首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Animals optimize the trade-off between the cost of not fleeing and the benefits of staying because the factors that influence flight decisions and the disturbance level of a particular stimulus can vary both spatially and temporally. Different factors (human impact and habitat characteristics) likely to modify anti-predator behaviour in different types of guanaco social groups were analysed. We found that group size was conditioned by high poaching, vehicle traffic, predation risk and vegetation density. Solitary adult males showed shorter alert and flight initiation distances than bachelor and mixed groups. Alert distance was greater during the summer season, and assessment times were shorter when young were present in the groups. In high-predation-risk environments, guanacos detected threats at greater distances and flight initiation distance was longer. Alert distances were shorter on steeper sloped hills and assessment times were shorter in areas with irregular topography than on flat sites. In high traffic areas, flight initiation distance was longer and assessment times were shorter. And in areas with low poaching intensity, assessment times were greater than in those with high poaching levels. Therefore, guanacos may be able to evaluate a true threat. Social group and anti-predator responses were conditioned by habitat characteristics and human impact. We consider that plasticity of responses could be key to the survival of guanacos.  相似文献   

2.
Grouping behavior of social ungulates may depend on both predator occurrence and perceived predation risk associated with habitat structure, reproductive state, and density of conspecifics. Over 3 years, we studied grouping behavior of guanaco (Lama guanicoe) families in Chilean Patagonia during the birthing season and determined their response to variation in predator occurrence and perceived predation risk (habitat structure, calf/adult rate, and density of conspecifics). We considered the effect of two predators, puma (Puma concolor) and culpeo fox (Lycalopex culpaeus). We measured two common (family group size and vigilance) and one novel (family group cohesion) behavioral responses of guanaco. Our results show that guanaco family groups adapted their grouping behavior to both predator occurrence and perceived predation risk. Larger family groups were found in open habitats and areas with high puma occurrence, while guanacos stayed in small family groups in areas with high shrub cover or low visibility. Group cohesion increased in areas with higher occurrence of pumas and culpeo foxes, and also increased in smaller family groups and in areas with low guanaco density. Vigilance (number of vigilant adults) was mainly related to group size and visibility, increasing in areas with low visibility, while residual vigilance (vigilance after removing the group‐size effect) did not vary with the explanatory variables examined. Our results suggest that a mix of predator occurrence and perceived predation risk influences guanaco grouping behavior and highlights the importance of evaluating different antipredator responses together and considering all predator species in studies aimed at understanding ungulate behavior.  相似文献   

3.
Prey avoid being eaten by assessing the risk posed by approaching predators and responding accordingly. Such an assessment may result in prey–predator communication and signalling, which entail further monitoring of the predator by prey. An early antipredator response may provide potential prey with a selective advantage, although this benefit comes at the cost of disturbance in terms of lost foraging opportunities and increased energy expenditure. Therefore, it may pay prey to assess approaching predators and determine the likelihood of attack before fleeing. Given that many approaching potential predators are detected visually, we hypothesized that species with relatively large eyes would be able to detect an approaching predator from afar. Furthermore, we hypothesized that monitoring of predators by potential prey relies on evaluation through information processing by the brain. Therefore, species with relatively larger brains for their body size should be better able to monitor the intentions of a predator, delay flight for longer and hence have shorter flight initiation distances than species with smaller brains. Indeed, flight initiation distances increased with relative eye size and decreased with relative brain size in a comparative study of 107 species of birds. In addition, flight initiation distance increased independently with size of the cerebellum, which plays a key role in motor control. These results are consistent with cognitive monitoring as an antipredator behaviour that does not result in the fastest possible, but rather the least expensive escape flights. Therefore, antipredator behaviour may have coevolved with the size of sense organs, brains and compartments of the brain involved in responses to risk of predation.  相似文献   

