首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The paper focuses on the evaluation of transpiration as a physiological process, which is very sensitive to drought stress. Reactions of 25-year-old Norway spruce (Picea abies (L.) Karst.) trees to drought were examined during 2009 summer. Sap flow rate (SF), meteorological and soil characteristics were measured continually. Vapour pressure deficit of the air (VPD) and cumulative transpiration deficit (KTD) was calculated. During the second half of the vegetation period, the decrease in soil water content was observed and irrigation was applied to a group of spruce trees, while the second group was treated under natural soil drought. On the days, when the differences in transpiration between irrigated (IR) and non-irrigated (NIR) trees were significant (21 days), transpiration of NIR trees was only 23% of the transpiration of IR trees. We found significant differences in transpiration when the soil water content (SWC) of NIR variant at a depth of 5–15 cm ranged from 10.4 to 13.7%. Under both regimes of water availability, daily transpiration significantly responded to atmospheric conditions. However, the influence of all assessed meteorological parameters on SF of NIR trees was significantly lower than on IR tree. The dependency of transpiration on evaporative demands of atmosphere decreased with the decreasing soil moisture. Cumulative transpiration deficit of the stand during the entire evaluated period was 50.9 mm. The difference between the transpiration of the mean NIR tree and of the mean IR tree was 278.8 L over the assessed period of 47 days (5.9 L per day). The transpiration of NIR trees was 40.3% from the transpiration of IR trees during this period.  相似文献   

2.
Summary This is the first in a series of papers on the growth, photosynthetic rate, water and nutrient relations, root distribution and mycorrhizal frequency of two Norway spruce forests at different stages of decline. One of the stands was composed of green trees only while the other included trees ranging in appearance from full green crowns to thin crowns with yellow needles. In this paper we compare the growth and carbohydrate relations of the two stands and examine relationships among growth variables in ten plots. The declining stand produced 65 percent of the wood per ground area compared with the stand in which all trees were green because its foliage produced less wood at any level of leaf area index. The difference in foliage efficiency between the sites could not be explained by differeneces in climate, competition or stand structure. The declining stand appeared to have lower carbon gain as indicated by a smaller increase in reserve carbohydrates before bud break, and weaker sinks for carbohydrates as indicated by less use of the stored carbohydrates than the healthy stand. Thus, growth reduction was probably related to factors which affect both photosynthesis and, even more, the sinks for carbohydrate.  相似文献   

3.
半干旱区城市环境下油松林分蒸腾特征及其影响因子   总被引:2,自引:0,他引:2  
在城市环境下,由于不透水地面面积的增加,土壤-植物-大气之间水汽循环减弱,水汽调节能力差,因而研究城市树木蒸腾对环境因子的响应对于城市进行合理的水汽调节具有重要意义。于2017年生长季,在内蒙古呼和浩特市区树木园内选择58年生油松(Pinus tabulaeformis Carr.)作为研究树种,采用热扩散法测定其树干液流,并同步监测气象因子和土壤含水量变化,利用彭曼公式计算冠层气孔导度。结果表明:(1)生长季内,油松林分蒸腾存在明显日、月变化,晴天天气下林分蒸腾日变化呈单峰曲线,月林分蒸腾量5月最大,其次是7月、8月、6月和9月,分别为20.96、19.89、18.09、17.25 mm和7.49 mm。(2)油松林分蒸腾与饱和水汽压差、太阳总辐射、土壤含水量和风速均存在极显著相关关系(P0.01),太阳总辐射、饱和水汽压差和土壤含水量是影响林分蒸腾的主要环境因子(R~2=0.47、R~2=0.31和R~2=0.16),风速对林分蒸腾的影响程度最小(R~2=0.12);不同降雨量对林分蒸腾的影响作用不同,10 mm以上的日降雨量对油松林分蒸腾作用明显。(3)除环境因子外,油松叶片气孔通过响应环境变化控制蒸腾作用,当饱和水汽压差1.5 kPa时,叶片气孔对饱和水汽压差的响应更敏感;当太阳总辐射250 W/m~2时,叶片气孔对蒸腾起促进作用,超过该阈值,叶片气孔关闭从而抑制树木蒸腾。  相似文献   

