首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
N.J. Jacobs  J.M. Jacobs 《BBA》1976,449(1):1-9
Nitrate can serve as anaerobic electron acceptor for the oxidation of protoporphyrinogen to protoporphyrin in cell-free extracts of Escherichia coli grown anaerobically in the presence of nitrate. Two kinds of experiments indicated this: anaerobic protoporphyrin formation from protoporphyrinogen, followed spectrophotometrically, was markedly stimulated by addition of nitrate; and anaerobic protoheme formation from protoporphyrinogen, determined by extraction procedures, was markedly stimulated by addition of nitrate. In contrast, anaerobic protoheme formation from protoporphyrin was not dependent upon addition of nitrate. This was the first demonstration of the ability of nitrate to serve as electron acceptor for this late step of heme synthesis. Previous studies with mammalian and yeast mitochondria had indicated an obligatory requirement for molecular oxygen at this step.In confirmation of our previous preliminary report, fumarate was also shown to be an electron acceptor for anaerobic protoporphyrinogen oxidation in extracts of E. coli grown anaerobically on fumarate. For the first time, anaerobic protoheme formation from protoporphyrinogen, but not from protoporphyrin, was shown to be dependent upon the addition of fumarate.The importance of these findings is 2-fold. First, they establish that enzymatic protoporphyrinogen oxidation can occur in the absence of molecular oxygen, in contrast to previous observations using mammalian and yeast mitochondria. Secondly, these findings help explain the ability of some facultative and anaerobic bacteria to form very large amounts of heme compounds, such as cytochrome pigments, when grown anaerobically in the presence of nitrate or fumarate. In fact, denitrifying bacteria are known to form more cytochromes when grown anaerobically than during aerobic growth.An unexpected finding was that extracts of another bacterium, Staphylococcus epidermidis, exhibited very little ability to oxidize protoporphyrinogen to protoporphyrin as compared to E. coli extracts. This finding suggests some fundamental differences in these two organisms in this key step in heme synthesis. It is known that these two facultative organisms also differ in that E. coli synthesizes cytochrome during both aerobic and anaerobic growth, while Staphylococcus only synthesizes cytochromes when grown aerobically.  相似文献   

2.
W Wang  J E Boynton  N W Gillham 《Cell》1975,6(1):75-84
A Mendelian mutation, r-1, in Chlamydomonas reinhardtii has been isolated which elevates protoporphyrin accumulation of the Mendelian protoporphyrin mutants brS-1 and brC-1 more than 20 fold. This increased protoporphyrin accumulation is shown to result from increased delta-aminolevulinic acid synthesis in the double mutants brS-1 r-1 and brC-1 r-1 over that of brS-1 and brC-1 alone. By itself, the r-1 mutation has no detectable protoporphyrin accumulation and has reduced levels of delta-aminolevulinic acid synthesizing activity, chlorophyll, protoheme, and cytochrome oxidase activity. The low levels of chlorophyll and protoheme in r-1 can be increased by feeding delta-aminolevulinic acid. We hypothesize that r-1 may be a mutation of the gene coding for the delta-aminolevulinic acid synthesizing enzyme which reduces the sensitivity of this enzyme to feedback inhibition by protoporphyrin or heme as well as reducing the overall activity of the enzyme. Evidence is also presented for a single delta-aminolevulinic acid synthesizing enzyme serving both chlorophyll and heme biosynthesis.  相似文献   

3.
Porphyromonas gingivalis acquires heme through an outer-membrane heme transporter HmuR and heme-binding hemophore-like lipoprotein HmuY. Here, we compare binding of iron(III) mesoporphyrin IX (mesoheme) and iron(III) deuteroporphyrin IX (deuteroheme) to HmuY with that of iron(III) protoporphyrin IX (protoheme) and protoporphyrin IX (PPIX) using spectroscopic methods. In contrast to PPIX, mesoheme and deuteroheme enter the HmuY heme cavity and are coordinated by His134 and His166 residues in a fully analogous way to protoheme binding. However, in the case of deuteroheme two forms of HmuY–iron porphyrin complex were observed differing by a 180° rotation of porphyrin about the α-γ-meso-carbon axis. Since the use of porphyrins either as active photosensitizers or in combination with antibiotics may have therapeutic value for controlling bacterial growth in vivo, it is important to compare the binding of heme derivatives to HmuY.  相似文献   