4.
Visual obstructions can cause an increase in antipredator vigilance in prey animals by making predator detection more difficult. However, visual obstructions can also skew the perception of group size and inter‐individual distances and impair the detection of alarm signals by conspecifics. These changes within the group alone can cause an increase in vigilance. To disentangle the contribution of these various factors to changes in vigilance, I documented vigilance in a gregarious species, the semipalmated sandpiper Calidris pusilla, foraging in a habitat where a naturally‐occurring visual barrier partially prevented predator detection without altering the transfer of information about predation risk within the group. I used a matched sampling design to collect vigilance data for birds using adjacent areas with and without the visual barrier. In the visually‐obstructed area, sandpipers maintained a higher level of vigilance, occurred farther away from cover and in smaller flocks, and preferentially scanned the area of danger with one eye in particular. All these changes suggest that visual obstruction increased perceived predation risk. I conclude that it is the inability to get a good view of any approaching predator, rather than changes in intra‐group communication that caused the increase in vigilance in the visually‐obstructed area.  相似文献   

5.
The relationship between preflight risk assessment by prey andthe escape behaviors they perform while fleeing from predatorsis relatively unexplored. To examine this relationship, a humanobserver approached groups of Columbian black-tailed deer (Odocoileushemionus columbianus), varying his behavior to simulate moreor less threatening behavior. We measured the focal deer's angleof escape, distance moved during flight, duration of trottingand stotting behavior, and change in elevation during flight.Analyses revealed positive relationships between the distancemoved during flight and the distance at which they fled. Whenflight was initiated when the approacher was close, deer fledrelatively shorter distances and took flight paths at more acuteangles, a property that would force a real predator to changedirection suddenly. Our results indicate that deer do not compensatefor allowing the observer to approach more closely by fleeinggreater distances. Rather, distance moved and flight initiationdistance are linked by level of reactivity and habituation:more reactive or less habituated deer both flee at a greaterdistance and move away to a greater distance during flight.More threatening behavior by the approacher led to longer durationsof rapid flight behavior (e.g., trotting and stotting), anddeer tended to flee uphill and into taller vegetation, usingthese landscape features as refuge from danger. Finally, weprovide the first evidence for Pitcher's untested "antiambush"hypothesis for the function of stotting and discuss its significance.In general, both preflight predator behavior and habitat featuresinfluence both duration and direction of escape.  相似文献   

6.
In predator-prey encounters, many factors influence risk perceptionby prey and their decision to flee. Previous studies indicatethat prey take flight at longer distances when they detect predatorsat longer distances and when the predator's behavior indicatesthe increased likelihood of attack. We examined the flight decisionsof Columbian black-tailed deer (Odocoileus hemionus columbianus)using an approaching human whose speed, directness of approach,directness of gaze, and simulated gun carrying varied. Deerfled at greater distances when approached more quickly and directly,and there was a concave-down quadratic trend in the relationshipbetween the distances at which the predator began its approachand at which the deer became alert (alert distance [AD]), indicatingthat deer have a zone of awareness beyond which there is a delayin detecting an approaching predator. Time spent assessing theapproacher (assessment time) was shorter during faster approachesand was positively related with AD. Deer fled at longer distancesand had shorter assessment times when they were already alertto the predator at the initiation of approach. Males fled atshorter distances than females when approached during the gun-holdingcondition, and males had shorter assessment times than femaleswhen the approacher averted his gaze. Such sex differences inrisk assessment might reflect male motivation during the matingseason as well as exposure to human hunting. We suggest thatrisk assessment is affected the by the predator's behavior,the state of awareness of the prey, and the distance at whichthey detect the predator.  相似文献   

