首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The glutamine synthetase from Bacillus cereus IFO 3131 was purified to homogeneity. The enzyme is a dodecamer with a molecular weight of approximately 600,000, and its subunit molecular weight is 50,000. Both Mg2+ and Mn2+ activated the enzyme as to the biosynthesis of L-glutamine, but, unlike in the case of the E. coli enzyme, the Mg2+-dependent activity was stimulated by the addition of Mn2+. The highest activity was obtained when 20 mM Mg2+ and 0.5 mM Mn2+ were added to the assay mixture. For each set of optimal assay conditions, the apparent Km values for glutamate, ammonia and a divalent cation X ATP complex were 1.03, 0.34, and 0.40 mM (Mn2+: ATP = 1: 1); 14.0, 0.47, and 0.91 mM (Mg2+: ATP = 4: 1); and 9.09, 0.45, and 0.77 mM (Mg2+: Mn2+: ATP = 4: 0.2: 1), respectively. At each optimum pH, the Vmax values for these reactions were 6.1 (Mn2+-dependent), 7.4 (Mg2+-dependent), and 12.9 (Mg2+ plus Mn2+-dependent) mumoles per min per mg protein, respectively. Mg2+-dependent glutamine synthetase activity was inhibited by the addition of AMP or glutamine; however, this inhibitory effect was suppressed in the case of the Mg2+ plus Mn2+-dependent reaction. These results suggest that the activity of the B. cereus glutamine synthetase is regulated by both the intracellular concentration and the ratio of Mn2+/Mg2+ in vivo. Also in the present investigation, a potent glutamine synthetase inhibitor(s) was detected in crude extracts from B. cereus.  相似文献   

2.
Carbamate kinase has been prepared from Lactobacillus buchneri NCDO110. An approximately 91-fold increase in the specific activity of the enzyme was achieved. The purified extract exhibited a single band following polyacrylamide gel electrophoresis. The apparent molecular weight as determined by gel electrophoresis was about 97,000. The enzyme is stable for 2 weeks at -20 degrees C. Maximum enzymatic activity was observed at 30 degrees C and pH 5.4 in 0.1 M acetate buffer. L. buchneri carbamate kinase requires Mg2+ or Mn2+; its activity is higher with Mn2+. The activation energy of the reaction was 4078 cal mol-1 for the reaction with Mn2+ and 3059 cal mol-1 for the reaction with Mg2+. From a Dixon plot a pK value of 4.8 was calculated. The apparent Km values for ADP with Mg2+ or Mn2+ were 0.71 X 10(-3) and 1.17 X 10(-3) M, respectively, and the apparent Km values for carbamyl phosphate with Mg2+ or Mn2+ were 1.63 X 10(-3) and 1.53 X 10(-3) M, respectively. ATP and CTP acted as inhibitors of this reaction and the following values were obtained: Ki (ATP)Mg2+ = 9.4 mM, Ki (ATP)Mn2+ = 6.2 mM, and Ki (CTP)Mg2+ = 4.4 mM.  相似文献   

3.
DNA helicase IV from HeLa cells.   总被引:5,自引:5,他引:0       下载免费PDF全文
Human DNA helicase IV, a novel enzyme, was purified to homogeneity from HeLa cells and characterized. The activity was measured by assaying the unwinding of 32P labeled 17-mer annealed to M13 ss DNA. From 440g of HeLa cells we obtained 0.31 mg of pure protein. Helicase IV was free of DNA topoisomerases, DNA ligase and nuclease activities. The apparent molecular weight is 100 kDa. It requires a divalent cation for activity (Mg2+ = Mn2+ = Zn2+) and the hydrolysis of only ATP or dATP. The activity is destroyed by trypsin and is inhibited by 200 mM KCl or NaCl, 100 mM potassium phosphate, 45 mM ammonium sulfate, 5 mM EDTA, 20 microM ss M13 DNA or 20 microM poly [G] (as phosphate). The enzyme unwinds DNA by moving in the 5' to 3' direction along the bound strand, a polarity opposite to that of the previously described human DNA helicase I (Tuteja et al Nucleic Acids Res. 18, 6785-6792, 1990). It requires more than 84 bases of single-stranded DNA in order to exert its unwinding activity and does not require a replication fork-like structure. Like human DNA helicase I the enzyme can also unwind RNA-DNA hybrid.  相似文献   