4.
A Tn5-induced mutant of Bradyrhizobium japonicum, strain LORBF1, was isolated on the basis of the formation of fluorescent colonies, and stable derivatives were constructed in backgrounds of strains LO and I110. The stable mutant strains LOek4 and I110ek4 were strictly dependent upon the addition of exogenous hemin for growth in liquid culture and formed fluorescent colonies. The fluorescent compound was identified as protoporphyrin IX, the immediate precursor of protoheme. Cell extracts of strains LOek4 and I110ek4 were deficient in ferrochelatase activity, the enzyme which catalyzes the incorporation of ferrous iron into protoporphyrin IX to produce protoheme. Mutant strain I110ek4 could take up 55Fe from the growth medium, but, unlike the parent strain, no significant incorporation of radiolabel into heme was found. This observation shows that heme was not synthesized in mutant strain I110ek4 and that the heme found in those cells was derived from exogenous hemin in the growth medium. The putative protein encoded by the gene disrupted in strain LORBF1 and its derivatives was homologous to ferrochelatases from eukaryotic organisms. This homology, along with the described mutant phenotype, provides strong evidence that the disrupted gene is hemH, that which encodes ferrochelatase. Mutant strain I110ek4 incited nodules on soybean that did not fix nitrogen, contained few viable bacteria, and did not express leghemoglobin heme or apoprotein. The data show that B. japonicum ferrochelatase is essential for normal nodule development.  相似文献   

5.
Ferrochelatase [heme synthase, protoheme ferrolyase (EC 4.99.1.1)], the terminal enzyme of the heme biosynthetic pathway, catalyzes the incorporation of ferrous ion into protoporphyrin IX to form protoheme IX. The genes and cDNAs for ferrochelatase from mammals and microorganisms have been isolated. The gene for human ferrochelatase has been mapped to chromosome 18q 21.3 and consists of 11 exons with a size of about 45 kilodaltons. The induction of ferrochelatase expression occurs during erythroid differentiation, and can be attributed to the existence of the promoter sequences of erythroid-related genes. Analysis of the ferrochelatase gene in patients with erythropoietic protoporphyria, an inherited disease caused by ferrochelatase defects, revealed that molecular anomalies of ferrochelatase from 11 patients were found in 9 patients as autosomal dominant type, and 2 patients as recessive type. Diversity of the mutations of the ferrochelatase gene is also briefly described.  相似文献   

6.
The hemY gene of the Bacillus subtilis hemEHY operon is essential for protoheme IX biosynthesis. Two previously isolated hemY mutations were sequenced. Both mutations are deletions affecting the hemY reading frame, and they cause the accumulation of coproporphyrinogen III or coproporphyrin III in the growth medium and the accumulation of trace amounts of other porphyrinogens or porphyrins intracellularly. HemY was found to be a 53-kDa peripheral membrane-bound protein. In agreement with recent findings by Dailey et al. (J. Biol. Chem. 269:813-815, 1994) B. subtilis HemY protein synthesized in Escherichia coli oxidized coproporphyrinogen III and protoporphyrinogen IX to coproporphyrin and protoporphyrin, respectively. The protein is not a general porphyrinogen oxidase since it did not oxidize uroporphyrinogen III. The apparent specificity constant, kcat/Km, for HemY was found to be about 12-fold higher with coproporphyrinogen III as a substrate compared with protoporphyrinogen IX as a substrate. The protoporphyrinogen IX oxidase activity is consistent with the function of HemY in a late step of protoheme IX biosynthesis, i.e., HemY catalyzes the penultimate step of the pathway. However, the efficient coproporphyrinogen III to coproporphyrin oxidase activity is unexplained in the current view of protoheme IX biosynthesis.  相似文献   

