首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
2.
3.
4.
Phylogeny of the Taxaceae genera and the monotypic family Cephalotaxaceae has been extraordinarily controversial. In this paper chloroplast matK genes and nuclear ITS sequences were determined for all six genera of the two families and representatives of other conifer families. Analysis using either the nonsynonymous sites or the deduced amino acid sequences of matK genes strongly indicates that taxad genera and Cephalotaxaceae are monophyletic, with the Taxodiaceae/Cupressaceae clade as their sister group. Cephalotaxus is basal to the taxad genera, among which two clades, Torreya/Amentotaxus and Taxus/Pseudotaxus/Austrotaxus, are resolved. They correspond to Janchen's two tribes, Torreyeae and Taxeae. In Taxeae, Austrotaxus is the first to branch off. Analyses of the nuclear ITS sequence data corroborated the topology of the matK gene tree. These results refute the views that Cephalotaxaceae has no alliance with Taxaceae and that Austrotaxus and Amentotaxus should be excluded from the Taxaceae. We estimated the divergence time between the Taxodiaceae/Cupressaceae and the Cephalotaxaceae/Taxaceae clades to be 192–230 Myr ago and the divergence time between taxads and Cephalotaxus to be 149–179 Myr ago. Soon after the latter divergence event, within 6–8 Myr, the two taxad tribes originated. In conclusion, our data do not support Florin's claim that taxads could be traced to Devonian psilophytes (359–395 Myr ago).  相似文献   

5.
Summary The sequences of seven complementary DNAs or genes encoding the small subunit (SSU) of ribulose-1,5-bisphosphate carboxylase oxygenase (RUBISCO) in several Nicotianeae were examined. Two new SSU genes isolated fromNicotiana sylvestris were included. Both sequence comparisons and Southern analyses with specific probes reveal that SSU genes fall into two homogeneous subfamilies that are highly conserved in Nicotianeae and are also present in other Solanaceae. Additional criteria such as number of introns and level of expression fitted to this classification. Homogeneity must have been maintained by gene conversion and/or an unusually high fidelity of DNA replication, whereas traces of slippage-stranded DNA mispairing and/or transposition probably explain local changes. Taken as a whole, these results show that the divergence between the two subfamilies predated the divergence between genera inside the Solanaceae, but that Nicotianeae retained the most simple SSU gene family structure.  相似文献   

6.
Summary Cot analysis ofChlorella DNA revealed that the genome of the unicellular green alga contained a small amount of repetitive sequences (at most 15% of the total DNA). Short repetitive sequences (SRS) of 170 bp produced by enzymatic digestion of algal DNA with eitherHaeIII,HinfI, orPstI, were found by polyacrylamide gel electrophoresis, and their copy number was estimated to be a few hundred (about 2% of the total repetitive sequences). All three members showed high sequence homology and could be be unified into one family, HaeIII family. The family was divided further into two subfamilies,HinfI- (HaeIII-andHinfI-SRS) andPstI-(PstI-SRS) subfamilies, based on small sequence differences among the members. TheHaeIII family had characteristic structural features, including a considerable number of small unique sequence units (purine-CC) and both direct and inverted repeats, and were organized in tandem arrays in the genome.  相似文献   

7.
Three members have been isolated of an additional glutelin gene subfamily, named subfamily B, consisting of about five members per haploid rice genome. Restriction fragment length polymorphism analysis showed major differences between Japonica and Indica lines, indicating the divergence of the subfamily since the split between the two varieties. While corresponding exons of the subfamily B showed 80 to 88% nucleotide sequence homology, those exons were only 60–65% homologous to those of the glutelin A subfamily [15, 19, 24], distinguishing them from the subfamily A. Intron position and derived polypeptide structure, in addition to the nucleotide sequence, confirm the subfamily B members as glutelins. Analysis of RNA from seeds of different stages of development showed that the subfamily B members were expressed at the same time as those of subfamily A, demonstrating coordinated regulation of the two subfamilies.  相似文献   