4.
Summary A declining Picea abies (L.) Karst. stand produced as much foliage and branches as a healthy stand but less stemwood at a similar leaf area index and climate. Nutrient analyses revealed that most biomass components at the declining site had lower concentrations of calcium and magnesium, but similar nitrogen and potassium (except for lower potassium in younger needles) and higher phosphorus, manganese and aluminum than the respective components at the healthy site. Comparison of these data with the results from studies on the nutrition and growth of P. abies seedlings (Ingestad 1959) led to the conclusion that the healthy stand is in a balanced nutritional state, while trees at the declining stand have only 56% of the foliar magnesium concentration required to permit growth at a rate which could be achieved at their nitrogen status. It appears that acidic deposition, which involves an input of nitrogen and a leaching of cations from the soil, causes an imbalance in the availability of nitrogen and magnesium. Growth is eventually reduced as magnesium becomes limiting.  相似文献   

5.
Irrigation effects on whole-plant sap flow and leaf-level water relations were characterised throughout a growing season in an experimental olive (Olea europaea L.) orchard. Atmospheric evaporative demand and soil moisture conditions for irrigated and non-irrigated olive trees were also monitored. Whole-plant water use in field-grown irrigated and rain fed olive trees was determined using a xylem sap flow method (compensation heat-pulse velocity). Foliage gas exchange and water potentials were determined throughout the experimental period. Physiological parameters responded diurnally and seasonally to variations in tree water status, soil moisture conditions and atmospheric evaporative demand. There was a considerable degree of agreement between daily transpiration deduced from heat-pulse velocity and that determined by calibration using the Penman–Monteith equation in the field. Summer drought caused decreasing leaf gas exchange and water potentials, and a progressive increase in hydraulic conductance (stronger in non-irrigated than irrigated trees), probably attributable to modifications in hydraulic properties at the soil-root interface. Negligible hysteresis, attributable to low plant capacitance, was observed in the relationship between leaf water potential and sap flow. A proportional decrease in maximum daily leaf conductance with increasing vapour pressure deficit was observed, while mean daytime canopy stomatal conductance decreased with the season. As a result, plant water use was limited and excessive drought stress prevented. Non-irrigated olive trees recovered after the summer drought, showing a physiological behaviour similar to that of irrigated trees. In addition to physiological and environmental factors, there are endogenous keys (chemical signals) influencing leaf level parameters. Olive trees are confirmed to be economical and sparing users of soil water, with an efficient xylem sap transport, maintenance of significant gas exchange and transpiration, even during drought stress.  相似文献   

6.
Summary Water relations of the root hemiparasite Olax phyllanthi were compared with those of its major species of hosts in natural habitat in coastal heath near Denmark, SW Australia. Leaf water potentials of Olax during winter were 0.4 to 1.4 MPa lower (more negative) than those of all (29) non parasitic host species examined. During the dry summer months (January to March), shallow-rooted hosts developed water potentials up to 3 MPa lower than those of Olax, and were accordingly rated as no longer accessible as a source of water to the hemiparasite. By contrast, deep-rooted hosts, with access to the water table, showed water potentials less negative than Olax, and haustorial contacts retained with these apparently enabled continued extraction of water and nutrients throughout the summer. Three other species of root hemiparasites parasitized by Olax, but not themselves parasitizing Olax, showed leaf water potentials throughout the year very close to, and mostly slightly more negative than those of Olax. Nocturnal measurements of leaf water potential in winter (July and August) in soil at field capacity (water potential –0.006 MPa) showed maintenance of a 0.5–0.8 MPa potential difference between Olax and a range of common host species. By dawn most hosts had equilibrated with the water potential of the soil, whereas both exposed and bagged Olax plants recorded potentials of –0.8 MPa. Daytime rates of transpiration and photosynthesis of Olax were less than those of a range of common hosts, but water use efficiencies were not consistently different between hemiparasite and hosts. This was reflected in almost identical mean values for carbon isotope ratio (13C/12C) between Olax (mean value –27.0) and thirteen frequently exploited hosts ( value –27.1). The results are discussed in relation to published information on other angiosperm hemiparasites.  相似文献   