7.
Cells of the ciliate Tetrahymena pyriformis GL overproduce and accumulate massive quantities of the heme intermediate, protoporphyrin IX. Protoporphyrin is localized intracellularly in discrete membranous compartments. The amount of porphyrin stored in the cell changes dramatically as cells progress through the growth cycle. Porphyrin overproduction is stimulated by δ-aminolevulinic acid, but only during the mid-stationary phase. Overproduction of protoporphyrin IX apparently results from an increase, late in the growth cycle, of activities subsequent to δ-aminolevulinic acid synthetase. Feedback inhibition in the pathway by accumulated protoporphyrin IX does not occur. The presence of Co2+ completely inhibits accumulation of protoporphyrin IX in a manner reversed by δ-aminolevulinic acid. Sn4+ stimulates protoporphyrin IX accumulation in the culture.  相似文献   

8.
Ferrochelatase (protoheme ferro-lyase, EC 4.99.1.1) has been studied in yeast mitochondrial membranes with special reference to zinc-chelatase and iron-chelatase activities. Using physiological substrates (protoporphyrin IX, Fe(II) and Zn(II), anaerobic conditions of incubation and direct spectrophotometric assay, apparent Km values smaller than those previously described were found for the membrane-bound enzyme. Fe(II) but not Fe(III) was a strong competitive inhibitor of zinc-chelatase activity, while Zn(II) was a slight competitive inhibitor of iron-chelatase activity. These results could point to modes of control of ferrochelatase activity in yeast. We suggest that reduced supply of Fe(II) may explain the in vivo accumulation of zinc-protoporphyrin in yeast cells incubated under 'resting' conditions.  相似文献   

9.
Protoheme is essential for the growth of some strains of Bacteroides melaninogenicus. At low concentrations in the growth medium, protoheme determines the doubling time, total cell yield, and amount of cytochrome per bacterium. At high protoheme concentrations, the doubling time, total cell yield, and amount of enzymatically reducible cytochrome appear to remain nearly constant, and protoheme is accumulated by the cell. The accumulated protoheme can support the growth of the bacterium for at least eight generations in a protoheme-free medium. When growth and cytochrome content are proportional during growth at low protoheme concentrations, the bacteria incorporate 10 to 20% of the total available protoheme into a membrane-bound respiratory system. This respiratory system includes cytochrome c, a carbon monoxide-binding pigment, and possibly flavoproteins. The pigments can be reversibly reduced by reduced nicotinamide adenine dinucleotide or endogenous metabolism and can be oxidized anaerobically by fumarate or by shaking in air. Electron transport is inhibited by 2-n-nonyl-4-hydroxy-quinoline-N-oxide.  相似文献   

10.
The effect of various conditions on the accumulation of porphyrins and heme by resting suspensions of anaerobically grown cells of Staphylococcus epidermidis was examined. Anaerobically grown cells contain 10 to 15% of the amount of protoheme found in cells grown aerobically. Resting suspensions of anaerobically grown cells, when incubated aerobically in buffer with delta-aminolevulinic acid and glucose for 60 min, exhibited a fourfold increase in protoheme content. At high levels of delta-aminolevulinic acid, there was also a significant accumulation of porphyrins with the solubility and chromatographic properties of coproporphyrin and uroporphyrin. Protoporphyrin was not accumulated. When oxygen was excluded from the incubation mixture, accumulation of protoheme was prevented, but accumulation of coproporphyrin and total porphyrin was enhanced. Nitrate served as an electon acceptor as indicated by its reduction to nitrite; however, nitrate did not substitute for oxygen in causing the accumulation of protoheme. These results suggested that oxygen is required for one of the late steps of heme synthesis in S. epidermidis, possibly for the conversion of coproporphyrinogen to protoporphyrin. The inability of nitrate to substitute for oxygen suggests a role for molecular oxygen as a substrate rather than as an electron acceptor for heme synthesis.  相似文献   