4.
The Mn2+-dependent endonuclease activity associated with the avian myeloblastosis virus RNA-directed DNA polymerase has been shown to be activated by ATP in the presence of Mg2+. In the presence of Mn2+ the endonucleolytic activity was stimulated about 3-fold by the addition of ATP. The earlier identified Mr = 40,000 Friend murine leukemia virus (F-MuLV)-associated endonuclease which functions in the presence of both Mg2+ and Mn2+ has also been shown to be similarly stimulated by ATP. For both endonuclease activities stimulation was only observed at ATP concentrations above 0.5 mM, and it did not increase upon elevating the ATP concentration above 2.5 mM. ADP and dATP also stimulated both activities, although not to the same extent as ATP. GTP had no apparent effect and AMP seemed to inhibit both activities. The effect ATP analogs had on the F-MuLV associated endonuclease activity could suggest that the endonuclease reaction in the presence of ATP might involve the cleavage of beta-gamma phosphate bonds in ATP. Neither adenyl-5'-yl imidodiphosphate nor (beta, gamma-methylene)adenosine 5'-triphosphate stimulated the activity, whereas significant stimulation was observed in the presence of (alpha, beta-methylene)adenosine 5'-triphosphate. Although no ATPase activity could be detected in the purified F-MuLV endonuclease preparation, the data do not exclude the possibility that ATP may be cleaved in amounts which are equivalent to the number of nicks introduced into DNA by the virus-associated endonuclease. In the presence of ATP and Mg2+ the F-MuLV-associated endonuclease nicked both supercoiled and linear DNA duplexes extensively, although the former was nicked more readily than the latter. Single-stranded DNA functioned poorly as a substrate. The nicks introduced by the enzyme contained a 5'-phosphoryl terminus and a 3'-hydroxyl group.  相似文献   

5.
A DNA helicase from human cells.   总被引:8,自引:6,他引:2       下载免费PDF全文
We have initiated the characterization of the DNA helicases from HeLa cells, and we have observed at least 4 molecular species as judged by their different fractionation properties. One of these only, DNA helicase I, has been purified to homogeneity and characterized. Helicase activity was measured by assaying the unwinding of a radioactively labelled oligodeoxynucleotide (17 mer) annealed to M13 DNA. The apparent molecular weight of helicase I on SDS polyacrylamide gel electrophoresis is 65 kDa. Helicase I reaction requires a divalent cation for activity (Mg2+ greater than Mn2+ greater than Ca2+) and is dependent on hydrolysis of ATP or dATP. CTP, GTP, UTP, dCTP, dGTP, dTTP, ADP, AMP and non-hydrolyzable ATP analogues such as ATP gamma S are unable to sustain helicase activity. The helicase activity has an optimal pH range between pH8.0 to pH9.0, is stimulated by KCl or NaCl up to 200mM, is inhibited by potassium phosphate (100mM) and by EDTA (5mM), and is abolished by trypsin. The unwinding is also inhibited competitively by the coaddition of single stranded DNA. The purified fraction was free of DNA topoisomerase, DNA ligase and nuclease activities. The direction of unwinding reaction is 3' to 5' with respect to the strand of DNA on which the enzyme is bound. The enzyme also catalyses the ATP-dependent unwinding of a DNA:RNA hybrid consisting of a radioactively labelled single stranded oligodeoxynucleotide (18 mer) annealed on a longer RNA strand. The enzyme does not require a single stranded DNA tail on the displaced strand at the border of duplex regions; i.e. a replication fork-like structure is not required to perform DNA unwinding. The purification of the other helicases is in progress.  相似文献   