7.
When confronted with a predator, prey are often in close proximityto conspecifics. This situation has generated several hypothesesregarding antipredator strategies adopted by individuals withingroups of gregarious species, such as the "risk dilution," "earlydetection," or "collective detection" effects. However, whethershort-term temporary aggregations of nongregarious animals arealso influenced in their escape decisions by nearby conspecificsremains little explored. We simulated predator approaches togreen frogs (Rana perezi) in the field while they were foragingat the edge of water, either alone or spatially aggregated intemporary clusters. "Flight initiation distances" of frogs (i.e.,the distance between the simulated predator and the frog atthe time it jumped) that escaped by jumping into the water wereinfluenced by microhabitat variables (vegetation at the edgeand in water and the initial distance of the frog to the closestwater edge) and also by the responses of nearby individuals.In clusters, risk dilution did not influence the first individualto respond to the predator simulation or the average responseof all frogs in the cluster as the frog's responses were independentof group size. Also, flight initiation distances of individualsthat first responded to the predator within clusters did notdiffer from those of solitary individuals, which is contraryto the predictions of the early detection hypothesis. However,the remaining frogs in the cluster had longer flight initiationdistances than expected from the comparison with solitary individuals.We suggest that this pattern originated because the responseof the first frog within a cluster triggered the sequentialresponse of the remaining frogs in the cluster, which agreeswith the expectations from the collective detection hypothesis.Our findings give insight into an early stage in the evolutionof grouping as they suggest that individual frogs may benefitfrom being part of a cluster, even for short periods of time.  相似文献   

8.
We studied abundance, habitat use and social structure of an isolated population of guanacos in the Lihue Calel National Park in central Argentina, based on data from foot surveys during 1998–2000. Based on topography and vegetation characteristics we distinguished three types of habitat: hills, valleys and piedmonts, and lowlands. Three types of social groups were observed: solitary males, family groups and male groups. The guanacos used hills preferentially, followed by valley and piedmont. The guanacos avoided the lowlands where the vegetation is dense. Habitat selection, both on a coarse and a fine scale, could be explained by habitat quality and possibly also predator avoidance behaviour. Abundance of guanacos increased by 21% over the 3-year-study period. However, the specificity of habitat requirements of guanacos and the susceptibility of the study area to wildfires could cause guanacos to move into sub-optimal areas were they are more vulnerable to predation and human persecution.  相似文献   

9.
Flight initiation distance (FID), the distance at which individuals take flight when approached by a potential (human) predator, is a tool for understanding predator–prey interactions. Among the factors affecting FID, tests of effects of group size (i.e., number of potential prey) on FID have yielded contrasting results. Group size or flock size could either affect FID negatively (i.e., the dilution effect caused by the presence of many individuals) or positively (i.e., increased vigilance due to more eyes scanning for predators). These effects may be associated with gregarious species, because such species should be better adapted to exploiting information from other individuals in the group than nongregarious species. Sociality may explain why earlier findings on group size versus FID have yielded different conclusions. Here, we analyzed how flock size affected bird FID in eight European countries. A phylogenetic generalized least square regression model was used to investigate changes in escape behavior of bird species in relation to number of individuals in the flock, starting distance, diet, latitude, and type of habitat. Flock size of different bird species influenced how species responded to perceived threats. We found that gregarious birds reacted to a potential predator earlier (longer FID) when aggregated in large flocks. These results support a higher vigilance arising from many eyes scanning in birds, suggesting that sociality may be a key factor in the evolution of antipredator behavior both in urban and rural areas. Finally, future studies comparing FID must pay explicit attention to the number of individuals in flocks of gregarious species.  相似文献   

10.
Functional aspects of vigilance in nine-banded armadillos (Edentata: Dasypus novemcinctus) were investigated. Data on solitary individuals revealed few age or sex differences in time spent vigilant. However, vigilance increased in most social contexts and was highest during intraspecific agonistic encounters. These results suggest social functions for armadillo vigilance. Armadillos with higher vigilance levels had longer flight distances, suggesting that vigilance may also have antipredator benefits. Further examination of flight distances revealed that they varied with age, weather conditions, and time of year (breeding versus non-breeding season), and were negatively correlated with body size. In total, the results indicate the complexity of vigilance in a solitary species and suggest that armadillo vigilance is multifunctional.  相似文献   