7.
Bramley  Helen  Hutson  John  Tyerman  Steve D. 《Plant and Soil》2003,253(1):275-286
Dieback of riparian species on floodplains has been attributed to increased soil salinisation due to raised groundwater levels, resulting from irrigation and river regulation. This is exacerbated by a reduction in flooding frequency and duration of inundation. For the Chowilla floodplain on the River Murray raised water tables have increased the amount of salts mobilised in the soil profile, causing the trees to experience salt induced water stress. For the trees to survive in the long term, salts need to be leached from the root zone.This study investigated whether floodwater infiltrates through channels created by E. largiflorens (black box) roots, flushing salts away from roots, thereby allowing the trees to increase their water uptake. Trees at different sites on the floodplain were artificially flooded, by pumping 1.5 kL of creek water into impoundments constructed around the trees. Gas exchange parameters, and pre-dawn and midday water potential were measured the day before, the day after and one week after the artificial flood and compared against trees that were not flooded. Pre-dawn and midday water potentials were also measured one month after the flood. After flooding, the trees experienced less water stress, indicated by an increase in water potential of less than 0.2 MPa, in comparison to non-flooded control trees. However, this response was not evident one month after flooding. The response to flooding did not result in increased rates of transpiration, stomatal conductance or photosynthesis, even though flooding effectively doubled the trees yearly water supply.The infiltration of floodwater in the impoundments around E. largiflorens was also compared to that of impoundments on bare ground. Floodwater infiltrated 2 – 17 times faster around trees than on adjacent bare ground, for parts of the floodplain not grazed by livestock. Tracer dye experiments indicated that bulk flow of water through pores down the profile was the reason for the enhanced infiltration. Flooding leached salts in direct vicinity of tree roots, but only leached small amounts of salts from the bulk soil.  相似文献   

8.
Gibbons  J.M.  Newbery  D.M. 《Plant Ecology》2003,164(1):1-18
The water relations of two tree species in the Euphorbiaceae werecompared to test in part a hypothesis that the forest understorey plays anintegral role in drought response. At Danum, Sabah, the relatively commonspecies Dimorphocalyx muricatus is associated with ridgeswhilst another species, Mallotus wrayi, occurs widely bothon ridges and lower slopes. Sets of subplots within two 4 -hapermanent plots in this lowland dipterocarp rain forest, were positioned onridges and lower slopes. Soil water potentials were recorded in1995–1997,and leaf water potentials were measured on six occasions. Soil water potentialson the ridges (–0.047 MPa) were significantly lower than onthe lower slopes (–0.012 MPa), but during the driest periodin May 1997 they fell to similarly low levels on both sites (–0.53MPa). A weighted 40-day accumulated rainfall index was developedtomodel the soil water potentials. At dry times, D.muricatus(ridge) had significantly higher pre-dawn (–0.21 v.–0.57 MPa) and mid-day (–0.59 v.–1.77 MPa) leaf water potentials than M.wrayi (mean of ridge and lower slope). Leaf osmotic potentials ofM. wrayi on the ridges were lower (–1.63MPa) than on lower slopes (–1.09 MPa), withthose for D. muricatus being intermediate (–1.29MPa): both species adjusted osmotically between wet and dry times.D. muricatus trees were more deeply rooted thanM. wrayi trees (97 v. 70cm). M. wrayi trees had greaterlateral root cross-sectional areas than D. muricatus treesalthough a greater proportion of this sectional area for D.muricatus was further down the soil profile. D.muricatus appeared to maintain relatively high water potentialsduring dry periods because of its access to deeper water supplies and thus itlargely avoided drought effects, but M. wrayi seemed to bemore affected yet tolerant of drought and was more plastic in its response. Theinteraction between water availability and topography determines these species'distributions and provides insights into how rain forests can withstandoccasional strong droughts.  相似文献   