6.
We have previously shown the existence of two separate enzymes for the synthesis of palmitoyl-CoA and lignoceroyl-CoA in rat brain microsomal membranes (1). Palmitoyl-CoA ligase activity was solubilized from brain microsomal membranes with 0.3% Triton X-100 and purified 93-fold by a combination of protein purification techniques. The Km values for the substrates palmitic acid, CoASH and ATP were 11.7 microM, 5.88 microM and 3.77 mM respectively. During activation of palmitic acid ATP is hydrolyzed to AMP and pyrophosphate, as evidenced by the inhibition of this activation by 5 mM concentrations of AMP, pyrophosphate or AMP and pyrophosphate to 70%, 60% and 85% respectively. The divalent metal ion Mg2+ was required for activity; its replacement with Mn2+ resulted in a 35% decrease in activity. Palmitoyl-CoA ligase activity was inhibited by the addition of oleic or stearic acids whereas addition of lignoceric acid or behenic acid had no effect. This supports our previous observation that palmitoyl-CoA and lignoceroyl-CoA are synthesized by two different enzymes in rat brain microsomal membranes.  相似文献   

7.
Mevalonate kinase from neonatal chick liver has been partially purified by ammonium sulphate precipitation and Sephadex G100 and DEAE-cellulose fractionation. The kinetic characteristics agreed with the sequential mechanism suggested for the enzyme and provided apparent Km values of 0.01 mM for mevalonic acid and 0.25 mM for ATP. Partially purified mevalonate kinase from neonatal chick liver showed an absolute specificity for ATP. Mn2+ was a better activator than Mg2+ at low concentrations (0.1-1.0 mM). Higher Mn2+ concentrations produced a clear inhibition of mevalonate kinase. Likewise, addition of EDTA, with or without metal ions, clearly inhibited the enzymatic reaction.  相似文献   

8.
Soluble glutamine synthetase activity (L-glutamate:ammonia ligase, ADP forming, EC 6.3.1.2) was purified to electrophoretic homogeneity from the filamentous non-N2-fixing cyanobacterium Phormidium laminosum (OH-1-p.Cl1) by using conventional purification procedures in the absence of stabilizing ligands. The pure enzyme showed a specific activity of 152 mumol of gamma-glutamylhydroxamate formed.min-1 (transferase activity), which corresponded to 4.4 mumol of Pi released.min-1 (biosynthetic activity). The relative molecular mass of the native enzyme was 602 kilodaltons and was composed of 12 identically sized subunits of 52 kilodaltons. Biosynthetic activity required the presence of Mg2+ as an essential activator, although Co2+ and Zn2+ were partially effective. The kinetics of activation by Mg2+, Co2+, and Zn2+ were sigmoidal, and concentrations required for half-maximal activity were 18 mM (h = 2.2), 6.3 mM (h = 5.6), and 6.3 mM (h = 2.45), respectively. However, transferase activity required Mn2+ (Ka = 3.5 microM), Cu2+, Co2+, or Mg2+ being less effective. The substrate affinities calculated for L-Glu, ammonium, ATP, L-Gln, and hydroxylamine were 15, 0.4, 1.9 (h = 0.75), 14, and 4.1 mM, respectively. Optimal pH and temperature were 7.2 and 55 degrees C for biosynthetic activity and 7.5 and 45 degrees C for transferase activity. The biosynthetic reaction mechanism proceeded according to an ordered three-reactant system, the binding order being ammonium, L-Glu, and ATP. The presence of Mn2+ or Mg2+ drastically affected the thermostability of transferase and biosynthetic activities. Heat inactivation of biosynthetic activity in the presence of Mn2+ obeyed first-order kinetics, with an Ea of 76.8 kcal (ca. 321 kJ) mol-1. Gly, L-Asp, L-Ala, L-Ser and, with lower efficiency, L-Lys and L-Met, L-Lys, and L-Glu inhibited only transferase activity. No cumulative inhibition was observed when mixtures of amino acids were used. Biosynthetic activity was inhibited by AMP (Ki= 7 mM), ADP (Ki= 2.3 mM), p-hydroxymercuribenzoate (Ki= 25 microM), and L-methionine-D, L-sulfoximine (Ki= 2 microM). The enzyme was not activated in vitro by chemically reduced Anabaena thioredoxin. This is the first report of glutamine synthetase activity purified from a filamentous non-N2-fixing cyanobacterium.  相似文献   