8.
Sequences of 45 long terminal repeats (LTRs) of the human endogenous retroviruses HERV-K family, precisely mapped by us earlier on human chromosome 19, were determined and a nearest-neighbour dendrogram was constructed. No correlation was observed between the degree of identity of the LTR pairs and their relative positions on the chromosome. Thus, sequences of distantly located LTRs, even positioned on different chromosome arms, could be highly similar to each other, whereas those of closely located LTRs could differ significantly. We conclude that the LTRs have randomly transposed across the chromosome in the course of evolution. The alignment of the LTR sequences allowed us to assign most of the LTRs to two major subfamilies. The LTRs belonging to the first subfamily (LTR-I) are characterised by higher intrasubfamily sequence divergence than those of the second subfamily (LTR-II). The two subfamilies are easily distinguished by the presence of characteristic deletions/insertions in the LTR sequences. The higher divergence of the first subfamily members suggests that their propagation started at earlier stages of evolution, probably soon after the insertion of their ancestral sequence into the primate genome. In turn, each of the subfamilies includes several distinct branches with various degrees of intragroup divergence and with characteristic diagnostic features, suggesting that the members of the branches represent amplified copies of particular master genes which had appeared at different periods of evolution. The sequences of the LTRs demonstrate a characteristic distribution of conservative and variable regions, indicating that the LTRs might have some sequence-dependent functions in the primate genome. Received: 11 August 1997 / Accepted: 22 September 1997  相似文献   

9.
Using 40 known human-specific LTR sequences, we have derived a consensus sequence for an evolutionary young HERV-K (HML-2) LTR family, which was named the HS family. In the human genome the HS family is represented by approximately 150-160 LTR sequences, 90% of them being human-specific (hs). The family can be subdivided into two subfamilies differing in five linked nucleotide substitutions: HS-a and HS-b of 5.8 and 10.3 Myr evolutionary ages, respectively. The HS-b subfamily members were transpositionally active both before the divergence of the human and chimpanzee ancestor lineages and after it in both lineages. The HS-a subfamily comprises only hs LTRs. These and other data strongly suggest that at least three "master genes" of HERV-K (HML-2) LTRs were active in the human ancestor lineage after the human-chimpanzee divergence. We also found hs HERV-K (HML-2) LTRs integrations in introns of 12 human genes and identified 13 new hs HERV-K (HML-2) LTRs.  相似文献   

10.
A retrotransposon from the fungal plant pathogen Fusarium oxysporum f. sp. lycopersici has been isolated and characterized. The element, designated skippy (skp) is 7846 by in length, flanked by identical long terminal repeats (LTR) of 429 by showing structural features characteristic of retroviral and retrotransposon LTRs. Target-site duplications of 5 bp were found. Two long overlapping open reading frames (ORF) were identified. The first ORF, 2562 by in length, shows homology to retroviral gag genes. The second ORF, 3888 bp in length, has homology to the protease, reverse transciptase. RNase H and integrase domains of retroelement pol genes in that order. Sequence comparisons and the order of the predicted proteins from skippy indicate that the element is closely related to the gypsy family of LTR-retrotransposons. The element is present in similar copy numbers in the two races investigated, although RFLP analysis showed differences in banding patterns. The number of LTR sequences present in the genome is higher than the number of copies of complete elements, indicating excision by homologous recombination between LTR sequences.  相似文献   

11.
This study examines the intragenomic spread of the human endogenous retrovirus family HERV-W from insertions present within the draft sequence of the human genome. Identification of shared diagnostic differences and phylogenetic analyses revealed the existence of three main subfamilies. The average divergence between sequences for each of the subfamilies suggests that most of the HERV-W elements were inserted within the genome during a short period of evolutionary time. Each one of the subfamilies consists of two types of insertions, the expected proviral sequences and other sequences resembling the structure of processed retrogenes. These HERV-W retrosequences extend from the R region of the 5' long-terminal repeat (LTR) to the R region of the 3' LTR (as viral genomic RNAs), end in poly(A) 3' tails, and are flanked by direct repeats longer than the proviral integrations. Furthermore, several of the HERV-W retrosequences are 5'-truncated at different sites. I suggest the involvement of the L1 machinery in these integrations and discuss the characteristic features of the evolutionary history of HERV-W, with emphasis on the putative impact of HERV-W retrosequence integrations on the mammalian genome.  相似文献   

