首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
Three new caged nitric oxides (NOs)-BNN3, BNN5Na, and BNN5M were tested for biological use. BNNs have a strong ultraviolet (UV) absorption band (lambda(max): 300 nm, epsilon: 13.5 mM(-1) cm (-1)) extended to 420 nm and produce NO upon irradiation with 300-360 nm light in quantum yields about 2. A photoexcited BNN molecule yields two NOs with time constants of less than 10 ns for phase 1 and less than 20 micros for phase 2 at 37 degrees C, suggesting usefulness of BNNs for measuring in vivo and in vitro fast NO reactions. Upon irradiating with UV light, caged nitric oxides-loaded rat aortic strips maintained in a state of active tonic contraction effectively relaxed ( < 3 microM BNN5M loading solution concentration). BNN3 is incorporated in the lipid membrane. BNN5Na, insoluble in organic solvents but water soluble, localizes in the water phase. BNN5M, is muscle-cell-permeable and hydrolysed to BNN5Na to remain in cytosol. BNNs were thermally stable and demonstrated no observable toxicity.  相似文献   

2.
Melatonin, a pineal secretory product, has properties of both direct and indirect powerful antioxidant. The aim of the present study was to compare the radical-scavenging, structural and electronic properties of melatonin and tryptophan, precursor of melatonin. Using the alkoxyl- and peroxyl radical-generating systems [the organic peroxide-treated human erythrocytes and a cell-free system containing the azo-initiator 2,2'-azobis(2-amidinopropane)dihydrochloride], we evaluated the radical-scavenging effects of melatonin and tryptophan. Melatonin rather than tryptophan at concentrations of 100-2000 microM markedly inhibited membrane lipid peroxidation in human erythrocytes treated with organic hydroperoxide as well as radical-induced generation of luminol-dependent chemiluminescence. The apparent Stern-Volmer constants for inhibition of membrane lipid peroxidation by melatonin and tryptophan were estimated to be (0.23+/-0.05) x 10(4) M(-1) and (0.02+/-0.005) x 10(4) M(-1), respectively. The apparent Stern-Volmer constants for inhibition of azo-initiator-derived peroxyl radical generation by melatonin and tryptophan were determined to be (0.42+/-0.05) x 10(4) M(-1) and (0.04+/-0.01) x 10(4) M(-1), respectively. The structural and electronic properties of melatonin and its precursor, tryptophan, were determined theoretically by performing semi-empirical and ab initio calculations. The high radical-scavenging properties of melatonin may be explained by the high surface area value and high dipole moment value. From the thermodynamic standpoint, based on our calculations, N(1)-acetyl-N(2)-formyl-5-methoxykynuramine (AFMK), was the most stable end oxidative product of melatonin.  相似文献   

3.
The unusual ??-halogen bond interactions are investigated between $ \left( {\hbox{BNN}} \right)_3^{+} $ and X1X2 (X1, X2?=?F, Cl, Br) employing MP2 at 6-311?+?G(2d) and aug-cc-pVDZ levels according to the ??CP (counterpoise) corrected potential energy surface (PES)?? method. The order of the ??-halogen bond interactions and stabilities of the complexes are obtained to be $ \left( {\hbox{BNN}} \right)_3^{+} \ldots {{\hbox{F}}_2} < \left( {\hbox{BNN}} \right)_3^{+} \ldots {\hbox{ClF < }}\left( {\hbox{BNN}} \right)_3^{+} \ldots {\hbox{C}}{{\hbox{l}}_2} < \left( {\hbox{BNN}} \right)_3^{+} \ldots {\hbox{BrCl}}\quad { < }\quad \left( {\hbox{BNN}} \right)_3^{+} \ldots {\hbox{B}}{{\hbox{r}}_2}\quad { < }\quad \left( {\hbox{BNN}} \right)_3^{+} \ldots {\hbox{BrF}}{.} $ at MP2/aug-cc-pVDZ level. The analyses of the Mulliken charge transfer, natural bond orbital (NBO), atoms in molecules (AIM) theory and electron density shifts reveal that the nature of the ??-halogen bond interaction in the complexes of ClF, BrF and BrCl might partly be charge transfer from the delocalized ??-HOMO orbital of $ \left( {\hbox{BNN}} \right)_3^{+} $ to X1X2. This result suggests that the positive aromatic ring $ \left( {\hbox{BNN}} \right)_3^{+} $ might act as a ??-electron donor to form the ??-halogen bond.
Figure
Shifts of electron density as a result of formation of the complex. The unusual ??-halogen interactions are found between (BNN)3 + and X1X2 (X1, X2=F, Cl, Br) employing MP2 method at 6-311+G(2d) and aug-cc-pVDZ levels according to the ??CP-corrected PES)?? method. The analyses of the Mulliken charge transfer, NBO, AIM and electron density shifts reveal that the nature of the ??-halogen bond interaction in the complexes of ClF, BrF and BrCl might partly be charge transfer from the delocalized ??-HOMO orbital of (BNN)3 + to X1X2. (BNN)3 + might be as ??-electron donor to form the ??-halogen bond.  相似文献   