11.
The membrane-bound enzyme ferrochelatase (protoheme ferro-lyase, EC 4.99.1.1) was purified from isolated membrane fragments of Spirillum itersonii approximately 490-fold. Purification was achieved by solubilization with chaotropic salts followed by ammonium sulfate fractionation, diethylaminoethyl-cellulose chromatography, and gel filtration on Sephadex G-200. The purified enzyme has an apparent minimum molecular weight of approximately 50,000, as determined by gel filtration in the presence of 0.1% Brij 35 and 1 mM dithiothreitol but forms high-molecular-weight aggregates in the absence of detergent. Purified ferrochelatase is strongly stimulated in the presence of copper. The apparent Km for Fe2+ is 20 micrometer in the absence of copper and 9.5 micrometer in the presence of 20 micrometer CuCl2. The apparent Km for protoporphyrin is 50 micrometer, and it is unaltered by copper. Ferrochelatase has a single pH optimum of 7.50, and it is inhibited 50% by 20 micrometer heme. Certain divalent cations and sulfhydryl reagents also inhibit the enzyme.  相似文献   

12.
Protoporphyrin formation in Rhizobium japonicum.   总被引:7,自引:6,他引:1       下载免费PDF全文
The obligately aerobic soybean root nodule bacterium Rhizobium japonicum produces large amounts of heme (iron protoporphyrin) only under low oxygen tensions, such as exist in the symbiotic root nodule. Aerobically incubated suspensions of both laboratory-cultured and symbiotic bacteria (bacteroids) metabolize delta-aminolevulinic acid to uroporphyrin, coproporphyrin, and protoporphyrin. Under anaerobic conditions, suspensions of laboratory-cultured bacteria form greatly reduced amounts of protoporphyrin from delta-aminolevulinic acid, whereas protoporphyrin formation by bacteroid suspensions is unaffected by anaerobiosis, suggesting that bacteroids form protoporphyrin under anaerobic conditions more readily than do free-living bacteria. Oxygen is the major terminal electron acceptor for coproporphyrinogen oxidation in cell-free extracts of both bacteroids and free-living bacteria. In the absence of oxygen, ATP, NADP, Mg2+, and L-methionine are required for protoporphyrin formation in vitro. In the presence of these supplements, coproporphyrinogenase activity under anaerobic conditions is 5 to 10% of that observed under aerobic conditions. Two mechanisms for coproporphyrinogen oxidation exist in R. japonicum: an oxygen-dependent process and an anaerobic oxidation in which electrons are transferred to NADP. The significance of these findings with regard to heme biosynthesis in the microaerophilic soybean root nodule is discussed.  相似文献   

13.
Ferrochelatase (protoheme ferrolyase, EC 4.99.1.1) is the terminal enzyme in heme biosynthesis and catalyzes the insertion of ferrous iron into protoporphyrin IX to form protoheme IX (heme). Due to the many critical roles of heme, synthesis of heme is required by the vast majority of organisms. Despite significant investigation of both the microbial and eukaryotic enzyme, details of metal chelation remain unidentified. Here we present the first structure of the wild-type human enzyme, a lead-inhibited intermediate of the wild-type enzyme with bound metallated porphyrin macrocycle, the product bound form of the enzyme, and a higher resolution model for the substrate-bound form of the E343K variant. These data paint a picture of an enzyme that undergoes significant changes in secondary structure during the catalytic cycle. The role that these structural alterations play in overall catalysis and potential protein-protein interactions with other proteins, as well as the possible molecular basis for these changes, is discussed. The atomic details and structural rearrangements presented herein significantly advance our understanding of the substrate binding mode of ferrochelatase and reveal new conformational changes in a structurally conserved pi-helix that is predicted to have a central role in product release.  相似文献   

14.
Growth of Bacteroides fragilis under anaerobic conditions in the presence of either haemin or protoporphyrin IX was inhibited by the ferrous iron chelator bipyridyl. The ferric-iron chelator desferrioxamine inhibited growth in the presence of protoporphyrin but not haemin, suggesting that even under anaerobic conditions Fe3+ is involved in uptake of non-haem iron, which is required in the absence of haemin. However, the ferric iron chelators 1,2-dimethyl-3-hydroxy-pyrid-4-one (L1) and pyridoxal isonicotinoyl hydrazone (PIH) were only weakly inhibitory. Apotransferrin, which also binds Fe3+, inhibited growth, but this was not simply due to binding of iron in the medium, as under the reducing conditions present, transferrin was unable to bind iron. This study suggests that even under anaerobic conditions, uptake of non-haem iron by B. fragilis may involve conversion of Fe2+ to Fe3+.  相似文献   