9.
Two forms of DNA polymerase alpha, alpha 1 and alpha 2, have been partially purified from mouse FM3A cells by discriminating one form from the other on the basis of the association of primase activity. The primase activity in the most purified alpha 1 fraction co-sedimented with the DNA polymerase activity in a glycerol gradient, and almost no primase activity was detected in the most purified alpha 2 fraction. The primase activity associated with DNA polymerase alpha was assayed indirectly by measuring ATP-dependent DNA synthesis with poly (dT) as template. Characterization of the assay system was performed with the purified alpha 1. The system was absolutely dependent on the presence of ATP and a divalent cation. Mn2+ was much more effective than Mg2+, and 5-fold higher activity was observed with Mn2+ than with Mg2+ at their optimal concentrations. The primase activity assayed by the above system showed sensitivity to (NH4)2SO4 very similar to that of free primase reported by Tseng and Ahlem (J. Biol. Chem. 258, 9845-9849, 1983). The activity was inhibited by more than 50% by 20 mM (NH4)2SO4. alpha 1 and alpha 2 were very similar as DNA polymerases in their sensitivity to several inhibitors and their preference for template-primers, except that alpha 1 had a slightly greater preference for poly (dT) X (rA)10 than alpha 2 did. The major difference between the two forms was observed in their S values, 8.2 and 6.4 S for alpha 1 and alpha 2, respectively.  相似文献   

10.
The gene encoding Staphylothermus marinus DNA ligase (Sma DNA ligase) was cloned and sequenced. The gene contains an open reading frame consisting of 1836bp, which encodes for 611 amino acid residues. Upon alignment of the entire amino acid sequence, Sma DNA ligase showed a high degree of sequence homology with the hyperthemophilic archaeal DNA ligases, 67% identity with Aeropyrum pernix K1, and 40% identity with both Pyrococcus abyssi and Thermococcus kodakarensis. An extremely high sequence identity was observed in the six conserved motifs indicative of DNA ligase. The Sma DNA ligase gene was expressed under the control of the T7lac promoter on the pET-22b(+) in Escherichia coli BL21-CodonPlus(DE3)-RIL. The expressed enzyme was then purified by heat treatment followed by ion exchange and metal affinity column chromatography. The enzyme was activated by both Mg(2+) and Mn(2+), and its activity was inhibited by Ca(2+) and Zn(2+). Sma DNA ligase can utilize both ATP and ADP as cofactors. The half-life of the enzyme at 100 degrees C was determined to be approximately 2.8h. The enzyme catalyzed cohesive-end intramolecular and intermolecular joining and blunt-end intermolecular joining in the presence of tricine-NaOH buffer and Mn(2+), using either ATP or ADP.  相似文献   