12.
13.
14.
15.
A tandemly repeated DNA sequence (RRS7) was isolated from Oryza alta (CCDD). RRS7-related sequences were also found tandemly arrayed in genomes AA, BB, BBCC, CC, and EE, and a small amount of RRS7-related sequences were detected in genome FF and the Oryza species with unknown genomes. DNA sequence analysis of the 1844-bp insert of RRS7 revealed that it contained six tandemly repeated units, of which five were 155 bp in length and one was 194 bp in length and contained an imperfect internal 39-bp duplication. Southern blot analysis showed that the boundary sequence contained in RRS7 is a single-copy sequence. A 155-bp consensus sequence derived from the six monomeric repeats contained no internal repeat and showed no significant homology to other currently known sequences. The results of Southern blot and sequence analysis revealed that there are at least two subfamilies present in the RRS7 family; these are represented by the DraI site and the MspI site, respectively. Restriction digestion with two pairs of isoschizomers MboI/Sau3A and MspI/HpaII demonstrated that most of the C residues in the GATC sites and the internal C in the CCGG sites of the RRS7 family in O. Alta were methylated. The usefulness of the RRS7 family in determining the evolutionary relationship of the genome DD and other Oryza genomes is discussed.  相似文献   

16.
17.
The complete amino acid sequences of ribosomal proteins S11 from the Gram-positive eubacterium Bacillus stearothermophilus and of S19 from the archaebacterium Halobacterium marismortui have been determined. A search for homologous sequences of these proteins revealed that they belong to the ribosomal protein S11 family. Homologous proteins have previously been sequenced from Escherichia coli as well as from chloroplast, yeast and mammalian ribosomes. A pairwise comparison of the amino acid sequences showed that Bacillus protein S11 shares 68% identical residues with S11 from Escherichia coli and a slightly lower homology (52%) with the homologous chloroplast protein. The halophilic protein S19 is more related to the eukaryotic (45–49%) than to the eubacterial counterparts (35%)  相似文献   

18.
A PCR assay was employed to detect sequences homologous to the transposase gene of the Tc1 family of transposable elements in a wide variety of animals. Amplification products of the appropriate size were obtained from most insects (92 of 108 examined; 85%), most other invertebrates (33 of 43; 77%), and many vertebrates (18 of 36; 50%). Sequencing a sample of cloned PCR products from eight insects, one hydra, and two frogs revealed that each had multiple distinct members of the family in their genomes. In the most extreme case, the horn fly Haematobia irritans yielded evidence of seventeen distinct types of Tc1 family elements. Most of the sequences obtained indicate that the elements are within the range of variation already known from fungi, nematodes, files, fish and frogs. Some, however, had novel length variants or divergent sequences, indicating that they represent new subfamilies of these transposons. These results indicate that this family of transposons is extremely common in animal genomes, with multiple representatives in most genomes.  相似文献   

19.
We have analysed a family of highly repetitive DNA from Arabidopsis arenosa (L.) Lawalrée [syn. Cardaminopsis arenosa (L.) Hayck] composed of AT-rich tandem repeats of 166–179 bp in head to tail organization. Sequence comparison between several repeat units revealed a high level of divergence of 4.5% to 25%. The sequence family shows more than 58% homology to satellite sequences described in Arabidopsis thallana (L.) Heynh. but no homology to other satellite repeats in the Cruciferae. Within the genus Arabidopsis the satellite sequence was found to be present in A. thaliana and Arabidopsis suecica (Fries) Norrlin, but not in Arabidopsis griffithiana (Boiss.) N. Busch and Arabidopsis pumila (Stephan) N. Busch. In situ hybridization to metaphase chromosomes of A. arenosa (2n=4x=32) showed the sequence to be localized at the centromeres of all 32 chromosomes with substantial hybridization along the chromosome arms. Using Southern hybridization and in situ hybridization, we give evidence that A. suecica is a hybrid of A. thaliana and A. arenosa. A considerable reorganization of the A. thaliana satellite sequence pAL1 occurred in the hybrid genome while no molecular change of the A. arenosa repeat was observed in the hybrid. Analysis of related repeats enabled differentiation between closely related genomes and are useful for the investigation of hybrid genomes.  相似文献   

20.
The nucleotide-binding-site-leucine-rich-repeat (NBS–LRR)-encoding gene family has attracted much research interest because approximately 75% of the plant disease resistance genes that have been cloned to date are from this gene family. Here, we describe a collection of peanut NBS–LRR resistance gene candidates (RGCs) isolated from peanut (Arachis) species by mining Gene Bank data base. NBS–LRR sequences assembled into TIR-NBS-LRR (75.4%) and non-TIR-NBS-LRR (24.6%) subfamilies. Total of 20 distinct clades were identified and showed a high level of sequence divergence within TIR-NBS and non-TIR-NBS subfamilies. Thirty-four primer pairs were designed from these RGC sequences and used for screening different genotypes belonging to wild and cultivated peanuts. Therefore, peanut RGC identified in this study will provide useful tools for developing DNA markers and cloning the genes for resistance to different pathogens in peanut.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号