首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 354 毫秒
1.
Alzheimer's disease is characterized by filamentous depositions of amyloid A4 protein in the brain. The first precursor of A4 protein that has been described consists of 695 amino acids (PreA4(695)). Until now, three types of amyloid precursor mRNAs (PreA4(770), PreA4(751) and PreA4(695)), produced by alternative splicing, have been detected. We analysed the differential expression of these mRNAs in various rat tissues by PCR and show that (1) there exists a fourth type of mRNA, PreA4(714); (2) in all tissues except the brain the PreA4(695) mRNA is less abundant than the other types of mRNAs; in the brain, however, the PreA4(695) mRNA predominates by far. The same observations hold true for human tissues. The possible function of this differential splicing is discussed.  相似文献   

2.
Alzheimer's disease (AD) is characterized by the cerebral deposition of fibrillar aggregates of the amyloid A4 protein. Complementary DNA's coding for the precursor of the amyloid A4 protein have been described. In order to identify the structure of the precursor gene relevant clones from several human genomic libraries were isolated. Sequence analysis of the various clones revealed 16 exons to encode the 695 residue precursor protein (PreA4(695] of Alzheimer's disease amyloid A4 protein. The DNA sequence coding for the amyloid A4 protein is interrupted by an intron. This finding supports the idea that amyloid A4 protein arises by incomplete proteolysis of a larger precursor, and not by aberrant splicing.  相似文献   

3.
The amyloid A4 (or beta protein), a 4.2 kD polypeptide, is a major component of amyloid deposits in the brains of patients with Alzheimer's Disease (AD). The self-aggregating amyloid A4 protein of AD is encoded as part of three larger proteins by the amyloid A4 precursor gene. The corresponding proteins have 695, 751 and 770 amino acid residues. To investigate the utility of amyloid beta protein precursor (A beta PP) as a diagnostic marker for AD an antiserum against a synthetic peptide (175-186), predicted from cDNA sequence for A beta PP, was used. The immunoreactivity of A beta PP in normal and AD cerebrospinal fluid (CSF) was measured by Western blot and detected with radiolabeled protein A. A total of fifty-seven CSF samples (AD = 27 and normal = 30) were analyzed for A beta PP immunoreactivity. A polyclonal antibody detected two major protein bands with apparent molecular weights of 105kD and 90kD both in normal and AD CSF. The difference between normal and AD CSF was not significant. These results indicate that immunoreactivity of A beta PP is present both in normal and AD CSF, and that the difference is too small to be used as a diagnostic marker.  相似文献   

4.
To better understand the processing of the Alzheimer disease amyloid precursor protein, we have cloned and sequenced that region of the human genome coding for the amyloid peptide. Two exons separated by a 6.2kb intron define this region. Characterization of the A4 peptide amino acid sequence shows similarity to the structure of soybean trypsin inhibitor (Kunitz). Our observation describes a different region of PreA4 than the previously characterized domain of larger amyloid precursor molecules PreA4 751 and 770(2). Moreover, the exon organization, Kunitz domain duplication and transmembrane location of A4 suggest that PreA4 is similar to growth factor precursors and thus may be processed similarly.  相似文献   

5.
The 39-43 residue polypeptide (amyloid beta protein, beta A4) deposited as amyloid in Alzheimer's disease (AD) is derived from a set of 695-770 residue precursors referred to as the amyloid beta A4 protein precursor (beta APP). In each of the 695, 751, and 770 residue precursors, the 43 residue beta A4 is an internal peptide that begins 99 residues from the COOH-terminus of the beta APP. Each holoform is normally cleaved within the beta A4 to produce a large secreted derivative as well as a small membrane associated fragment. Neither of these derivatives can produce amyloid because neither contains the entire beta A4 peptide. In this study, we employ cells stably transfected with full length beta APP695, beta APP751, or beta APP770 expression constructs to show that phorbol ester activation of protein kinase C substantially increases the production of secreted forms from each isoform. By increasing processing of beta APP in the secretory pathway, PKC phosphorylation may help to prevent amyloid deposition.  相似文献   

