首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Different peptide hormones influence hormone secretion in pituitary cells by diverse second messenger systems. Recent data indicate that luteinizing-hormone-releasing hormone (LHRH) stimulates and somatostatin inhibits voltage-dependent Ca2+ channels of GH3 cells via pertussis-toxin-sensitive mechanisms [Rosenthal et al. (1988) EMBO J. 7, 1627-1633]. In other pituitary cell lines, somatostatin has been shown to cause a pertussis-toxin-sensitive decrease in adenylate cyclase activity, and LHRH and thyrotropin-releasing hormone (TRH) stimulate phosphoinositol lipid hydrolysis in a pertussis-toxin-independent manner. Whether stimulation of Ca2+ influx by TRH is affected by pertussis toxin is not known. In order to elucidate which of the hormone receptors interact with pertussis-toxin-sensitive and -insensitive G-proteins, we measured the effects of LHRH, somatostatin and TRH on high-affinity GTPases in membranes of GH3 cells. In control membranes, both LHRH and TRH stimulated the high-affinity GTPase by 20%, somatostatin by 25%. Maximal hormone effects were observed at a concentration of about 1 microM. Pretreatment of cells with pertussis toxin abolished pertussis-toxin-catalyzed [32P]ADP-ribosylation of 39-40-kDa proteins in subsequently prepared membranes and reduced basal GTPase activity. The toxin also reduced by more than half the increases in GTPase activity induced by LHRH and TRH; stimulation of GTPase by somatostatin was completely suppressed. Stimulation of adenylate cyclase by vasoactive intestinal peptide (VIP) was not impaired by pretreatment of cells with pertussis toxin. Somatostatin but not LHRH and TRH decreased forskolin-stimulated adenylate cyclase activity. The results suggest that the activated receptors for LHRH and TRH act via pertussis-toxin-sensitive and -insensitive G-proteins, whereas effects of somatostatin are exclusively mediated by pertussis-toxin-sensitive G-proteins.  相似文献   

2.
Spontaneous transformation of RL-PR-C hepatocytes leads to alterations in the adenylate cyclase complex which include a lower than normal basal level of activity, a loss of sensitivity to exogenous GTP, and a decreased sensitivity to isoproterenol. Both normal and transformed membranes possess substantial GTPase activity. Treatment of transformed hepatocyte membranes with either isoproterenol plus GMP or with cholera toxin, under conditions that displace tightly bound GDP, restored the GTP effect on adenylate cyclase, and eliminated the lag in the activation by guanyl-5'-yl-imidodiphosphate. Such pretreatment also enhanced guanine nucleotide effects on the adenylate cyclase of normal hepatocytes. These results are explainable on the basis that transformation increases adenylate cyclase-associated GTPase activity, and increases occupancy of nucleotide regulatory sites by inactive or inhibitory guanine nucleotides, e.g., GDP. Seemingly, both catecholamines and cholera toxin promote an exchange reaction at the regulatory sites, resulting in clearance of these sites of inhibitory nucleotides.  相似文献   

3.
Pertussis toxin inhibits enkephalin stimulation of GTPase of NG108-15 cells   总被引:22,自引:0,他引:22  
In neuroblastoma-glioma (NG108-15) hybrid cells, opiates inhibit adenylate cyclase and stimulate a low Km GTPase. It has been postulated that the stimulation of GTPase plays a role in opiate inhibition of adenylate cyclase (Koski, G., and Klee, W. A. (1981) Proc. Natl. Acad. Sci. U.S.A. 78, 4185-4189). Treatment of NG108-15 cells with pertussis toxin attenuates receptor-mediated inhibition of adenylate cyclase. The toxin acts by catalyzing the ADP-ribosylation of a 41,000-dalton substrate believed to be a part of the receptor-adenylate cyclase complex. We have found that toxin treatment of NG108-15 results in inhibition of the opiate-stimulated GTPase. The concentration of toxin required for inhibition of this GTPase was similar to that needed for both attenuation of opiate inhibition of adenylate cyclase and ADP ribosylation of the 41,000-dalton substrate. Inhibition of the opiate-induced GTPase by pertussis toxin in isolated membranes required NAD, consistent with the hypothesis that this effect of the toxin resulted from ADP ribosylation of a protein component of the system. Since the opiate-stimulated GTPase is believed to play a role in the receptor-mediated decrease in adenylate cyclase activity, inhibition of this GTPase may be an important part of the mechanism by which the toxin interferes with opiate action on adenylate cyclase.  相似文献   