4.
The chemical and spectroscopic properties of the new fluorescent acids all(E)-8, 10, 12, 14, 16-octadecapentaenoic acid (t-COPA) and its (8Z)-isomer (c-COPA) have been characterized in solvents of different polarity, synthetic lipid bilayers, and lipid/protein systems. These compounds are reasonably photostable in solution, present an intense UV absorption band (epsilon(350 nm) approximately 10(5) M(-1) cm(-1)) strongly overlapped by tryptophan fluorescence and their emission, centered at 470 nm, is strongly polarized (r(O) = 0.385 +/- 0.005) and decays with a major component (85%) of lifetime 23 ns and a faster minor one of lifetime 2 ns (D,L-alpha-dimyristoylphosphatidylcholine (DMPC), 15 degrees C). Both COPA isomers incorporate readily into vesicles and membranes (K(p) approximately 10(6)) and align parallel to the lipids. t-COPA distributes homogeneously between gel and fluid lipid domains and the changes in polarization accurately reflect the lipid T(m) values. From the decay of the fluorescence anisotropy in spherical bilayers of DMPC and POPC it is shown that t-COPA also correctly reflects the lipid order parameters, determined by 2H NMR techniques. Resonance energy transfer from tryptophan to the bound pentaenoic acid in serum albumin in solution, and from the tryptophan residues of gramicidin in lipid bilayers also containing the pentaenoic acid, show that this probe is a useful acceptor of protein tryptophan excitation, with R(O) values of 30-34 A.  相似文献   

5.
Formation of aromatic amino acid pools in Escherichia coli K-12   总被引:34,自引:27,他引:7       下载免费PDF全文
Phenylalanine, tyrosine, and tryptophan were taken up into cells of Escherichia coli K-12 by a general aromatic transport system. Apparent Michaelis constants for the three amino acids were 4.7 x 10(-7), 5.7 x 10(-7), and 4.0 x 10(-7)m, respectively. High concentrations (> 0.1 mm) of histidine, leucine, methionine, alanine, cysteine, and aspartic acid also had an affinity for this system. Mutants lacking the general aromatic transport system were resistant to p-fluorophenylalanine, beta-2-thienylalanine, and 5-methyltryptophan. They mapped at a locus, aroP, between leu and pan on the chromosome, being 30% cotransducible with leu and 43% cotransducible with pan. Phenylalanine, tyrosine, and tryptophan were also transported by three specific transport systems. The apparent Michaelis constants of these systems were 2.0 x 10(-6), 2.2 x 10(-6), and 3.0 x 10(-6)m, respectively. An external energy source, such as glucose, was not required for activity of either general or specific aromatic transport systems. Azide and 2,4-dinitrophenol, however, inhibited all aromatic transport, indicating that energy production is necessary. Between 80 and 90% of the trichloroacetic acid-soluble pool formed from a particular exogenous aromatic amino acid was generated by the general aromatic transport system. This contribution was abolished when uptake was inhibited by competition by the other aromatic amino acids or by mutation in aroP. Incorporation of the former amino acid into protein was not affected by the reduction in its pool size, indicating that the general aromatic transport system is not essential for the supply of external aromatic amino acids to protein synthesis.  相似文献   