11.
We conducted focal observations of territorial guanacos, a highly polygynous and social mammal, to compare time budgets between sexes and test the hypothesis that the differences in reproductive interests are associated with differential group size effects on male and female time allocation patterns. In addition, we used group instantaneous sampling to test the hypothesis that grouping improves detection capacity through increased collective vigilance. We fit GLM to assess how group size and group composition (i.e., presence or absence of calves) affected individual time allocation of males and females, and collective vigilance. As expected from differences in reproductive interests, males in family groups devoted more time to scan the surroundings and less to feeding activities compared to females. Both sexes benefited from grouping by reducing the time invested in vigilance and increased foraging effort, according to predation risk theory, but the factors affecting time allocation differed between males and females. Group size effects were significant when females were at less than five body‐lengths from their nearest neighbour, suggesting that grouping benefits arise when females are close to each other. Female time budgets were also affected by season, topography and vegetation structure. In contrast to our expectation, males reduced the time invested in vigilance as the number of females in the group increased, supporting the predation risk theory rather the intrasexual competition hypothesis. The presence of calves was associated with an increase in male individual vigilance; and vegetation type also affected the intensity of the group size effect over male time allocation. In closed habitats, collective vigilance increased with the number of adults but decreased with the number of calves present. Although male and female guanacos differed in their time allocation patterns, our results support the hypothesis that both sexes perceive significant antipredator benefits of group living.  相似文献   

12.
Tourist-induced behavioural changes in large vertebrates are of concern for protected area management as they trigger a trade-off: large vertebrates attract visitors, but induced behavioral changes can reduce animal fitness and cause animals to avoid tourist-frequented zones. Behavioural response of animals to tourists is often studied to ensure informed management decision-making, a task frequently supported by flight distance analysis. In this context, guanaco (Lama guanicoe) response to tourists was studied in a protected area using two complementary methods: flight distance and sighting frequency analyses. Flight response analyses show that guanacos develop a considerable tolerance to vehicles and pedestrians in tourist areas, a reaction that extends approximately 500 m around visited areas. Such analyses thus point to (i) few areas being underused as a consequence of human presence and (ii) a low risk of tame animals being poached outside the park, all potentially leading to the conclusion that tourist visits are sustainable. However, guanaco sighting frequencies during 107 fieldwork days along 3 years show a significant reduction in sightings on days with higher Park visitor numbers. Moreover we present a formal procedure for the definition of a threshold for this to happen (247 visitors/day in our case). This suggests the potential risk of negative effects on guanaco population and a lower probability of guanaco sightings if Park visitor numbers rise beyond current figures. Results allow to conclude that assessment of human disturbance to flagship species in protected areas requires further methods in addition to flight distance.  相似文献   

13.
Optimal escape theory seeks to explain variation in the distanceto an approaching predator at which the prey initiates escape(flight initiation distance). Flight initiation distance increaseswhen predators pose a greater threat and decreases when escapecosts increase. Although optimal escape theory has been highlysuccessful, its predictions have been tested primarily for speciesthat escape to discrete refuges, and most studies have focusedon single risk or cost factors. We present data from two experimentsin which two risks or a risk and a cost varied in Bonaire whiptaillizards (Cnemidophorus murinus) that escaped without enteringrefuges. Our data verify several predictions about optimal escapefor nonrefuging lizard prey. Two risk factors, speed and directnessof approach by the predator, interacted. Directly approachedlizards had greater flight initiation distances than did indirectlyapproached lizards when approached rapidly, but shorter flightinitiation distances when approached slowly. Flight initiationdistance was shorter in the presence of food and during slowversus rapid approaches, but contrary to expectation, food presenceand approach speed did not interact. This would be explainedif cost curves are nonlinear or if they are parallel ratherthan intersecting when the predator reaches the prey. More empiricalwork is needed to determine which risk and cost factors actadditively and which act synergistically. The absence of interactionbetween the risk and cost factors suggests that cost curveswere nonlinear.  相似文献   