6.
Frame-shifted amyloid precursor protein (APP(+1)), which has a truncated out-of-frame C-terminus, accumulates in the neuropathological hallmarks of patients with Alzheimer's disease pathology. To study a possible involvement of APP(+1) in the pathogenesis of Alzheimer's disease, we expressed APP695 and APP(+1) in the HEK293 cell-line and studied whether the processing of APP695 was affected. APP(+1) is a secretory protein, but high expression of APP695 and APP(+1) results in the formation of intracellular aggregate-like structures containing both proteins and Fe65, an adaptor protein that interacts with APP695. APP(+1) is shown to interact with APP695, suggesting that these structures consist of functional protein complexes. Such an interaction can also be anticipated in post-mortem brains of young Down's syndrome patients without any sign of neuropathology. Here we observed APP(+1) immunoreactivity in beaded fibres. Additional support for functional consequences on the processing of APP695 comes from a 1.4-fold increase in levels of secreted amyloid beta40 in cells co-expressing APP695 and APP(+1), although APP(+1) itself does not contain the amyloid beta sequence. Taken together, these data show that co-expression of APP695 and APP(+1) affects the processing of APP695 in a pro-amyloidogenic way and this could gradually contribute to Alzheimer's disease pathology, as has been implicated in Down's syndrome patients.  相似文献   

7.
Despite advances in our understanding of the basic biology of amyloid precursor protein (APP), the normal physiological function(s) of APP in learning and memory remains unclear. Here we show increased APP degradation in the hippocampus to be associated with the consolidation of a passive avoidance response. Neurone-specific APP695 expression became transiently reduced 2-4 h post-training through association with endosomal adaptin proteins and enhanced internalization. By contrast, internalization of glial-associated APP containing a Kunitz protease inhibitor-like domain (APP-KPI) was dependent on the low-density lipoprotein receptor-related protein (LRP). In addition, LRP expression and association with apolipoprotein E increased in the 2-4 h post-training period. The LRP antagonist receptor-associated protein prevented the APP-KPI internalization and LRP-apolipoprotein E association and this resulted in amnesia. Degradation of APP695 and APP-KPI did not appear to be related to alpha-secretase activity, as no learning-associated increase of secreted APP was observed in the CSF. Moreover, as internalization of APP isoforms was observed only in dentate gyrus, it probably relates to the learning-associated restructuring of the perforant path terminals. Memory-associated APP processing in both neuronal and glial compartments points to a role for glial unsheathing of synaptic connections, an event required for the synaptic restructuring that accompanies memory consolidation. These observations may have a direct relevance to understanding the pathophysiology of Alzheimer's disease as beta/gamma-secretase-derived beta-amyloid is formed following internalization of cell surface APP into the endosomal compartment.  相似文献   

8.
C Delamarche 《Biochimie》1989,71(7):853-856
Polypeptide (A4), which is derived from a larger precursor membrane protein (beta APP), is an important component of brain amyloid in Alzheimer's disease. The physiological function and the processing of this precursor are largely unknown. In order to elucidate the actual role of beta APP, we searched for domain homology with other proteins. The present study reveals the presence of a highly conserved region between the amyloid precursor and the 3 neurofilament subunits. Identical amino acids are present at about 45% of the positions aligned between the 4 sequences. These observations are discussed in terms of a possible involvement of positive ions in the maturation of these proteins and are in favour the implication of aluminium in Alzheimer's disease.  相似文献   