9.
Summary Tree transpiration was determined by xylem sap flow and eddy correlation measurements in a temperate broad-leaved forest of Nothofagus in New Zealand (tree height: up to 36 m, one-sided leaf area index: 7). Measurements were carried out on a plot which had similar stem circumference and basal area per ground area as the stand. Plot sap flux density agreed with tree canopy transpiration rate determined by the difference between above-canopy eddy correlation and forest floor lysimeter evaporation measurements. Daily sap flux varied by an order of magnitude among trees (2 to 87 kg day–1 tree–1). Over 50% of plot sap flux density originated from 3 of 14 trees which emerged 2 to 5 m above the canopy. Maximum tree transpiration rate was significantly correlated with tree height, stem sapwood area, and stem circumference. Use of water stored in the trees was minimal. It is estimated that during growth and crown development, Nothofagus allocates about 0.06 m of circumference of main tree trunk or 0.01 m2 of sapwood per kg of water transpired over one hour.Maximum total conductance for water vapour transfer (including canopy and aerodynamic conductance) of emergent trees, calculated from sap flux density and humidity measurements, was 9.5 mm s–1 that is equivalent to 112 mmol m–2 s–1 at the scale of the leaf. Artificially illuminated shoots measured in the stand with gas exchange chambers had maximum stomatal conductances of 280 mmol m–2 s–1 at the top and 150 mmol m–2 s–1 at the bottom of the canopy. The difference between canopy and leaf-level measurements is discussed with respect to effects of transpiration on humidity within the canopy. Maximum total conductance was significantly correlated with leaf nitrogen content. Mean carbon isotope ratio was –27.76±0.27 (average ±s.e.) indicating a moist environment. The effects of interactions between the canopy and the atmosphere on forest water use dynamics are shown by a fourfold variation in coupling of the tree canopy air saturation deficit to that of the overhead atmosphere on a typical fine day due to changes in stomatal conductance.This paper is dedicated to Prof. Dr. O.L. Lange on the occasion of his 65th birthday  相似文献   

10.
We show that sapflow is a useful tool for studies of water fluxes in forest ecosystems, because (i) it gives access to the spatial variability within a forest stand, (ii) it can be used even on steep slopes, and (iii) when combined with eddy correlation measurements over forests, it allows separation of individual tree transpiration from the total water loss of the stand. Moreover, sapflow techniques are quite easy to implement. Four sapflow techniques currently coexist, all based on heat diffusion in the xylem. We found a good agreement between three of these techniques. Most results presented here were obtained using the radial flow meter (Granier 1985). Tree sapflow is computed as sap flux density times sapwood area. To scale up from trees to a stand, measurements have to be made on a representative sample of trees. Thus, a number of trees in each circumference class is selected according to the fraction of sapwood they represent in the total sapwood area of the stand. The variability of sap flux density among trees is usually low (CV. 10–15%) in close stands of temperate coniferous or deciduous forests, but is much higher (35–50%) in a tropical rain forest. It also increases after thinning or during a dry spell. A set of 5–10 sapflow sensors usually provides an accurate estimate of stand transpiration. Transpiration measured on two dense spruce stands in the Vosges mountains (France) and one Scot's pine plantation in the Rhine valley (Germany) showed that maximum rate was related to stand LAI and to local climate. Preliminary results comparing the sapflow of a stand of Pinus banksiana to the transpiration of large branches, as part of the BOREAS programme in Saskachewan, Canada showed a similar trend. For modelling purposes, tree canopy conductance (gc) was calculated from Penman-Monteith equation. In most experiments, calculated canopy conductance was dependent on global radiation (positive effect) and on vapour pressure deficit (negative effect) in the absence of other limiting factors. A comparison of the vapour pressure deficit response curves of gc for several tree species and sites showed only small differences among spruce, oak and pine forests when including understorey. Tropical rainforests exhibited a similar behaviour.  相似文献   