14.
Jiang TY  Ding YZ  Wang ZH  He GF  Zhao JP  Ma FQ  Wang XM 《动物学研究》2011,32(2):157-162
野生动物对人类的非资源利用性的干扰具有不同的反应,这些反应的差异依赖于物种自身和外界生境中不同的因子.2009年7-8月和2009年12月-2010年1月在宁夏回族自治区贺兰山苏峪口国家森林公园,选定95.87 km2 的调查区域内设四条样线,总长度为18.3 km,通过观察岩羊的瞬时反应距离,比较了不同干扰源、群体大小和群类型下,岩羊无反应行为、警戒反应行为和逃跑反应行为距离的差异.结果表明:(1) 相对于车辆,岩羊对行人的干扰更加敏感(U=8.69,P<0.001); (2) 当群体大小分为≤3的小群和>3大群时,小群岩羊的警戒反应行为距离显著大于大群(Z=2.165,P=0.03),当群体大小分为≤5的小群和>5的大群时,小群岩羊的逃跑反应行为距离显著大于大群(Z=2.003,P=0.045); (3) 雌幼群、雄性群和混合群这3种不同的群类型之间的无反应行为距离无显著差异,雄性群的警戒行为距离显著大于雌性群和混合群的警戒行为距离(Z=2.746,P=0.006; Z=3.589,P<0.001),雌性群的逃跑反应行为距离显著大于混合群的逃跑反应距离(Z=2.376,P=0.017); (4) 混合群内的雌性和雄性的3种反应行为无显著差异.  相似文献   

15.
In cryptically coloured birds, remaining on the nest despite predator approach (risk‐taking) may decrease the likelihood that the nest will be detected and current reproductive attempt lost. By contrast, flushing may immediately reveal the nest location to the predator. Escape decisions of incubating parents should therefore be optimized based on the risk‐to‐parent/cost of escape equilibrium. Animal prey may assess predation risk depending on a variety of cues, including the camouflage that vegetation provides against the predator. We examined interactive effects of nest crypsis and the current reproductive value of a clutch on flushing distances in incubating mallards (Anas platyrhynchos) approached by a human. Our results were consistent with predictions of parental investment theory: flushing distances were inversely correlated with measures of the reproductive value of the current clutch, namely with clutch size, stage of incubation and mean egg volume. Independently of a reproductive value of a clutch, nest concealment explained a significant portion of the variation in flushing distance among females; individual females tended to increase/decrease flushing distances according to change in nest cover. The results further suggest that vegetation concealment greatly influenced the risk of nest detection by local predators, suggesting that vegetation may act as a protective cover for incubating female. A female's ability to delay flushes according to the actual vegetation cover might thus be viewed as an antipredator strategy that reduces premature nest advertising to visually oriented predators. We argue, however, that shorter flying distances from densely covered sites might be maladaptive in areas where a predator's ability to detect incubating female does not rely on visual cues of nests.  相似文献   

16.
Many models using vigilance to predict the probability of detecting an approaching predator assumes that prey scanning events should be produced at random. Consequently, the length of intervals among successive scans must follow a negative exponential distribution. We analyzed the scanning behavior of the greater rhea, Rhea americana, which is a gregarious, flightless bird, in eastern Argentina. We investigated whether individual and/or collective scanning departed from random and whether this departure varied with group size. We used two simulation models based on observed scanning sequences to assess the effectiveness of vigilance on the individual and collective level when faced with an opportunistic or stalking predator. The analysis of 59 behavioral sequences of wild greater rheas foraging solitary or in groups of two to six or more individuals revealed that the inter-scan length of individual sequences significantly departed from random. In contrast, inter-scan intervals for collective vigilance were shorter than individual ones, but only fit the random expectation for groups of two and five individuals. Models showed that collective vigilance could increase the probability of detecting a predator, thereby reducing their vulnerability, independent of whether the predator uses a stalking or opportunistic approaching strategy.  相似文献   

