival MSCs display stable morphology and do not loose MSC characteristic at higher passages. In addition, gingival MSCs maintain normal karyotype and telomerase activity in long-term cultures, and are not tumorigenic. Thus, we reveal that human gingiva is a better source of MSCs than bone marrow, and large number of functionally competent clinical grade MSCs can be generated in short duration for cell therapy in regenerative medicine and tissue engineering.  相似文献   

3.
Mesenchymal stem cells (MSCs) are the most popular among the adult stem cells in tissue engineering and regenerative medicine. Since their discovery and functional characterization in the late 1960s and early 1970s, MSCs or MSC‐like cells have been obtained from various mesodermal and non‐mesodermal tissues, although majority of the therapeutic applications involved bone marrow‐derived MSCs. Based on its mesenchymal origin, it was predicted earlier that MSCs only can differentiate into mesengenic lineages like bone, cartilage, fat or muscle. However, varied isolation and cell culturing methods identified subsets of MSCs in the bone marrow which not only differentiated into mesenchymal lineages, but also into ectodermal and endodermal derivatives. Although, true pluripotent status is yet to be established, MSCs have been successfully used in bone and cartilage regeneration in osteoporotic fracture and arthritis, respectively, and in the repair of cardiac tissue following myocardial infarction. Immunosuppressive properties of MSCs extend utility of MSCs to reduce complications of graft versus host disease and rheumatoid arthritis. Homing of MSCs to sites of tissue injury, including tumor, is well established. In addition to their ability in tissue regeneration, MSCs can be genetically engineered ex vivo for delivery of therapeutic molecule(s) to the sites of injury or tumorigenesis as cell therapy vehicles. MSCs tend to lose surface receptors for trafficking and have been reported to develop sarcoma in long‐term culture. In this article, we reviewed the current status of MSCs with special emphasis to therapeutic application in bone‐related diseases. J. Cell. Biochem. 111: 249–257, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

4.
The bone marrow represents the most common source from which to isolate mesenchymal stem cells (MSCs). MSCs are capable of differentiating into tissues of the three primary lineages and have the potential to enhance repair in damaged organs through the principals of regenerative medicine. Given the ease with which MSCs may be isolated from different species the aim of this study was to isolate and characterize putative bone marrow derived MSCs from the spiny mouse, Acomys cahirinus. MSCs were isolated from the spiny mouse in a traditional manner, and based on plastic adherence, morphology, colony forming unit-fibroblast assays and functional assessment (adipogenic, osteogenic and chondrogenic differentiation potential) a population of putative mesenchymal stem cells from the compact bone of the spiny mouse have been isolated and characterized. Such methodological approaches overcome the lack of species-specific antibodies for the spiny mouse and could be employed for other species where the cost of generating species-specific antibodies is not warranted.  相似文献   

5.
The data concerning the influence of mesenchymal stromal cells (MSCs) on immunoglobulin (Ig) production are contradictory. Most results were obtained using MSC derived from bone marrow. The properties of MSCs obtained from other tissues are not well studied. In the present work, MSC cultures have been established from umbilical cord, adipose tissue, and bone marrow of healthy donors, as well as from bone marrow of patients with autoimmune diseases. MSCs from all these sources exhibited similar surface markers. We assayed the influence of MSC cocultivation at exponential or stationary growth phases on IgM content in Namalva and IgE content in U266 cells. Bone marrow MSCs from healthy donors did not affect IgM and IgE production. Proliferating MSCs from patients with Crohn’s disease and multiple sclerosis stimulated Ig production. Exponentially growing MSCs derived from umbilical cord and adipose tissue also stimulated Ig synthesis. MSCs at stationary cultures enhanced IgM production in Namalva (cells) and suppressed IgE synthesis in U266 cells. Thus, MSCs from various tissues with common phenotypes differed in their capacity to modulate Ig production by B-lymphoid cells. The effect of MSCs depends on their growth stage and may be different for lymphoblastoid and myeloma cells.  相似文献   