6.
We studied how tryptophan methyl ester and related compounds inhibit binding of estrone to rat alpha-fetoprotein and find that: (a) like chymotrypsin, alpha-fetoprotein binds tryptophan esters with higher affinity than tryptophan or its amides; (b) the affinity of alpha-fetoprotein for tryptophan methyl ester is 3.7 . 10(-4) M, which is close to the affinity of chymotrypsin (10(-4) M); (c) alpha-fetoprotein binding of tryptophan methyl ester is stereoselective and pH dependent. All of these observations suggest that there is a specific interaction between alpha-fetoprotein and the chymotrypsin substrate, tryptophan methyl ester, and that rat alpha-fetoprotein contains a site with some structural similarities to the catalytic site in chymotrypsin. Since we also find that tryptophan methyl ester is a competitive inhibitor of estrone binding to alpha-fetoprotein, it is possible that the protease substrate binding site on alpha-fetoprotein is spatially close to the estrone binding site.  相似文献   

7.
Aromatic amino acid transport in Yersinia pestis.   总被引:2,自引:2,他引:0       下载免费PDF全文
The uptake and concentration of aromatic amino acids by Yersinia pestis TJW was investigated using endogenously metabolizing cells. Transport activity did not depend on either protein synthesis or exogenously added energy sources such as glucose. Aromatic amino acids remained as the free, unaltered amino acid in the pool fraction. Phenylalanine and tryptophan transport obeyed Michaelis-Menten-like kinetics with apparent Km values of 6 x 10(-7) to 7.5 x 10(-7) and 2 x 10(-6) M, respectively. Tyrosine transport showed biphasic concentration-dependent kinetics that indicated a diffusion-like process above external tyrosine concentrations of 2 x 10(-6) M. Transport of each aromatic amino acid showed different pH and temperature optima. The pH (7.5 TO8) and temperature (27 C) optima for phenylalanine transport were similar to those for growth. Transport of each aromatic amino acid was characterized by Q10 values of approximately 2. Cross inhibition and exchange experiments between the aromatic amino acids and selected aromatic amino acid analogues revealed the existence of three transport systems: (i) tryptophan specific, (ii) phenylalanine specific with limited transport activity for tyrosine and tryptophan, and (iii) general aromatic system with some specificity for tyrosine. Analogue studies also showed that the minimal stereo and structural features for phenylalanine recognition were: (i) the L isomer, (ii) intact alpha amino and carboxy group, and (iii) unsubstituted aromatic ring. Aromatic amino acid transport was differentially inhibited by various sulfhydryl blocking reagents and energy inhibitors. Phenylalanine and tyrosine transport was inhibited by 2,4-dinitrophenol, potassium cyanide, and sodium azide. Phenylalanine transport showed greater sensitivity to inhibition by sulfhydryl blocking reagents, particularly N-ethylmaleimide, than did tyrosine transport. Tryptophan transport was not inhibited by either sulfhydryl reagents or sodium azide. The results on the selective inhibition of aromatic amino acid transport provide additional evidence for multiple transport systems . These results further suggest both specific mechanisms for carrier-mediated active transport and coupling to metabolic energy.  相似文献   

8.
The quenching of tryptophan fluorescence by N-bromosuccinamide, studied by the fluorescence stopped-flow technique, was used to compare the reactivities of tryptophan residues in protein molecules. The reaction of N-bromosuccinamide with the indole group of N-acetyltryptophanamide, a model compound for bound tryptophan, followed second-order kinetics with a rate constant of (7.8 +/- 0.8) . 10(5) dm3 . mol-1 . s-1 at 23 degrees C. The rate does not depend on ionic strength or on the pH near neutrality. The non-fluorescent intermediate formed from N-acetyltryptophanamide on the reaction with N-bromosuccinamide appears to be a bromohydrin compound. The second-order rate constant for fluorescence quenching of tryptophan in Gly-Trp-Gly by N-bromosuccinamide was very similar, (8.8 +/- 0.8) . 10(5) dm3 . mol-1 . s-1. Apocytochrome c has the conformation of a random coil with the single tryptophan largely exposed to the solvent. The rate constant for the fluorescence quenching of the tryptophan in apocytochrome c by N-bromosuccinamide was (3.7 +/- 0.3) . 10(5) dm3 . mol-1 . s-1. The fluorescence quenching by N-bromosuccinamide of the tryptophan residues incorporated in alpha-chymotrypsin at pH 7.0 showed three exponential terms from which the following rate constants were derived: 1.74 . 10(5), 0.56 . 10(5) and 0.11 . 10(5) dm3 . mol-1 . s-1. This protein is known to have eight tryptophan residues in the native state, six residues at the surface, and two buried. Three of the surface tryptophans have the indole rings protruding out of the molecule and may account for the fastest kinetic phase of the quenching process. The intermediate phase may be due to three surface tryptophans whose indole rings point inwards, and the slowest to the two interior tryptophan residues.  相似文献   