11.
Some kinetic properties of N-acetylglutamate 5-phosphotransferase (ATP: N-acetyl-L-glutamate 5-phosphotransferase EC 2.7.2.8) purified approx. 2000-fold from Pseudomonas aeruginosa have been studied. The enzyme required Mg2+ for activity. Mn2+, Zn2+, Co2+, and Ca2+, in this order, could replace Mg2+ partially. The substrate specificity was narrow: N-carbamoyl-L-glutamate and N-formyl-L-glutamate were phosphorylated, but at a lower rate than N-acetyl-L-glutamate; N-propionyl-L-glutamate was almost inactive as a substrate. dATP, but neither GTP nor ITP, could be used instead of ATP. The enzyme had a broad pH optimum from pH 6.5 to 9. Feedback inhibition by L-arginine was markedly dependent on pH. Above pH 9 no inhibition was observed. L-Citrulline was three times less potent an inhibitor than L-arginine. The enzyme showed Michaelis-Menten kinetics, even at low concentration of the second substrate. The apparent Km was 2 mM for N-acetyl-L-glutamate (at 10 mM ATP) and approx. 3 mM for ATP (at 40 mM N-acetyl-L-glutamate). In the presence of L-arginine the rate-concentration curves for N-acetyl-L-glutamate became signoidal, while no cooperativity was detected for ATP. A method was developed allowing the determination of N-acetyl-L-glutamate in the nanomolar range by means of purified enzyme.  相似文献   

12.
The labile non-allosteric form of phosphofructokinase (ATP:D-fructose-6-phosphate 1-phosphotransferase, EC 2.7.1.11) was purified to a specific activity of 107 U/mg (2078-fold) from aerobic cultures of Escherichia coli K-12. The enzyme has an isoelectric point (pI) of 5.1, a native molecular weight of 67 000 +/- 3000 and a subunit weight of 34 000 +/- 400. A number of divalent metal ions can substitute for Mg2+ in the enzyme reaction in decreasing order Mn2+ > Mg2+ > Co2+ > Ca2+. In the presence of excess Mg2+, nucleotides do not affect the Km for fructose 6-phosphate with a value of 0.042 mM. The order of efficiency for nucleotides to act as phosphoryl donors is ATP > ITP > GTP > UTP > CTP. This remains unchanged in the presence of excess Mn2+, but V is increased 2.4-fold with ATP. A 2 : 1 ratio of Mn2+/nucleotide 5'-triphosphate produced an equivalent dissociation constant of 1.1 mM for all nucleotides, which was markedly decreased at a high Mn2+ level. The rate of enzyme catalysis was found to be dependent on the concentration of MnATP2-. Mn2+ at non-limiting values does affect the binding of fructose 6-phosphate to the enzyme.  相似文献   

13.
The kinetics of ATP hydrolysis and cation effects on ATPase activity in plasma membrane from Candida albicans ATCC 10261 yeast cells were investigated. The ATPase showed classical Michaelis-Menten kinetics for the hydrolysis of Mg X ATP, with Km = 4.8 mM Mg X ATP. Na+ and K+ stimulated the ATPase slightly (9% at 20 mM). Divalent cations in combination with ATP gave lower ATPase activity than Mg X ATP (Mg greater than Mn greater than Co greater than Zn greater than Ni greater than Ca). Divalent cations inhibited the Mg X ATPase (Zn greater than Ni greater than Co greater than Ca greater than Mn). Free Mg2+ inhibited Mg X ATPase weakly (20% inhibition at 10 mM). Computed analyses of substrate concentrations showed that free Zn2+ inhibited Zn X ATPase, mixed (Zn2+ + Mg2+) X ATPase, and Mg X ATPase activities. Zn X ATP showed high affinity for ATPase (Km = 1.0 mM Zn X ATP) but lower turnover (52%) relative to Mg X ATP. Inhibition of Mg X ATPase by (free) Zn2+ was noncompetitive, Ki = 90 microM Zn2+. The existence of a divalent cation inhibitory site on the plasma membrane Mg X ATPase is proposed.  相似文献   