4.
The effect of vasoactive intestinal peptide (VIP) on prolactin (PRL) secretion from pituitary cells is reviewed and compared to the effect of thyrotropin releasing hormone (TRH). These two peptides induced different secretion profiles from parafused lactotrophs in culture. TRH was found to increase PRL secretion within 4 s and induced a biphasic secretion pattern, while VIP induced a monophasic secretion pattern after a lag time of 45–60 s.The secretion profiles are compared to changes in adenylate cyclase activity, production of inositol polyphosphates, changes in intracellular calcium concentrations and changes in electrophysiological properties of the cell membrane.Abbreviations AC adenylate cyclase - DG diacyglycerol - GH growth hormone - GTP guanosine trisphosphate - Gi GTP binding proteins that mediate inhibition of adenylate cyclase and that are pertussis toxin sensitive - Gs GTP binding protein that mediates stimulation of adenylate cyclase - GH cells clonal rat pituitary tumor cells producing PRL and/or growth hormone - GH3 GH4C1 and GH4B6 subclones of GH cells - PKA protein kinase A - PKC protein kinase C - PLC phospholipase C - PRL prolactin - TPA 12-O-tetradecanoyl phorbol 13-acetate - TRH thyrotropin releasing hormone - VIP vasoactive intestinal peptide  相似文献   

5.
Human platelet adenylate cyclase is stimulated by prostaglandin E1 (PGE1) and is inhibited by epinephrine via alpha-adrenoceptors. Both agonists, epinephrine more than PGE1, increase the activity of a low Km GTPase in platelet membranes. Pretreatment of intact platelets or platelet membranes with the sulfhydryl reagent, N-ethylmaleimide (NEM), abolished the inhibition of the adenylate cyclase and the concomitant stimulation of the GTPase by epinephrine. In contrast, stimulation of the adenylate cyclase by PGE1 was not affected or even increased by NEM pretreatment; only at high NEM concentrations were both basal and PGE1-stimulated activities decreased. Similarly, the PGE1-induced activation of the low Km GTPase was not or was only partially reduced by NEM. Adenylate cyclase activation by stable GTP analogs, NaF, and cholera toxin was also not decreased by NEM pretreatment. Exposure of intact platelets to NEM did not reduce alpha-adrenoceptor number and affinities for agonists and antagonists, as determined by [3H]yohimbine binding in platelet particles. The data indicate that NEM uncouples alpha-adrenoceptor-mediated inhibition of platelet adenylate cyclase, leaving the receptor recognition site and the adenylate cyclase itself relatively intact. Although the effect of NEM may be based on a reaction with the alpha-adrenoceptor site interacting with a coupling component, the selective loss of the adenylate cyclase inhibition together with an even increased stimulation of the enzyme by PGE1 suggests that there are two at least partially distinct regulatory sites involved in opposing hormonal regulations of adenylate cyclase activity, with that involved in hormonal inhibition being highly susceptible to inactivation by NEM.  相似文献   

6.
Epinephrine inhibits human platelet adenylate cyclase by an alpha 2-adrenoceptor-mediated and GTP-dependent process. The turn-off reaction for this epinephrine-inhibited enzyme was studied by measuring the rate of cyclic AMP formation upon addition of the alpha2-adrenoceptor antagonist, yohimbine, or upon addition of an excess of the stable GDP analog, guanosine 5'-O-(2-thiodiphosphate) (GDP beta S), which competitively inhibited the action of GTP in the epinephrine-induced inhibition. The decay of the inhibited state of the adenylate cyclase was used to calculate the rate constant of the turn-off reaction. With both methods, almost identical koff values of 0.6-0.7 min-1 at 25 degrees C were obtained for the epinephrine-inhibited platelet enzyme. Cholera toxin, which does not inhibit the epinephrine-induced GTPase stimulation in platelet membranes, did not affect this turn-off reaction. In contrast, the turn-off rate of the prostaglandin-E1-stimulated human platelet adenylate cyclase, measured with GDP beta S, was reduced from about 9 min-1 to 2 min-1 at 25 degrees C by pretreatment of the membranes with cholera toxin, which inhibits the prostaglandin-E1-stimulated GTPase activity. The data strongly suggest that the guanine nucleotide regulatory site, mediating epinephrine-induced adenylate cyclase inhibition, is activated and inactivated by similar mechanisms as is the site mediating adenylate cyclase stimulation, and that cholera toxin affects only the stimulatory site. The findings furthermore suggest that the activity states of these two regulatory sites control the activity of the adenylate cyclase.  相似文献   