9.
1. A method is given for the quantitative determination of free tryptophan or tryptophan in the intact protein by treating with ninhydrin in a mixture of formic acid and hydrochloric acid (reagent b), for 10min at 100 degrees C. Glycyltryptophan was used as a standard for the determination of tryptophan in the intact protein. The extinction at 390nm was linear in the range 0.05-0.5mumol for free tryptophan (in7120) and 0.05-0.30mumol for glycyltryptophan (in15400). 2. Free tryptophan in the presence of protein may be determined by treating with ninhydrin in a mixture of acetic acid and 0.6m-phosphoric acid (reagent a) for 10min at 100 degrees C, the extinction being linear for tryptophan in the range 0.05-0.9mumol. N-Terminal tryptophan peptides also give the typical yellow product on treatment with reagent a. 3. Tryptophan content of several pure intact proteins when treated with the above method gave values in good agreement with those reported by others. A mean tryptophan content of 11.25 (s.e.m. +/-0.08) mumol/100mg of protein was found in rat brain during development from 1 to 82 days after birth.  相似文献   

10.
The repair of tryptophan and tyrosine radicals in proteins by urate was studied by pulse radiolysis. In chymotrypsin, urate repairs tryptophan radicals efficiently with a rate constant of 2.7 × 10(8)M(-1)s(-1), ca. 14 times higher than the rate constant derived for N-acetyltryptophan amide, 1.9 × 10(7)M(-1)s(-1). In contrast, no repair of tryptophan radicals was observed in pepsin, which indicates a rate constant smaller than 6 × 10(7)M(-1)s(-1). Urate repairs tyrosine radicals in pepsin with a rate constant of 3 × 10(8)M(-1)s(-1)-ca. 12 times smaller than the rate constant reported for free tyrosine-but not in chymotrypsin, which implies an upper limit of 1 × 10(6)M(-1)s(-1) for the corresponding rate constant. Intra- and intermolecular electron transfer from tyrosine residues to tryptophan radicals is observed in both proteins, however, to different extents and with different rate constants. Urate inhibits electron transfer in chymotrypsin but not in pepsin. Our results suggest that urate repairs the first step on the long path to protein modification and prevents damage in vivo. It may prove to be a very important repair agent in tissue compartments where its concentration is higher than that of ascorbate. The product of such repair, the urate radical, can be reduced by ascorbate. Loss of ascorbate is then expected to be the net result, whereas urate is conserved.  相似文献   

11.
Monitoring plasmid production systems is a lab intensive task. This article proposes a methodology based on FTIR spectroscopy and the use of chemometrics for the high-throughput analysis of the plasmid bioproduction process in E. coli. For this study, five batch cultures with different initial medium compositions are designed to represent different biomass and plasmid production behavior, with the maximum plasmid and biomass concentrations varying from 11 to 95 mg L(-1) and 6.8 to 12.8 g L(-1), respectively, and the plasmid production per biomass varying from 0.4 to 5.1 mg g(-1). After a short sample processing consisting of centrifugation and dehydration, the FTIR spectra are recorded from the collected cellular biomass using microtiter plates with 96 wells. After spectral pre-processing, the predictive FTIR spectra models are derived by using partial least squares (PLS) regression with the wavenumber selection performed by a Monte-Carlo strategy. Results show that it is possible to improve the PLS models by selecting specific spectral ranges. For the plasmid model, the spectral regions between 590-1,130, 1,670-2,025, and 2,565-3,280 cm(-1) are found to be highly relevant. Whereas for the biomass, the best wavenumber selections are between 900-1,200, 1,500-1,800, and 2,850-3,200 cm(-1). The optimized PLS models show a high coefficient of determination of 0.91 and 0.89 for the plasmid and biomass concentration, respectively. Additional PLS models for the prediction of the carbon sources glucose and glycerol and the by-product acetic acid, based on metabolism-induced correlations between the nutrients and the cellular biomass are also established.  相似文献   