17.
Synopsis The risk to a prey individual in an encounter with a predator increases as the distance to protective cover increases. Prey should therefore initiate their flight to cover at longer distances from an approaching predator (i.e., sooner) and/or flee at greater velocities, as the distance to cover increases. These predictions were tested with an African cichlid fish, Melanochromis chipokae presented with a looming stimulus simulating an attacking predator. The fish varied their flight initiation distance as predicted, but there was no significant effect of distance-to-cover on escape velocity. Nevertheless, the cichlids appeared to choose a combination of flight initiation distance and escape velocity which ensured they reached cover with a constant temporal margin of safety.  相似文献   

18.
Organisms generally have many defenses against predation, yet may lack effective defenses if from populations without predators. Evolutionary theory predicts that “costly” antipredator behaviors will be selected against when predation risk diminishes. We examined antipredator behaviors in Aegean wall lizards, Podarcis erhardii, across an archipelago of land-bridge islands that vary in predator diversity and period of isolation. We examined two defenses, flight initiation distance and tail autotomy. Flight initiation distance generally decreased with declining predator diversity. All predator types had distinctive effects on flight initiation distance with mammals and birds having the largest estimated effects. Rates of autotomy observed in the field were highest on predator-free islands, yet laboratory-induced autotomy increased linearly with overall predator diversity. Against expectation from previous work, tail autotomy was not explained solely by the presence of vipers. Analyses of populations directly isolated from rich predator communities revealed that flight initiation distance decreased with increased duration of isolation in addition to the effects of current predator diversity, whereas tail autotomy could be explained simply by current predator diversity. Although selection against costly defenses should depend on time with reduced threats, different defenses may diminish along different trajectories even within the same predator–prey system.  相似文献   

19.
Island populations may provide unique insights into the evolution and persistence of antipredator behavior. If antipredator behavior is costly and islands have reduced predation risk, then we expect the reduction or loss of antipredator behavior on islands. However, if even a single predator remains, the multipredator hypothesis predicts that antipredator behaviors will be conserved. We compared the flight initiation distances (FID) of California quail (Callipepla californica) on Santa Catalina Island (a location with reduced predation pressure) with quail on the mainland. We found no differences in FID between mainland and island quail. However, despite employing consistent testing methods, the starting distance from which quail were approached was significantly reduced for quail studied on the island when compared with quail studied on the mainland. Our results are consistent with the multipredator hypothesis because, while the island population had substantially fewer predators, some predators remained and some antipredator behavior persisted.  相似文献   

20.
Avian Risk Assessment: Effects of Perching Height and Detectability   总被引:1,自引:0,他引:1  
We studied two components of predator risk assessment in birds. While many species are limited to seeking safety under cover or under ground, some birds can fly away from their predators and escape to trees. If birds in fact ‘feel’ safer (e.g. perceive less risk) in trees, we would expect them to tolerate closer approach by a potential terrestrial predator. Another component of safety is at which point the animal detects an approaching threat, which we expected to increase with eye size, assuming eye size is a surrogate for visual acuity. We used the distance birds moved away from an approaching human [flight initiation distance (FID)] as a metric to determine whether birds associated a lower risk of predation by being in trees, and we used the distance at which birds first displayed alert behaviors from an approaching human (alert distance) to determine if birds with larger eyes had higher detection distances. Although some species were affected by tree height, we found no clear pattern that birds assessed themselves to be at a lower risk of predation when they were ≥3 m above the ground compared with being <3 m above ground. In the 10 species for which height had any significant effect on FID, birds ≥3 m off the ground had greater FIDs in six species, but the remaining three species had the opposite response. While we found a significant positive relationship between eye size and alert distance in 23 species, the relationship was not present in a phylogenetic analysis using independent contrasts, which suggests that the apparent relationship was influenced strongly by the association between the studied species. Together, these results suggest that birds do not obviously associate being in a tree with safety, and that variations in visual acuity, per se, cannot be used as a general indicator of differences in alert distances, as previously suggested in the literature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号