11.
Thomas  Frank M.  Hartmann  Günter 《Plant and Soil》1998,203(1):145-158
At three sites in northwestern Germany, which represent the centres of the present oak damage, root distribution and biomass beneath healthy and damaged trees of mature pedunculate oak (Quercus robur L.; Neuenburg site) and sessile oak (Q. petraea [Matt.] Liebl.; Lappwald and Sprakensehl sites) were investigated, and soil texture, bulk density, duration of waterlogging periods and the water available in the mineral soil were determined. For Neuenburg and Sprakensehl, the available soil water was related to leaf water parameters determined in a separate investigation. At the clayey and hydromorphic sites of Neuenburg and Lappwald, the measurements were performed in each one healthy and one damaged part of the site, which differed in the number of oaks with crown damage. In the damaged stand of Neuenburg, the clay content of the subsoil was higher than in the healthy stand, and the soil water availability was reduced especially in dry periods. Compared to healthy oaks of the healthy stand, the density of finest plus fine roots as well as the biomasses of finest roots were lower beneath damaged oaks of the damaged stand. With decreasing relative available soil water (actually available water in relation to water available at the saturation state), the relative leaf water content decreased in damaged, but not in healthy oaks. At Lappwald, similar differences in soil water availability between the healthy and the damaged stand were found, but had no effect on the distribution or biomass of the roots. At the sandy site (Sprakensehl), the available soil water decreased drastically during a dry period, and predawn leaf water potentials of both healthy and damaged oaks declined with decreasing relative available soil water. However, the damaged oaks were not inferior to the healthy ones with respect to root density and biomass. It is concluded that, in the damaged stand of Neuenburg, the high clay content of the subsoil, which results in prolonged periods of waterlogging, in sharp changes from waterlogging to drought and decreased water availability in dry periods, is the reason for the reduced biomass and density of roots of the pedunculate oak. Thus, in northwestern Germany, unfavourable soil water relations are considered as a factor contributing to crown damage of pedunculate oak at hydromorphic sites, but not to damage of sessile oak.  相似文献   

12.
M. R. Davis 《Plant and Soil》1990,126(2):237-246
Concentrations of ions were measured in soil solutions from beech (Nothofagus) forests in remote areas of New Zealand and in solutions from beech (Fagus sylvatica) and Norway spruce (Picea abies) forests in North-East Bavaria, West Germany, to compare the chemistry of soil solutions which are unaffected by acid deposition (New Zealand) with those that are affected (West Germany). In New Zealand, soil solution SO4 2– concentrations ranged between <2 and 58 mol L–1, and NO3 concentrations ranged between <1 and 3 mol L–1. In West Germany, SO4 2– concentrations ranged between 80 and 700 mol L–1, and NO3 concentrations at three of six sites ranged between 39 and 3750 mol L–1, but was not detected at the remaining three sites. At all sites in New Zealand, and at sites where the soil base status was moderately high in West Germany, pH levels increased, and total Al (Alt) and inorganic monomeric Al (Ali) levels decreased rapidly with increasing soil depth. In contrast, at sites on soils of low base status in West Germany, pH levels increased only slightly, and Al levels did not decline with increasing soil depth.Under a high-elevation Norway spruce stand showing severe Mg deficiency and dieback symptoms in West Germany, soil solution Mg2+ levels ranged between 20 and 60 mol L, and were only half those under a healthy stand. Alt and Ali levels were substantially higher the healthy stand than under the unhealthy stand, indicating that Al toxicity was not the main cause of spruce decline.  相似文献   