9.
Diverse lines of evidence indicate that pre-fibrillar, diffusible assemblies of the amyloid β-protein (Aβ) play an important role in Alzheimer's disease pathogenesis. Although the precise molecular identity of these soluble toxins remains unsettled, recent experiments suggest that sodium dodecyl sulfate (SDS)-stable Aβ dimers may be the basic building blocks of Alzheimer's disease-associated synaptotoxic assemblies and as such present an attractive target for therapeutic intervention. In the absence of sufficient amounts of highly pure cerebral Aβ dimers, we have used synthetic disulfide cross-linked dimers (free of Aβ monomer or fibrils) to generate conformation-specific monoclonal antibodies. These dimers aggregate to form kinetically trapped protofibrils, but do not readily form fibrils. We identified two antibodies, 3C6 and 4B5, which preferentially bind assemblies formed from covalent Aβ dimers, but do not bind to Aβ monomer, amyloid precursor protein, or aggregates formed by other amyloidogenic proteins. Monoclonal antibody 3C6, but not an IgM isotype-matched control antibody, ameliorated the plasticity-disrupting effects of Aβ extracted from the aqueous phase of Alzheimer's disease brain, thus suggesting that 3C6 targets pathogenically relevant Aβ assemblies. These data prove the usefulness of covalent dimers and their assemblies as immunogens and recommend further investigation of the therapeutic and diagnostic utility of monoclonal antibodies raised to such assemblies.  相似文献   

10.
Alzheimer's disease neuropathology is characterised by beta-amyloid plaques and neurofibrillary tangles. Inhibition of beta-amyloid accumulation may be essential for effective therapy in Alzheimer's disease. In this study we have treated transgenic mice carrying the Swedish mutation of human amyloid precursor protein [Tg(Hu.APP695.K670N-M671L)2576], which develop brain beta-amyloid deposits, with nicotine in drinking fluid (200 microg/mL) from 9-14.5 months of age (5.5 months). A significant reduction in amyloid beta peptide 1-42 positive plaques by more than 80% (p < 0.03) was observed in the brains of nicotine treated compared to sucrose treated transgenic mice. In addition, there was a selective reduction in extractable amyloid beta peptides in nicotine treated mice; cortical insoluble 1-40 and 1-42 peptide levels were lower by 48 and 60%, respectively (p < 0.005), whilst there was no significant change in soluble 1-40 or 1-42 levels. The expression of glial fibrillary acidic protein was not affected by nicotine treatment. These results indicate that nicotine may effectively reduce amyloid beta peptide aggregation in brain and that nicotinic drug treatment may be a novel protective therapy in Alzheimer's disease.  相似文献   

11.
One of the major clinical findings in Alzheimer's disease (AD) is the formation of deposits of beta-amyloid protein in amyloid plaques, derived from the beta-amyloid precursor protein (beta-APP). To determine the possible use of beta-APP as a diagnostic marker for AD in CSF, a monoclonal antibody-based immunoassay specific for this protein was developed. The assay does not differentiate between beta-APP695 and beta-APP751 forms but does preferentially recognize beta-APP751 complexed with a protease. Of the two sets of CSF samples tested, one set, obtained from living patients, gave a slightly lower level of beta-APP in AD and Parkinson's disease patients relative to controls, whereas the other set, composed of postmortem samples, showed no significant differences between the AD and control groups.  相似文献   