12.
J Broos  F ter Veld  G T Robillard 《Biochemistry》1999,38(31):9798-9803
This paper presents a deceptively straightforward experimental approach to monitoring membrane protein-ligand interactions in vesicles and in living Escherichia coli cells. This is achieved via the biosynthetic incorporation of 7-azatryptophan, a tryptophan analogue with a red-shifted absorption spectrum, allowing collection of the emission signal of the target protein in a high tryptophan background via red-edge excitation. The approach is demonstrated for the mannitol permease of E. coli (EII(mtl)), an integral membrane protein of 637 amino acids, including four tryptophans, and single-tryptophan mutants of EII(mtl). By using a tryptophan auxotroph, a high level of 7-azatryptophan incorporation in EII(mtl) was achieved. The change in emission signal of the purified enzyme upon mannitol binding (-28%) was 4-fold larger than with EII(mtl) containing tryptophan, demonstrating the known higher sensitivity of this analogue for changes in the microenvironment [Schlesinger, R. (1968) J. Biol. Chem. 243, 3877-3883]. Changes in emission signal could also be monitored (-5%) when the enzyme was situated in vesicles, although it constituted only 10-15% of the total cytoplasmic membrane fraction. Of the five single-tryptophan mutants, the emission signal of the mutant with 7-azatryptophan at position 198 was the most sensitive for mannitol binding. Changes in emission signal not only were observed in vesicles (-18%) but also could be monitored in viable cells (-5%). The fact that only modest expression levels and no protein purification are needed makes this a useful approach for the characterization of numerous protein systems under in vitro and in vivo conditions.  相似文献   

13.
Dynamic properties of gramicidin A in phospholipid membranes   总被引:3,自引:0,他引:3  
P M Macdonald  J Seelig 《Biochemistry》1988,27(7):2357-2364
The flexibility of the tryptophan side chains of gramicidin A and the rotational diffusion of the peptide in methanolic solution and in three membrane systems were studied with deuterium nuclear magnetic resonance (NMR). Gramicidin A was selectively deuterated at the aromatic ring systems of its four tryptophan side chains. In methanolic solution, the tryptophan residues remained immobile and served as a probe for the overall rotation of the peptide. The experimentally determined rotational correlation time of tau c = 0.6 X 10(-9) s was consistent with the formation of gramicidin A dimers. For gramicidin A incorporated into bilayer membranes, quite different results were obtained depending on the chemical and physical nature of the lipids employed. When mixed with 1-palmitoyl-sn-glycero-3-phosphocholine (LPPC) at a stoichiometric lipid:peptide ratio of 4:1, gramicidin A induced the formation of stable bilayer membranes in which the lipids were highly fluid. In contrast, the gramicidin A molecules of this membrane remained completely static over a large temperature interval, suggesting strong protein-protein interactions. The peptide molecules appeared to form a rigid two-dimensional lattice in which the interstitial spaces were filled with fluidlike lipids. When gramicidin A was incorporated into bilayers of 1,2-dioleoyl-sn-glycero-3-phosphocholine or 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) above the lipid phase transition, the deuterium NMR spectra were motionally narrowed, indicating large-amplitude rotational fluctuations. From the measurement of the quadrupole echo relaxation time, a rotational correlation time of 2 X 10(-7) s was estimated, leading to a membrane viscosity of 1-2 P if the rotational unit was assumed to be a gramicidin A dimer. (ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Aqueous dispersions of a porcine lung surfactant (PLS) extract with and without cholesterol supplementation were analyzed by X-ray scattering. Lamellar liquid-crystalline and gel-type bilayer phases are formed, as in pure phosphatidylcholine (PC)-cholesterol systems. This PLS extract, developed for clinical applications, has a cholesterol content of less than 1% (w/w). Above the limit of swelling, the bilayer structure shows a melting (main) transition during heating at about 34 degrees C. When 13 mol% cholesterol was added to PLS, so that the cholesterol content of natural lung surfactant was reached, the X-ray scattering pattern showed pronounced changes. The main transition temperature was reduced to the range 20-25 degrees C, whereas according to earlier studies of disaturated PC-cholesterol bilayers in water the main transition remains almost constant when the amount of solubilized cholesterol is increased. Furthermore, the changes in scattering pattern at passing this transition in PLS-cholesterol samples were much smaller than at the same transition in PLS samples. These effects of cholesterol solubilization can be related to phase segregation within the bilayers, known from pure PC-cholesterol systems. One phase, solubilizing about 8 mol% cholesterol, exhibits a melting transition, whereas the other bilayer phase, with a liquid-crystalline disordered conformation, has a cholesterol content in the range 20-30 mol% and this phase shows no thermal transition. The relative amount of bilayer lipids that is transformed at the main transition in the PLS-cholesterol sample is therefore only half compared to that in PLS samples. The reduction in transition temperature in the segregated bilayer of lung surfactant lipids is probably an effect of enrichment of disaturated PC species in the phase, which is poor in cholesterol. This work indicates that cholesterol in lung surfactant regulates the crystallization behavior.  相似文献   