13.
In situ water relations of a large subalpine Norway spruce (Picea abies) were analyzed by simultaneous measurements of sap flow at different crown positions. In the diurnal scale, transpiration varied greatly, both spatially and temporally. Over longer periods, however, different parts of the crown transpired in fairly constant proportions. The average estimated transpiration was about 3.5 times greater in the upper than in the lower half and decreased 1.6-fold from south to north. Water intercepted from rain, fog and dew buffered and significantly decreased the transpiration. The effect was strongest in those parts which were least coupled to the free atmosphere. The top of the crown seemed to experience a regular shortage of water shortly after starting transpiration, when it was forced to switch from internal reserves to sources in the soil. Further, lower branches then started transpiring, which may have led them to compete for the water. An enhanced nocturnal sap flow during warm and dry winds (Foehn) indicated that the tree also transpired at night. Shaded twigs had more capacity to intercept water externally than twigs in the sun. The significance of the crown structure for interaction with water in both liquid and vapour phases is discussed.  相似文献   

14.
Summary Growth and water relations of 10-year-old sweet gum (Liquidambar styraciflua L.) street trees were studied in sites with low and high potential evapotranspiration to determine how these differences are integrated by growth and water relations over time. The trees were located in the parking strip between the curb and sidewalk at a partially vegetated urban park and an urban plaza in Seattle, Washington. Crown size, and seasonal and diurnal stomatal conductance and water potential, as well as diurnal air temperature and humidity, were measured over 2 growing seasons. Yearly trunk growth since transplanting was measured from increment cores. Vapor pressure deficits and air temperatures averaged 18% greater at the plaza, but whole-tree water loss appeared to be much lower than the park trees due to more restricted stomatal conductance and crown size. In addition, yearly diameter increment declined progressively once the plaza trees were established in the existing soil several years after transplanting. Lower water potential in the plaza trees indicated greater internal moisture deficits than the park trees, and tissue analysis revealed lower nutritional status, particularly nitrogen. A manipulative study of water and fertilizer to several additional plaza trees showed an interaction between water and nutrient deficiencies in the coarse and shallow soil that apparently limited growth. Furthermore, soil limitations probably interacted with paved surface conditions over time by reducing nutrient recycling from leaf litter, and generating higher vapor pressure deficits that would contribute to prolonged stomatal closure. Restricted growth and water relations status of the plaza trees represented an equilibrium between chronic high-resource demand above ground and limited below ground.  相似文献   

15.
人工林面积不断增大,这不仅能解决由于森林砍伐引起的一系列社会问题,而且还对解决水土保持、二氧化碳减排等环境问题起到重要作用。了解人工林的生长特性和蒸腾效率,对植被生长、恢复和管理有着重要意义。为此,该研究连续监测了华南地区12棵不同高度荷木人工林的液流密度,对样树以高度划分等级,采取错位相关法分析不同高度等级胸高处液流与冠层蒸腾的时滞效应。结果表明:气候环境相同时,所有样树胸高处液流日格型相似;荷木林蒸腾量优势木中间木劣势木,所有树木湿季月蒸腾量大于干季月蒸腾量;不同高度等级之间时滞差异显著,劣势木时滞50min,优势木和中间木时滞20min;所有样树干湿季时滞差异不显著,同一高度级两季节时滞差少于10min。这些说明:在干季华南地区土壤水分仍然相对较充足,植物输水阻力没有受到土壤水分降低和长距离水分传导的影响;中间木和优势木时滞短,水力阻力小,蒸腾量大并占据着林段的有利资源;劣势木长势低矮,时滞长,导管阻力大,蒸腾量少,光合作用需要的水热资源少,所以回馈根部的营养物质少,不均衡的营养循环使得林段分化愈明显,劣势木将逐渐从林段中被淘汰。该文指出在荷木人工林生长后期,对于长势低矮,生命力极弱的劣势木应定期砍伐,这样能增加优势木和中间木对光照及水分等有利资源的分配,提高林分质量,增加林地生产力。  相似文献   