12.
13.
Increased damage to proteins by glycation, oxidation and nitration has been implicated in neuronal cell death leading to Alzheimer's disease (AD). Protein glycation, oxidation and nitration adducts are consequently formed. Quantitative screening of these adducts in CSF may provide a biochemical indicator for the diagnosis of AD. To assess this, we measured 11 glycation adducts, three oxidation adducts and a nitration adduct, determining both protein adduct residues and free adducts, in CSF samples of age-matched normal healthy subjects (n = 18) and subjects with Alzheimer's disease (n = 32). In CSF protein, the concentrations of 3-nitrotyrosine, N(epsilon)-carboxymethyl-lysine, 3-deoxyglucosone-derived hydroimidazolone and N-formylkynurenine residues were increased in subjects with Alzheimer's disease. In CSF ultrafiltrate, the concentrations of 3-nitrotyrosine, methylglyoxal-derived hydroimidazolone and glyoxal-derived hydroimidazolone free adducts were also increased. The Mini-Mental State Examination (MMSE) score correlated negatively with 3-nitrotyrosine residue concentration (p < 0.05), and the negative correlation with fructosyl-lysine residues just failed to reach significance (p = 0.052). Multiple linear regression gave a regression model of the MMSE score on 3-nitrotyrosine, fructosyl-lysine and N(epsilon)-carboxyethyl-lysine residues with p-values of 0.021, 0.031 and 0.052, respectively. These findings indicate that protein glycation, oxidation and nitration adduct residues and free adducts were increased in the CSF of subjects with Alzheimer's disease. A combination of nitration and glycation adduct estimates of CSF may provide an indicator for the diagnosis of Alzheimer's disease.  相似文献   

14.
A distinguishing feature of Alzheimer's disease (AD) is the deposition of amyloid plaques in brain parenchyma. These plaques arise by the abnormal accumulation of beta A4, a proteolytic fragment of amyloid precursor protein (APP). Despite the fact that neurons are dramatically affected in the course of the disease, little is known about the neuronal processing of APP. To address this question we have expressed in fully mature, synaptically active rat hippocampal neurons, the neuronal form of human APP (APP695), two mutant forms of human APP associated with AD, and the mouse form of APP (a species known not to develop amyloid plaques). Protein expression was achieved via the Semliki Forest Virus system. Expression of wild type human APP695 resulted in the secretion of beta A4-amyloid peptide and the intracellular accumulation of potential amyloidogenic and non-amyloidogenic fragments. The relative amount of amyloid-containing fragments increased dramatically during expression of the clinical mutants, while it decreased strongly when the mouse form of APP was expressed. 'Humanizing' the rodent APP sequence by introducing three mutations in the beta A4-region also led to increased production of amyloid peptide to levels similar to those obtained with human APP. The single Gly601 to Arg substitution alone was sufficient to triple the ratio of beta A4-peptide to non-amyloidogenic p3-peptide. Due to the capacity of these cells to secrete and accumulate intracellular amyloid fragments, we hypothesize that in the pathogenesis of AD there is a positive feed-back loop where neurons are both producers and victims of amyloid, leading to neuronal degeneration and dementia.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
We have identified a novel ubiquitin conjugating enzyme gene, L-UBC, which maps to human Chromosome (Chr) 14q24.3. This is also the location of the major early onset familial Alzheimer's disease gene (FAD3). L-UBC encodes a protein that demonstrates homology to the yeast ubiquitin conjugating enzyme, UBC-4, and human UbcH5. Their functions are to ubiquitinate specific proteins targeted for degradation. The protein also exhibits very strong homology to a rabbit protein, E2-F1, which mediates p53 degradation driven by papilloma virus E6 protein in vitro. The accumulation of specific proteins that have undergone aberrant processing in neurofibrillary tangles and amyloid plaques is the classic pathological feature in brains of Alzheimer's disease patients. Abnormal ubiquitination has previously been suggested to play a role in the etiology of Alzheimer's disease. This gene therefore represents a plausible candidate gene for FAD3.  相似文献   

16.
Beta-amyloid precursor protein (APP) is the precursor of beta-amyloid (Abeta), which is implicated in Alzheimer's disease pathogenesis. APP complements amyloid precursor-like protein 2 (APLP2), and together they play essential physiological roles. Phosphorylation at the Thr(668) residue of APP (with respect to the numbering conversion for the APP 695 isoform) and the Thr(736) residue of APLP2 (with respect to the numbering conversion for the APLP2 763 isoform) in their cytoplasmic domains acts as a molecular switch for their protein-protein interaction and is implicated in neural function(s) and/or Alzheimer's disease pathogenesis. Here we demonstrate that both APP and APLP2 can be phosphorylated by JNK at the Thr(668) and Thr(736) residues, respectively, in response to cellular stress. X11-like (X11L, also referred to as X11beta and Mint2), which is a member of the mammalian LIN-10 protein family and a possible regulator of Abeta production, elevated APP and APLP2 phosphorylation probably by facilitating JNK-mediated phosphorylation, whereas other members of the family, X11 and X11L2, did not. These observations revealed an involvement of X11L in the phosphorylation of APP family proteins in cellular stress and suggest that X11L protein may be important in the physiology of APP family proteins as well as in the regulation of Abeta production.  相似文献   