15.
Eosinophilia Myalgia Syndrome is a hypereosinophilic disorder that appears to result from the ingestion of the dietary supplement L-tryptophan by susceptible individuals. It is unclear if this disease results from tryptophan, contaminants found in tryptophan, individual predisposition (such as immune status and allergies), or some combination of effects. To evaluate effects of L-tryptophan on eosinophil migration, guinea pigs were compared with or without supplemental tryptophan (0.4 g/kg/day), with or without immune sensitization, and with or without immune challenge. Eosinophil counts were obtained from bone marrow, blood, lung, and bronchial alveolar lavage fluid (BAL). Lung cells were obtained to measure eotaxin concentrations in supernates and lysates with or without antigen and calcium ionophore challenge using direct ELISA. Skin biopsies were taken from both non-injected and antigen injection sites. The tryptophan supplemented, antigen-sensitized/antigen-challenged guinea pigs showed a significant decrease in blood eosinophils, compared to control (cellulose) supplemented antigen-sensitized/antigen-challenged guinea pigs [(0.086 +/- 0.023) x 10(6) vs (0.147 +/- 0.021) x 10(6) eosinophils/ml recovered, respectively] with a significant increase in BAL eosinophils [(0.052 +/- 0.008) x 10(6) vs (0.033 +/- 0.005) x 10(6) eosinophils/ml recovered, respectively]. Unchallenged lung cell lysates from tryptophan-supplemented guinea pigs contained significantly less eotaxin compared to cellulose-supplemented guinea pigs regardless of whether they were sensitized (0.006 +/- 0.002 vs 0.027 +/- 0.008 ng/10(6) cells, respectively). No differences were observed in skin biopsies between cellulose and tryptophan groups. These results suggest that L-tryptophan-supplemented guinea pigs have altered eotaxin regulation, a potential mechanism by which human overconsumption of tryptophan dietary supplements could lead to hypereosinophilic disorders in susceptible individuals.  相似文献   

16.
Prolonged exposure of Ca(2+)-loaded or Ca(2+)-depleted human alpha-lactalbumin to ultraviolet light (270-290 nm, 1 mW/cm(2), for 2 to 4 h) results in a 10-nm red shift of its tryptophan fluorescence spectrum. Gel chromatography of the UV-illuminated samples reveals two non-native protein forms: (1) a component with a red-shifted tryptophan fluorescence spectrum; and (2) a component with kynurenine-like fluorescent properties. The first component has from 0.6 to 0.9 free DTNB-reactive SH groups per protein molecule, which are absent in the native protein and is characterized by slightly lowered Ca(2+)-affinity (2 x 10(8) M(-1) versus 8 x 10(8) M(-1) for the native protein) and absence of observable thermal transition. The second component corresponds to the protein with photochemically modified tryptophan residues. It is assumed that the UV excitation of tryptophan residue(s) in alpha-lactalbumin is followed by a transfer of electrons to the Sbond;S bonds, resulting in their reduction. Mass spectrometry data obtained for trypsin-fragmented UV-illuminated alpha-lactalbumin with acrylodan-modified free thiol groups reveal the reduction of the 61-77 and 73-91 disulfide bridges. The effect observed has to be taken into account in any UV-region spectral studies of alpha-lactalbumin.  相似文献   

17.
Mutants of A9 mouse fibroblast, resistant to the killing effect of 0.4 mM 5-flurotryptophan (5-FT), have altered L-tryptophan transport properties. The resistant phenotype is stable for at least 90 generations of growth in MEM. A fluctuation test indicated that clones resistant to 0.4 mM 5-FT occurred spontaneously. An average mutation rate was estimated at 1.6 X 10(-6). Treatment with N-methyl-N'-nitro-N-nitrosoguanidine increased the frequency of these clones by at least 100-fold. These results indicate that the resistant clones arose as a result of a mutation. All the resistant mutant tested accumulate less 5-FT at near steady-state conditions than the wild type. Lineweaver-Burk plots of initial rates of tryptophan uptake yield a biphasic curve suggesting that tryptophan is transported by two transport systems. Kinetic constants determined by a computer program indicate that both proposed transport systems were modified in each of two 5-FT resistant mutants.  相似文献   