6.
Adult stem cells have been intensively studied for their potential use in cell therapies for neurodegenerative diseases, ischemia and traumatic injuries. One of the most promising cell sources for autologous cell transplantation is bone marrow, containing a heterogenous cell population that can be roughly divided into hematopoietic stem and progenitor cells and mesenchymal stem cells (MSCs). MSCs are multipotent progenitor cells that, in the case of severe tissue ischemia or damage, can be attracted to the lesion site, where they can secrete bioactive molecules, either naturally or through genetic engineering. They can also serve as vehicles for delivering therapeutic agents. Mobilized from the marrow, sorted or expanded in culture, MSCs can be delivered to the damaged site by direct or systemic application. In addition, MSCs can be labeled with superparamagnetic nanoparticles that allow in vivo cell imaging. Magnetic resonance imaging (MRI) is thus a suitable method for in vivo cell tracking of transplanted cells in the host organism. This review will focus on cell labeling for MRI and the use of MSCs in experimental and clinical studies for the treatment of brain and spinal cord injuries.  相似文献   

7.
Mesenchymal stem cells: characteristics and clinical applications   总被引:23,自引:0,他引:23  
Mesenchymal stem cells (MSCs) are bone marrow populating cells, different from hematopoietic stem cells, which possess an extensive proliferative potential and ability to differentiate into various cell types, including: osteocytes, adipocytes, chondrocytes, myocytes, cardiomyocytes and neurons. MSCs play a key role in the maintenance of bone marrow homeostasis and regulate the maturation of both hematopoietic and non-hematopoietic cells. The cells are characterized by the expression of numerous surface antigens, but none of them appears to be exclusively expressed on MSCs. Apart from bone marrow, MSCs are located in other tissues, like: adipose tissue, peripheral blood, cord blood, liver and fetal tissues. MSCs have been shown to be powerful tools in gene therapies, and can be effectively transduced with viral vectors containing a therapeutic gene, as well as with cDNA for specific proteins, expression of which is desired in a patient. Due to such characteristics, the number of clinical trials based on the use of MSCs increase. These cells have been successfully employed in graft versus host disease (GvHD) treatment, heart regeneration after infarct, cartilage and bone repair, skin wounds healing, neuronal regeneration and many others. Of special importance is their use in the treatment of osteogenesis imperfecta (OI), which appeared to be the only reasonable therapeutic strategy. MSCs seem to represent a future powerful tool in regenerative medicine, therefore they are particularly important in medical research.  相似文献   

8.
Nuclear accidents and terrorism present a serious threat for mass casualty.Accidental or intended radiation exposure leads to radiation-induced gastrointestinal(GI)syndrome.However,currently there are no approved medical countermeasures for GI syndrome.Thus,developing novel treatments for GI syndrome is urgent.Mesenchymal stem cells(MSCs)derived from bone marrow are a subset of multipotent adult somatic stem cells that have the ability to undergo self-renewal,proliferation and pluripotent differentiation.MSCs have advantages over other stem cells;they can be easily isolated from patients or donors,readily expanded ex vivo,and they possess reparative and immunomodulatory properties.Moreover,MSCs have been shown to be powerful tools in gene therapy and can be effectively transduced with vectors containing therapeutic genes.Therefore,the therapeutic potential of MSCs has been brought into the spotlight for the clinical treatment of GI syndrome.In this review,we discuss the possible role of MSCs in radiation-induced GI syndrome.  相似文献   

9.
Mesenchymal stem cells and the treatment of cardiac disease   总被引:32,自引:0,他引:32  
The ischemia-induced death of cardiomyocytes results in scar formation and reduced contractility of the ventricle. Several preclinical and clinical studies have supported the notion that cell therapy may be used for cardiac regeneration. Most attempts for cardiomyoplasty have considered the bone marrow as the source of the "repair stem cell(s)," assuming that the hematopoietic stem cell can do the work. However, bone marrow is also the residence of other progenitor cells, including mesenchymal stem cells (MSCs). Since 1995 it has been known that under in vitro conditions, MSCs differentiate into cells exhibiting features of cardiomyocytes. This pioneer work was followed by many preclinical studies that revealed that ex vivo expanded, bone marrow-derived MSCs may represent another option for cardiac regeneration. In this work, we review evidence and new prospects that support the use of MSCs in cardiomyoplasty.  相似文献   