17.
The processing of beta-amyloid precursor protein (APP) generates the amyloid beta-protein (A beta) and contributes to the development of Alzheimer's disease (AD). Elucidating the regulation of APP processing will, therefore, contribute to the understanding of AD. Many APP-binding proteins, such as FE65, X11s, and JNK-interacting proteins (JIPs), bind the motif 681-GYENPTY-687 within the cytoplasmic domain of APP. Here we found that the human homologue of yeast amino-terminal acetyltransferase ARD1 (hARD1) interacts with a novel motif, 658-HGVVEVD-664, in the cytoplasmic domain of APP695. hARD1 expressed its acetyltransferase activity in association with a human subunit homologous to another yeast amino-acetyltransferase, hNAT1. Co-expression of hARD1 and hNAT1 in cells suppressed A beta40 secretion and the suppression correlated with their enzyme activity. These observations suggest that the association of APP with hARD1 and hNAT1 and/or their N-acetyltransferase activity contributes to the regulation of A beta generation.  相似文献   

18.
19.
Alzheimer's amyloid precursor protein 695 (APP) is a plasma membrane protein, which is known to be the source of the toxic amyloid beta (Abeta) peptide associated with the pathogenesis of Alzheimer's disease (AD). Here we demonstrate that by virtue of its chimeric NH2-terminal signal, APP is also targeted to mitochondria of cortical neuronal cells and select regions of the brain of a transgenic mouse model for AD. The positively charged residues at 40, 44, and 51 of APP are critical components of the mitochondrial-targeting signal. Chemical cross-linking together with immunoelectron microscopy show that the mitochondrial APP exists in NH2-terminal inside transmembrane orientation and in contact with mitochondrial translocase proteins. Mutational studies show that the acidic domain, which spans sequence 220-290 of APP, causes the transmembrane arrest with the COOH-terminal 73-kD portion of the protein facing the cytoplasmic side. Accumulation of full-length APP in the mitochondrial compartment in a transmembrane-arrested form, but not lacking the acidic domain, caused mitochondrial dysfunction and impaired energy metabolism. These results show, for the first time, that APP is targeted to neuronal mitochondria under some physiological and pathological conditions.  相似文献   

20.
Over the last 25 years, remarkable progress has been made not only in identifying key molecules of Alzheimer's disease but also in understanding their meaning in the pathogenic state. One hallmark of Alzheimer pathology is the amyloid plaque. A major component of the extracellular deposit is the amyloid-β (Aβ) peptide which is generated from its larger precursor molecule, i.e., the amyloid precursor protein (APP) by consecutive cleavages. Processing is exerted by two enzymes, i.e., the β-secretase and the γ-secretase. We and others have found that the self-association of the amyloid peptide and the dimerization and oligomerization of these proteins is a key factor under native and pathogenic conditions. In particular, the Aβ homodimer represents a nidus for plaque formation and a well defined therapeutic target. Further, dimerization of the APP was reported to increase generation of toxic Aβ whereas heterodimerization with its homologues amyloid precursor like proteins (APLP1 and APLP2) decreased Aβ formation. This review mainly focuses on structural features of the homophilic and heterophilic interactions among APP family proteins. The proposed contact sites are described and the consequences of protein dimerization on their functions and in the pathogenesis of Alzheimer's disease are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号