16.
Open-canopy moss-rich woodlands dominated by Picea abies and Betula pubescens in northern Finland may undergo cyclic development with reciprocal replacement of the tree species due to the positive feedbacks on soil conditions. Although relations to the abiotic environment are well understood, intra- and interspecific interactions during development of sparse boreal forests have received less attention. We studied tree regeneration, growth and survival with respect to size and density of neighboring trees in four stands representing roughly four stages of the Picea–Betula forest cycle. We conducted spatial analysis (Ripley’s K-function) of mapped locations of live and dead stems to reconstruct the distribution of stems prior to mortality, and to infer possible causes of tree population decline. The prevalence of standing dead stems enabled us to test if mortality was associated with density and size of neighboring trees. Logistic regression was used to test for relationships between tree survival and local crowding indices. We also examined spatial autocorrelations of individual size characteristics to determine the mode and spatial extent of tree interactions. Picea abies had reduced recruitment in open areas occupied by mosses and dwarf-shrubs, and preferentially regenerated near B. pubescens, whereas B. pubescens formed small clumps (and occasionally these consisted entirely of stems from a single tree) that showed local repulsion from large P. abies trees. Size of neighboring trees was the primary determinant of individual growth and survival, whereas neighborhood density per se had only a weak effect. Picea abies had negatively correlated sizes among close neighbors (0–4 m radius) indicating that dominant trees suppress their smaller neighbors. Negative autocorrelations prevailed at the transition stages where the patches of smaller trees were concentrated around evenly spaced large trees. Tree sizes became spatially independent at the mature phase. We hypothesize that both low light and soil nutrient availability causes the P. abies population decline. Dominant trees in this high latitude forest have large light depletion zones and shallow root system to promote strong above- and below-ground competition with younger trees. Higher mortality rates within canopy patches were not compensated for by recruitment in gaps, causing P. abies population to decline steadily.  相似文献   

17.
Summary The relative hydraulic conductivity (k) of xylem and resistance (R) to water flow through trunk, primary roots and branches in Picea abies trees growing under contrasting light conditions were investigated. The xylem permeability to water was measured by forcing 10 mM water solution of KC1 through excised wood specimens. From the values of k, the sapwood transverse area and the length of conducting segments, R of the whole trunk, branches and roots was calculated. The relative conductivity of xylem in open-grown trees exceeded that of shade-grown trees by 1.4–3.1 times, while k was closely correlated with the hydraulically effective radius (R e) of the largest tracheids (R 2 was 0.85–0.94 for open- and 0.51–0.79 for shade-grown trees). Because of both a low k and a smaller sapwood area in shade-grown trees the resistance to water movement through their trunk, roots and branches was many times higher. The distribution of R between single segments of the water-conducting pathway differed considerably in trees from different sites. At high water status the largest share of the total resistance in open- as well as shade-grown trees resides in the apical part of the trunk. The contribution of the branches to total xylem resistance is supposed to increase with developing water deficit.  相似文献   

18.
A field study was conducted to determine how atmospheric and edaphic conditions influenced the water relations of avocado trees (Persea americana Mill. cv. Bacon). With high and low levels of incident photosynthetically active radiation (PAR, 400–700 nm wave length), and either wet or dry soil, leaf conductance decreased as the absolute humidity difference from leaf to air increased. For any water stress treatment, conductance was higher at high PAR than at low PAR. Both conductance and transpiration were higher in well-watered trees than in stressed trees, and in prestressed trees levels were intermediate to unstressed and stressed trees. A model for water flux through the soil-plant-atmosphere continuum was used to examine the relationship of leaf xylem pressure potential to transpiration in well-watered trees and in trees stressed by dry soil. There was a close linkage between leaf xylem pressure potential and transpiration in unstressed and previously stressed trees with high or low PAR, i.e. similar potentials occurred with equivalent transpiration regardless of previous treatment or time of day. In stressed trees, xylem pressure potential was lower than in unstressed trees both during the day and night, and at a given transpiration rate the potential was lower after 1400 h than before that time. The model indicated that in stressed trees xylem pressure potential was uncoupled from transpiration, presumably because of altered resistance in the soil-root portion of the transport system.  相似文献   