10.
The future use of adult mesenchymal stem cells (MSCs) for human therapies depends on the establishment of preclinical studies with other mammals such as mouse. Surprisingly, purification and characterisation of murine MSCs were only poorly documented. The aim of this study was to purify mouse MSCs from adult bone marrow and to functionally characterise their abilities to differentiate along diverse lineages. Adherent cells from adult C57Bl/6J mouse bone marrow were depleted of granulo-monocytic cells and subsequently allowed to grow on fibronectin-coated dishes in presence of fetal bovine serum and growth factors. The growing fibroblastoid cell population primarily consisted of spindle- and star-shaped cells with significant renewal capacity as they were cultured until 30 passages (about 60 doubling population). We fully demonstrated the MSC phenotype of these cells by inducing them to differentiate along osteoblastic, adipocytic, and chondrocytic pathways. Mouse MSCs (mMSCs) sharing the same morphological and functional characteristics as human MSCs can be successfully isolated from adult bone marrow without previous mouse or bone marrow treatment. Therefore, mMSCs will be an important tool to study the in vivo behaviour and fate of this cell type after grafting in mouse pathology models.  相似文献   

11.
Mesenchymal stem cells (MSCs) are non-haematopoeitic, stromal cells that are capable of differentiating into mesenchymal tissues such as bone and cartilage. They are rare in bone marrow, but have the ability to expand many-fold in culture, and retain their growth and multi-lineage potential. The properties of MSCs make them ideal candidates for tissue engineering. It has been shown that MSCs, when transplanted systemically, can home to sites of injury, suggesting that MSCs possess migratory capacity; however, mechanisms underlying migration of these cells remain unclear. Chemokine receptors and their ligands play an important role in tissue-specific homing of leukocytes. Here we define the cell surface chemokine receptor repertoire of murine MSCs from bone marrow, with a view to determining their migratory activity. We also define the chemokine receptor repertoire of human MSCs from bone marrow as a comparison. We isolated murine MSCs from the long bones of Balb/c mice by density gradient centrifugation and adherent cell culture. Human MSCs were isolated from the bone marrow of patients undergoing hip replacement by density gradient centrifugation and adherent cell culture. The expression of chemokine receptors on the surface of MSCs was studied using flow cytometry. Primary murine MSCs expressed CCR6, CCR9, CXCR3 and CXCR6 on a large proportion of cells (73+/-11%, 44+/-25%, 55+/-18% and 96+/-2% respectively). Chemotaxis assays were used to verify functionality of these chemokine receptors. We have also demonstrated expression of these receptors on human MSCs, revealing some similarity in chemokine receptor expression between the two species. Consequently, these murine MSCs would be a useful model to further study the role of chemokine receptors in in vivo models of disease and injury, for example in recruitment of MSCs to inflamed tissues for repair or immunosuppression.  相似文献   

12.
吕翠  王晓萃  付文玉 《生物磁学》2009,(16):3194-3197
骨髓间充质干细胞(MSCs)有来源广泛、易于分离培养、不易引起免疫排斥等特点,使其成为细胞治疗和基因治疗的种子细胞,具有广泛的科研和临床应用价值。骨髓MSCs具有多向分化潜能,在特定条件下能诱导分化成神经元甚至是更为特异的多巴胺能神经元,为帕金森病进行细胞移植疗法提供了理想的细胞来源。本文就近年来体外诱导MSCs向多巴胺能神经元定向分化所涉及到的常用诱导因素和诱导方法及途径予以综述。  相似文献   

13.
Based on their capacity to suppress immune responses, multipotent mesenchymal stromal cells (MSCs) are intensively studied for regenerative medicine. Moreover, MSCs are potent immunomodulatory cells that occur through the secretion of soluble mediators including nitric oxide, transforming growth factor beta, and HLAG5. The MSCs, however, are also able to express inflammatory mediators such as prostaglandin E2 or IL-6. MSCs in the bone marrow are in close contact with T cells and B cells, and they regulate immunological memory by organizing defined numbers of dedicated survival niches for plasma cells and memory T cells in the bone marrow. The role of MSCs in arthritis remains controversial - in some studies, murine allogeneic MSCs are able to decrease arthritis; in other studies, MSCs worsen the local inflammation. A recent paper in Arthritis Research and Therapy shows that bone marrow MSCs have decreased osteoblastic potential in rheumatoid arthritis, which may be related to chronic inflammation or to loss of expression of IL-1 receptor agonist. That article raises the importance of the bone marrow microenvironment for MSC biology.  相似文献   