14.
Cai L  Hu C  Shen S  Wang W  Huang W 《Journal of biochemistry》2004,135(3):397-403
DNA ligases of bacteriophage T4 and T7 have been widely used in molecular biology for decades, but little is known about bacteriophage T3 DNA ligase. Here is the first report on the cloning, expression and biochemical characterization of bacteriophage T3 DNA ligase. The polyhistidine-tagged recombinant T3 DNA ligase was shown to be an ATP-dependent enzyme. The enzymatic activity was not affected by high concentration of monovalent cations up to 1 M, whereas 2 mM ATP could inhibit its activity by 50%. Under optimal conditions (pH 8.0, 0.5 mM ATP, 5 mM DTT, 1 mM Mg(2+) and 300 mM Na(+)), 1 fmol of T3 DNA ligase could achieve 90% ligation of 450 fmol of cohesive dsDNA fragments in 30 min. T3 DNA ligase was shown to be over 5-fold more efficient than T4 DNA ligase for ligation of cohesive DNA fragments, but less active for blunt-ended DNA fragments. Phylogenetic analysis showed that T3 DNA ligase is more closely related to T7 DNA ligase than to T4 DNA ligase.  相似文献   

15.
1. ATP inhibits NAD(P)(+)-dependent malic enzyme activity by competing with the essential activators Mn2+ and Mg2+. 2. The kinetics fit an equation of co-operative kind with Ki of 26 microM and KA of 11.3 microM for ATP/Mn2+ competition; with Ki of 1.1 mM and KA of 0.96 mM for ATP/Mg2+ competition. 3. In the absence of the inhibitor, the co-operativity index increases from 1.77 to greater than 4 in the presence of ATP, in the case of ATP/Mn2+ competition, while it increases from 1.88 to greater than 9 for ATP/Mg2+ competition.  相似文献   

16.
B C Shenoy  H G Wood 《FASEB journal》1988,2(8):2396-2401
The synthetase that attaches biotin to the aposubunit of transcarboxylase (biotin-[methylmalonyl-CoA-carboxyltransferase]ligase) (EC 6.3.4.9) was purified to homogeneity by ion-exchange chromatography on cellulose DE-52 and CM-cellulose. The synthetase is a monomer of molecular weight 30,000. The pH and temperature optima for the synthetase are 6.0 and 37 degrees C, respectively. The apparent Km for the substrates ATP, biotin, and apo 1.3 S subunit of apotranscarboxylase are 38, 2.0, and 0.9 microM, respectively. Ni2+, Co2+, Zn2+, or Mn2+ could replace Mg2+ in the reaction. The affinity of synthetase toward metals is as follows: Zn2+ greater than Ni2+ greater than Mn2+ greater than Co2+ greater than Mg2+, and the activity with Zn2+ was much greater than that with the other divalent metals. EDTA completely inactivates the enzyme. The metals are necessary not only for the catalytic activity but also for the storage stability of the enzyme. The synthetase shows absolute specificity toward ATP.  相似文献   

17.
We report here a mammalian cell-free system that can support chromatin assembly. Effective nucleosome assembly in HeLa cell extracts occurred at 125 to 200 mM KCl or potassium glutamate. At this physiological K+ ion concentration, two types of chromatin assembly were observed. The first was interfered with by Mg2+. Other cations such as Mn2+, Ca2+, Fe3+, and spermidine also inhibited this type of nucleosome assembly. The second type of assembly occurred in the presence of Mg2+ and at least equimolar ATP. However, even in the presence of ATP, excess Mg2+ inhibited assembly and promoted catenation of DNA; these effects could be circumvented by excess ATP, GTP, EDTA, or polyglutamic acid. The critical DNA concentration for optimum assembly in both pathways suggested a stoichiometric association of histones with DNA. The spacing of nucleosomes formed by both types of assembly on linear and circular DNA was reasonably regular, but chromatin assembled in the presence of ATP and Mg2+ was more stable.  相似文献   