18.
Experiments concerned with the regulation of the tryptophan synthetic enzymes in anaerobes were carried out with a strain of Clostridium butyricum. Enzyme activities for four of the five synthetic reactions were readily detected in wild-type cells grown in minimal medium. The enzymes mediating reactions 3, 4, and 5 were derepressed 4- to 20-fold, and the data suggest that these enzymes are coordinately controlled in this anaerobe. The first enzyme of the pathway, anthranilate synthetase, could be derepressed approximately 90-fold under these conditions, suggesting that this enzyme is semicoordinately controlled. Mutants resistant to 5-methyl tryptophan were isolated, and two of these were selected for further analysis. Both mutants retained high constitutive levels of the tryptophan synthetic enzymes even in the presence of repressing concentrations of tryptophan. The anthranilate synthetase from one mutant was more sensitive to feedback inhibition by tryptophan than the enzyme from wild-type cells. The enzyme from the second mutant was comparatively resistant to feedback inhibition by tryptophan. Neither strain excreted tryptophan into the culture fluid. Tryptophan inhibits anthranilate synthetase from wild-type cells noncompetitively with respect to chorismate and uncompetitively with respect to glutamine. The Michaelis constants calculated for chorismate and glutamine are 7.6 x 10(-5)m and 6.7 x 10(-5)m, respectively. The molecular weights of the enzymes estimated by zonal centrifugation in sucrose and by gel filtration ranged from 24,000 to 89,000. With the possible exception of a tryptophan synthetase complex, there was no evidence for the existence of other enzyme aggregates. The data indicate that tryptophan synthesis is regulated by repression control of the relevant enzymes and by feedback inhibition of anthranilate synthetase. That this enzyme system more closely resembles that found in Bacillus than that found in enteric bacteria is discussed.  相似文献   

19.
Detection of Tryptophan to Tryptophan Energy Transfer in Proteins   总被引:4,自引:0,他引:4  
Förster resonance energy transfer (FRET) studies usually involve observation of intensity or life-time changes in the donor or acceptor molecule and usually these donor and acceptor molecules differ (heterotransfer). The use of polarization to monitor FRET is far less common, although it was one of the first methods utilized. In 1960, Weber demonstrated that homotransfer between tryptophan molecules contributes to depolarization. He also discovered that the efficiency of homotransfer becomes much less effective upon excitation near the red-edge of the absorption. This “red-edge effect” was shown to be a general phenomenon of homotransfer. We have utilized Weber's red-edge effect to study tryptophan homotransfer in proteins. Specifically, we determined the polarization of the tryptophan fluorescence upon excitation at 295 nm and 310 nm (near the red-edge). Rotational diffusion leads to depolarization of the emission excited at either 295 nm or 310 nm, but homotransfer only contributes to depolarization upon excitation at 295 nm. Hence, the 310/295 polarization ratio gives an indication of tryptophan to tryptophan energy transfer. In single tryptophan systems, the 310/295 ratios are generally below 2 whereas in multi-tryptophan systems, the 310/295 ratios can be greater than 3.  相似文献   

20.
Time-resolved fluorescence anisotropy measurements of tryptophan residues were carried out for 44 proteins. Internal rotational motion with a sub-nanosecond correlation time (0.9 +/- 0.6 ns at 10 degrees C) was seen in a large number of proteins, though its amplitude varied from protein to protein. It was found that tryptophan residues which were almost fixed within a protein had either a long (greater than 4 ns) or short (less than 2 ns) fluorescence lifetime, whereas a residue undergoing a large internal motion had an intermediate lifetime (1.5-3 ns). It is suggested that the emission kinetics of a tryptophan residue is coupled with its internal motion. In particular, an immobile tryptophan residue emitting at long wavelength was characterized by a long lifetime (greater than 4 ns). It appears that a tryptophan residue fixed in a polar region has little chance of being quenched by neighboring groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号