14.
Because of the ability to manipulate their genome, mice are the experimental tool of choice for many areas of scientific investigation. Moreover, established experimental mouse models of human disease are widely available and offer a valuable resource to obtain proof-of-concept for many cell-based therapies. Nevertheless, efforts to establish reliable methods to isolate mesenchymal stromal cells (MSCs) from mouse bone marrow have been elusive. Indeed, a variety of physical and genetic approaches have been described to fractionate MSCs from other cell lineages in bone marrow, but few have achieved high yields or purity while maintaining the genomic integrity of the cells. We provide a historic overview of published procedures dedicated to the isolation of mouse MSCs from bone marrow and compact bone. We also review current findings indicating that growth-restrictive conditions imposed by atmospheric oxygen promotes immortalization of mouse MSCs and how expansion in a low-oxygen environment enhances cell yields and maintains genomic stability. Finally, we provide basic recommendations for isolating primary mouse MSCs and discuss potential pitfalls associated with these isolation methods.  相似文献   

15.
Mesenchymal stem cells (MSCs) can differentiate not only into mesenchymal lineage cells but also into various other cell lineages. As MSCs can easily be isolated from bone marrow, they can be used in various tissue engineering strategies. In this study, we assessed whether MSCs can differentiate into multiple skin cell types including keratinocytes and contribute to wound repair. First, we found keratin 14-positive cells, presumed to be keratinocytes that transdifferentiated from MSCs in vitro. Next, we assessed whether MSCs can transdifferentiate into multiple skin cell types in vivo. At sites of mouse wounds that had been i.v. injected with MSCs derived from GFP transgenic mice, we detected GFP-positive cells associated with specific markers for keratinocytes, endothelial cells, and pericytes. Because MSCs are predominantly located in bone marrow, we investigated the main MSC recruitment mechanism. MSCs expressed several chemokine receptors; especially CCR7, which is a receptor of SLC/CCL21, that enhanced MSC migration. Finally, MSC-injected mice underwent rapid wound repaired. Furthermore, intradermal injection of SLC/CCL21 increased the migration of MSCs, which resulted in an even greater acceleration of wound repair. Taken together, we have demonstrated that MSCs contribute to wound repair via processes involving MSCs differentiation various cell components of the skin.  相似文献   

16.
The presence within bone marrow of a population of mesenchymal stem cells (MSCs) able to differentiate into a number of different mesenchymal tissues, including bone and cartilage, was first suggested by Friedenstein nearly 40 years ago. Since then MSCs have been demonstrated in a variety of fetal and adult tissues, including bone marrow, fetal blood and liver, cord blood, amniotic fluid and, in some circumstances, in adult peripheral blood. MSCs from all of these sources can be extensively expanded in vitro and when cultured under specific permissive conditions retain their ability to differentiate into multiple lineages including bone, cartilage, fat, muscle, nerve, glial and stromal cells. There has been great interest in these cells both because of their value as a model for studying the molecular basis of differentiation and because of their therapeutic potential for tissue repair and immune modulation. However, MSCs are a rare population in these tissues. Here we tried to identify cells with MSC-like potency in human placenta. We isolated adherent cells from trypsin-digested term placentas and examined these cells for morphology, surface markers, and differentiation potential and found that they expressed several stem cell markers. They also showed endothelial and neurogenic differentiation potentials under appropriate conditions. We suggest that placenta-derived cells have multilineage differentiation potential similar to MSCs in terms of morphology and cell-surface antigen expression. The placenta may prove to be a useful source of MSCs.  相似文献   