18.
A gene encoding DNA ligase (lig(Tk)) from a hyperthermophilic archaeon, Thermococcus kodakaraensis KOD1, has been cloned and sequenced, and its protein product has been characterized. lig(Tk) consists of 1,686 bp, corresponding to a polypeptide of 562 amino acids with a predicted molecular mass of 64,079 Da. Sequence comparison with previously reported DNA ligases and the presence of conserved motifs suggested that Lig(Tk) was an ATP-dependent DNA ligase. Phylogenetic analysis indicated that Lig(Tk) was closely related to the ATP-dependent DNA ligase from Methanobacterium thermoautotrophicum DeltaH, a moderate thermophilic archaeon, along with putative DNA ligases from Euryarchaeota and Crenarchaeota. We expressed lig(Tk) in Escherichia coli and purified the recombinant protein. Recombinant Lig(Tk) was monomeric, as is the case for other DNA ligases. The protein displayed DNA ligase activity in the presence of ATP and Mg(2+). The optimum pH of Lig(Tk) was 8.0, the optimum concentration of Mg(2+), which was indispensable for the enzyme activity, was 14 to 18 mM, and the optimum concentration of K(+) was 10 to 30 mM. Lig(Tk) did not display single-stranded DNA ligase activity. At enzyme concentrations of 200 nM, we observed significant DNA ligase activity even at 100 degrees C. Unexpectedly, Lig(Tk) displayed a relatively small, but significant, DNA ligase activity when NAD(+) was added as the cofactor. Treatment of NAD(+) with hexokinase did not affect this activity, excluding the possibility of contaminant ATP in the NAD(+) solution. This unique cofactor specificity was also supported by the observation of adenylation of Lig(Tk) with NAD(+). This is the first biochemical study of a DNA ligase from a hyperthermophilic archaeon.  相似文献   

19.
3-Phosphoglycerate kinase (3-PGK) has been purified to apparent homogeneity from Ehrlich ascites carcinoma (EAC) cells by (NH4)2SO4 precipitation, gel filtration and ion-exchange chromatography. The enzyme has been partially characterized and compared with the characteristics of this enzyme of other normal and malignant cells. The EAC cell 3-PGK is composed of a single subunit of 47 kDa. It has a broad pH optimum (pH 6.0-7.5) for its enzymatic activity. The apparent Km values of 3-phosphoglycerate (3-PGA) and ATP for 3-PGK have been found out to be 0.25 mM and 0.1 mM respectively. Similar to 3-PGK of other cells, the EAC enzyme requires either Mg2+ or Mn2+ for full activity; the optimum concentrations of Mg2+ and Mn2+ are 0.8 mM and 0.5 mM respectively. When ATP and 3-PGA act as substrates, ADP, the reaction product of 3-PGK-catalyzed reaction has been found to inhibit this enzyme. Kinetic studies were made on the inhibition of ADP in presence of the substrates ATP and 3-PGA. Attempts to hybridize 3-PGK and glyceraldehyde-3-phosphate dehydrogenase of EAC cells by NAD or glutaraldehyde were unsuccessful.  相似文献   

20.
The deoxyribonuclease induced in KB cells by herpes simplex virus (HSV) type 1 and type 2 has been purified. Both enzymes are able to completely degrade single- and double-stranded DNA yielding 5'-monophosphonucleotides as the sole products. A divalent cation, either Mg2+ or Mn2+, is an absolute requirement for catalysis and a reducing agent is necessary for enzyme stability. The maximum rate of reaction is achieved with 5 mM MgCl2 for both HSV-1 and HSV-2 DNase. The optimum concentration for Mn2+ is 0.1 to 0.2 mM and no exonuclease activity is observed when the concentration of Mn2+ is greater than 1 mM. The rate of reaction at the optimal Mg2+ concentration is 3- to 5-fold greater than that at the optimal Mn2+ concentration. In the presence of Mg2+, the enzymes are inhibited upon the addition of Mn2+, Ca2+, and Zn2+. The enzymatic reaction is also inhibited by spermine and spermidine, but not by putrescine. Crude and purified HSV-1 and HSV-2 DNase can degrade both HSV-1 and HSV-2 DNA, but native HSV-1 DNA is hydrolyzed at only 22% of the rate and HSV-2 DNA at only 32% of the rate of Escherichia coli DNA. Although HSV-1 and HSV-2 DNase were similar, minor differences were observed in most other properties such as pH optimum, inhibition by high ionic strength, activation energy, and sedimentation coefficient. However, the enzymes differ immunologically.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号