19.
Summary Soil-leaf resistance to liquid water flow (R) in moist and drying soil was compared in three-month-old seedlings of two drought tolerant (white [Quercus alba L.], post oak [Q. stellata Wangenh.]) and two drought sensitive forest species (sugar maple [Acer saccharum Marsh.], black walnut [Juglans nigra L.]). At high soil moisture (s–0.3 MPa), R was higher in J. nigra than in the other species, and as soil water was depleted R increased most in this species. In contrast, the lowest resistance at all levels of soil moisture was observed in Q. stellata. At s of –1.5 MPa, R of drought-sensitive J. nigra and A. saccharum was about twice as high as that of the two drought-tolerant Quercus species. The difference in R between the two Quercus species was much smaller than that between this pair and the other two species. These differences among species in flow resistance may be attributable to: 1) variation in the balance between root surface area and leaf area, 2) variation in the inherent absorption capacity of the root systems and in xylem water conducting systems or 3) differences in root permeability, shrinkage and mortality in severely stressed seedlings. As the soil dried, seedlings of all species exhibited pronounced reductions in transpiration rate, which prevented development of large water potential gradients between leaves and the soil. Reduction in transpiration in J. nigra was especially pronounced, resulting in a decrease in the soil-to-leaf water potential gradient in dry soil despite high flow resistance. The observed differences among species in flow resistance are correlated with natural distribution patterns.  相似文献   

20.
Miniature heat balance-sap flow gauges were used to measure water flows in small-diameter roots (3–4 mm) in the undisturbed soil of a mature beech–oak–spruce mixed stand. By relating sap flow to the surface area of all branch fine roots distal to the gauge, we were able to calculate real time water uptake rates per root surface area (Js) for individual fine root systems of 0.5–1.0 m in length. Study aims were (i) to quantify root water uptake of mature trees under field conditions with respect to average rates, and diurnal and seasonal changes of Js, and (ii) to investigate the relationship between uptake and soil moisture θ, atmospheric saturation deficit D, and radiation I. On most days, water uptake followed the diurnal course of D with a mid-day peak and low night flow. Neighbouring roots of the same species differed up to 10-fold in their daily totals of Js (<100–2000 g m−2 d−1) indicating a large spatial heterogeneity in uptake. Beech, oak and spruce roots revealed different seasonal patterns of water uptake although they were extracting water from the same soil volume. Multiple regression analyses on the influence of D, I and θ on root water uptake showed that D was the single most influential environmental factor in beech and oak (variable selection in 77% and 79% of the investigated roots), whereas D was less important in spruce roots (50% variable selection). A comparison of root water uptake with synchronous leaf transpiration (porometer data) indicated that average water fluxes per surface area in the beech and oak trees were about 2.5 and 5.5 times smaller on the uptake side (roots) than on the loss side (leaves) given that all branch roots <2 mm were equally participating in uptake. Beech fine roots showed maximal uptake rates on mid-summer days in the range of 48–205 g m−2 h−1 (i.e. 0.7–3.2 mmol m−2 s−1), oak of 12–160 g m−2 h−1 (0.2–2.5 mmol m−2 s−1). Maximal transpiration rates ranged from 3 to 5 and from 5 to 6 mmol m−2 s−1 for sun canopy leaves of beech and oak, respectively. We conclude that instantaneous rates of root water uptake in beech, oak and spruce trees are above all controlled by atmospheric factors. The effects of different root conductivities, soil moisture, and soil hydraulic properties become increasingly important if time spans longer than a week are considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号