17.
Bone marrow stroma contains a unique cell population, referred to as marrow stromal cells (MSCs), capable of differentiating along multiple mesenchymal cell lineages. A standard liquid culture system has been developed to isolate MSCs from whole marrow by their adherence to plastic wherein the cells grow as clonal populations derived from a single precursor termed the colony-forming-unit fibroblast (CFU-F). Using this liquid culture system, we demonstrate that the relative abundance of MSCs in the bone marrow of five commonly used inbred strains of mice varies as much as 10-fold, and that the cells also exhibit markedly disparate levels of alkaline phosphatase expression, an early marker of osteoblast differentiation. For each strain examined, the method of isolating MSCs by plastic adherence yields a heterogeneous cell population. These plastic adherent cells also exhibit widely varying growth kinetics between the different strains. Importantly, of three inbred strains commonly used to prepare transgenic mice that we examined, only cells derived from FVB/N marrow readily expand in culture. Further analysis of cultures derived from FVB/N marrow showed that most plastic adherent cells express CD11b and CD45, epitopes of lymphohematopoietic cells. The later consists of both pre-B-cell progenitors, granulocytic and monocytic precursors, and macrophages. However, a subpopulation of the MSCs appear to represent bona fide mesenchymal progenitors, as cells can be induced to differentiate into osteoblasts and adipocytes after exposure to dexamethasone and into myoblasts after exposure to amphotericin B. Our results point to significant strain differences in the properties of MSCs and indicate that standard methods cannot be applied to murine bone marrow to isolate relatively pure populations of MSCs.  相似文献   

18.
AcSDKP抑制体外培养条件下人骨髓间充质干细胞的增殖   总被引:3,自引:0,他引:3  
Dai G  Huang C  Li Y  Pi YH  Wang BH 《生理学报》2006,58(2):110-115
N-乙酰基-丝氨酰-天冬氨酰-赖氨酰-脯氨酸(N-acetyl-seryl-aspartyl-lysyl-proline,AcSDKP)是一种具有生理调控活性的四肽因子,对造血干/祖细胞增殖具有抑制作用。本研究采用集落形成实验、甲基偶氮唑盐(MTT)比色法、细胞分裂指数测定等方法,考察了AcSDKP对体外培养的人骨髓间充质干细胞(mesenchymal stem cell,MSC)增殖的影响。结果显示,在AcSDKP浓度为1×10-12mol/L-1×10-9mol/L的培养体系中,人骨髓MSC集落生成率和大小、活力细胞数和分裂指数均降低,最大效应浓度为1×10-11mol/L。以上实验结果表明,在体外培养条件下,一定浓度的AcSDKP对人骨髓MSC 的增殖具有抑制作用。  相似文献   

19.
Mesenchymal stem cells(MSCs), multipotential cells that reside within the bone marrow, can be induced to differentiate into various cells, such as osteoblasts, adipocytes, chondrocytes, vascular endothelial progenitor cells, and other cell types. MSCs are being widely studied as potential cell therapy agents due to their angiogenic properties, which have been well established by in vitro and in vivo researches. Within this context, MSCs therapy appears to hold substantial promise, particularly in the treatment of conditions involving skin grafts, pedicle flaps, as well as free flaps described in literatures. The purpose of this review is to report the new advances and mechanisms underlying MSCs therapy against skin flaps necrosis.  相似文献   

20.
Chronic degenerative diseases and traumatic injuries are responsible for a decline in neuronal function, which often limit life span. While solid organ transplantation such as liver and kidney has been already applied for thousands of patients, great limitation exists in case of nervous system. Cell transplantation is one of the strategies with potential for treatment of such neural disorders, and many kinds of cells including embryonic stem cells and neural stem cells have been considered as candidates for transplantation therapy. Bone marrow stromal cells (MSCs) have great potential as therapeutic agents, since they are easy to isolate and can be expanded from patients without serious ethical and technical problems. We found a method for the highly efficient and specific induction of functional neurons and Schwann cells from both rat and human MSCs. Induced neurons and Schwann cells were transplanted in animal models of Parkinson's disease, stroke, peripheral nerve injury, and spinal cord injury resulting in the successful integration of transplanted cells and improvement in behavior of transplanted animals. Here we focus on the respective potentials of MSC-derived cells and discuss the possibility of clinical application in neurodegenerative and neurotraumatic diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号