15.
The levels of some enzymatic activities involved in protoheme synthesis have been measured in subcellular fractions obtained at different stages of the growth of the yeast Saccharomyces cerevisiae grown anaerobically and aerobically with glucose (50 or 6 g/ liter), and ethanol (20 g/liter) as the carbon source. The degree of repression of the respiratory system is estimated by the respiratory capacity of whole cells, by the activities of succinate-cytochrome c reductase and cytochrome c oxidase of the mitochondrial particles, and by the cytochrome spectra. The results show that (i) the more porphyrins (cytochromes) that are synthesized by the cells, the lower is the specific activity of δ-aminolevulinic acid (ALA) synthetase and the higher is the specific activity of ALA dehydratase, the activity ratio ALA synthetase/ALA dehydratase decreasing at least 10-fold compared to the repressed cells; (ii) the amount of intracellular ALA found under all conditions tested (from 0.05 to 1.5 mm in the cell sap) correlates well with the measured ALA synthetase activity; its presence argues against a rate-limiting function for ALA synthetase and rather favors such a role for the ALA dehydratase in the formation of heme in yeast; (iii) the rate of porphyrin synthesis measured in vitro is higher in the case of cells with high cytochrome contents; and (iv) the specific activities of succinyl CoA synthetase and protoheme ferrolyase are always present in nonlimiting amounts. Some experiments are described showing that the values of the activities which are calculated from these in situ and in vivo experiments compare well with the values measured in vitro in the acellular extracts. The results concerning the enzymatic activities, together with (i) the excretion of coproporphyrin(ogen) and the accumulation of protoporphyrin + Zn-protoporphyrin in anaerobiosis, (ii) the presence of protoporpho(di)methene (P503) in anaerobic and repressed cells, and (iii) the presence of intracellular ALA under all growth conditions, are discussed in terms of possible control(s) of heme synthesis in yeast.  相似文献   

16.
Protoporphyrin IX is a photosensitizer and a causative agent of rice membrane lipid peroxidation in plant cells. Protoporphyrinogen IX oxidase (PPO) is the molecular target of PPO-inhibiting herbicides, which trigger a massive increase in protoporphyrin IX. Thus, any possible method to decrease the levels of protoporphyrin IX upon challenge with PPO-inhibiting herbicides could be employed to generate plants resistant to such herbicides. We generated transgenic rice plants overexpressing rice ferrochelatase isogenes encoding ferrochelatase enzymes, which convert protoporphyrin IX into protoheme, to see whether the transgenic plants have phenotypes resistant to PPO-inhibiting herbicides. The resulting transgenic rice plants were all susceptible to oxyfluorfen (a diphenyl-ether-type PPO-inhibiting herbicide), as judged by cellular damage with respect to cellular leakage, chlorophyll loss, and lipid peroxidation. In particular, the transgenic plants expressing rice ferrochelatase II without its plastid targeting sequence showed higher transgene expression and oxyfluorfen susceptibility than lines expressing the intact ferrochelatase II. Possible susceptibility mechanisms to oxyfluorfen herbicide in the transgenic rice plants are discussed.  相似文献   

17.
Porphyromonas gingivalis acquires heme for growth, and initiation and progression of periodontal diseases. One of its heme acquisition systems consists of the HmuR and HmuY proteins. This study analyzed the antimicrobial activity of non-iron metalloporphyrins against P. gingivalis during planktonic growth, biofilm formation, epithelial cell adhesion and invasion, and employed hmuY, hmuR and hmuY-hmuR mutants to assess the involvement of HmuY and HmuR proteins in the acquisition of metalloporphyrins. Iron(III) mesoporphyrin IX (mesoheme) and iron(III) deuteroporphyrin IX (deuteroheme) supported planktonic growth of P. gingivalis cells, biofilm accumulation, as well as survival, adhesion and invasion of HeLa cells in a way analogous to protoheme. In contrast, cobalt(III), gallium(III) and copper(II) protoporphyrin IX exhibited antimicrobial activity against P. gingivalis, and thus represent potentially useful antibacterial compounds with which to target P. gingivalis. P. gingivalis hmuY, hmuR and hmuY-hmuR mutants showed decreased growth and infection of epithelial cells in the presence of all metalloporphyrins examined. In conclusion, the HmuY protein may not be directly involved in transport of free metalloporphyrins into the bacterial cell, but it may also play a protective role against metalloporphyrin toxicity by binding an excess of these compounds.  相似文献   

18.
Cell-free extracts of various cytochrome-containing, heterotrophic microorganisms were examined for ability to convert coproporphyrinogen to protoporphyrin. Extracts of Escherichia coli and Pseudomonas denitrificans readily accumulated large amounts of protoporphyrin when assayed under aerobic conditions. However, protoporphyrin did not accumulate under either aerobic or anaerobic conditions of assay or in the presence of various supplements in extracts of the aerobe Micrococcus lysodeikticus, the facultative anaerobe Staphylococcus aureus, or the anaerobe Vibrio succinogenes. Protoporphyrin also accumulated when extracts of E. coli and P. denitrificans were incubated aerobically with the early heme precursor, delta-amino levulinic acid (ALA). This protoporphyrin accumulation was markedly stimulated by the iron chelator, o-phenanthroline. Extracts of S. aureus and M. lysodeikticus accumulated coproporphyrin, but not protoporphyrin when incubated with ALA. The enzyme system in extracts of E. coli which converts coproporphyrinogen to protoporphyrin under aerobic conditions of assay was also partially characterized. This conversion was stimulated by the iron chelator, o-phenanthroline, the respiratory inhibitor, cyanide, and the reducing agent, thioglycolate. Dialysis of the extract did not diminish enzyme activity. Certain alternate electron acceptors and nitrite caused a marked inhibition of the conversion. These results indicate that this late step in heme synthesis, the conversion of coproporphyrinogen to protoporphyrin, can be readily demonstrated in extracts of some, but not all, cytochrome-containing bacteria and that the aerobic conversion in E. coli exhibits many characteristics similar to those demonstrated for the aerobic conversion previously studied in liver mitochondria.  相似文献   

19.
We describe a fluorometric assay for heme synthetase, the enzyme that is genetically deficient in erythropoietic protoporphyria. The method, which can readily detect activity in 1 microliter of packed human lymphocytes, is based on the formation of zinc protoheme from protoporphyrin IX. That zinc chelatase and ferrochelatase activities reside in the same enzyme was shown by the competitive action of ferrous ions and the inhibitory effects of N-methyl protoporphyrin (a specific inhibitor of heme synthetase) on zinc chelatase. The Km for zinc was 11 micrograms and that for protoporphyrin IX was 6 microM. The Ki fro ferrous ions was 14 microM. Zinc chelatase was reduced to 15.3% of the mean control activity in lymphocytes obtained from patients with protoporphyria, thus confirming the defect of heme biosynthesis in this disorder. The assay should prove to be useful for determining heme synthetase in tissues with low specific activity and to investigate further the enzymatic defect in protoporphyria.  相似文献   

20.
Summary Ferrochelatase in membrane preparations fromAzospirillum brasilense displayed an activity of 2.17 mol protoheme formed · h–1 · mg protein–1 which is 10-fold greater than previous reports for other bacteria. This ferrochelatase showed an apparentK m of 20.9 M for Fe2+, a pH optimum of 6.0–6.5, and stimulation by oleic or stearic acids. Co2+, Cu2+ and Zn2+ inhibited the incorporation of Fe2+ into protoporphyrin IX while Ni2 and Mg2+ had no effect on protoheme synthesis. Activity with Fe2+ and mesoporphyrin IX was less than with protoporphyrin IX but deuteroporphyrin IX produced the highest rate of protoheme synthesis. The membrane fraction containing ferrochelatase activity was found to insert Cu2+, Ni2+, Zn2+ and Co2+ enzymatically into protoporphyrin IX to produce metalloporphyrins. Cu2+ incorporation into protoporphyrin IX proceeded at a rate greater than with Fe2+ and theK m for Cu2+ was 21.9 M.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号