7.
Spontaneous transformation of RL-PR-C hepatocytes leads to alterations in the adenylate cyclase complex which include a lower than normal basal level of activity, a loss of sensitivity to exogenous GTP, and a decreased sensitivity to isoproterenol. Both normal and transformed membranes posses substantial TGPase activity. Treatment of transformed hepatocyte membranes with either isoproterenol plus GMP or with cholera toxin, under conditions that displace tightly bound GDP, restored the GTP effect on adenylate cyclase, and eliminated the lag in the activation by guanyl-5′-yl-imidodiphosphate. Such pretreatment also enhanced guanine nucleotide effects on the adenylate cyclase of normal hepatocytes. These results are explainable on the basis that transformation increases adenylate cyclase-associated GTPase activity, and increase occupancy of nuceotide regulatory sites by inactive or inhibitory guanine nucleotides, e.g., GDP. Seemingly, both catecholamines and cholera toxin promote an exchange reaction at the regulatory sites, resulting in clearance of these sites of inhibitory nucleotides.  相似文献   

8.
Expression of activation of rat liver adenylate cyclase by the A1 peptide of cholera toxin and NAD is dependent on GTP. The nucleotide is effective either when added to the assay medium or during toxin (and NAD) treatment. Toxin treatment increases the Vmax for activation by GTP and the effect of GTP persists in toxin-treated membranes, a property seen in control membranes only with non-hydrolyzable analogs of GTP such as Gpp(NH)p. These observations could be explained by a recent report that cholera toxin acts to inhibit a GTPase associated with denylate cyclase. However, we have observed that one of the major effects of the toxin is to decrease the affinity of guanine nucleotides for the processes involved in the activation of adenylate cyclase and in the regulation of the binding of glucagon to its receptor. Moreover, the absence of lag time in the activation of adenylate cyclase by GTP, in contrast to by Gpp(NH)p, and the markedly reduced fluoride action after toxin treatment suggest that GTPase inhibition may not be the only action of cholera toxin on the adenylate cyclase system. We believe that the multiple effects of toxin action is a reflection of the recently revealed complexity of the regulation of adenylate cyclase by guanine nucleotides.  相似文献   

9.
Chronic inhibition of acetylcholinesterase activity by treatment with diisopropylfluorophosphate (DFP) decreased the capacity of acetylcholine (ACh) acting at a muscarinic receptor to inhibit basal adenylate cyclase activity in homogenates from rat striatum. There was also a loss of the capacity of ACh to inhibit the activation of adenylate cyclase by dopamine. The desensitization of the muscarinic receptor adenylate cyclase complex was associated with a marked attenuation of the capacity of ACh to stimulate a high-affinity GTPase activity present in striatal membranes. The EC50 value of ACh for inhibiting adenylate cyclase and for stimulating GTPase activity increased following treatment with DFP, while the Hill coefficient for both responses was unaltered.  相似文献   

10.
Influences of alpha 2-adrenoceptor stimulation on adenylate cyclase activity were investigated in cerebral cortical membranes of rats. Pretreatment of the membranes with islet-activating protein and NAD resulted in a significant increase in basal activity as well as in GTP- or forskolin/GTP-induced elevation of adenylate cyclase activity. Strong activation of adenylate cyclase was also caused in membranes pretreated with cholera toxin together with NAD in comparison to that in control membranes, suggesting that adenylate cyclase activity is perhaps regulated by stimulatory and inhibitory GTP binding regulatory protein existing in synaptic membranes. In addition, adrenaline (with propranolol) or clonidine significantly reduced adenylate cyclase activity stimulated by pretreatment with forskolin and GTP. The inhibitory effects of adrenaline were also observed in membranes pretreated with cholera toxin and NAD. Moreover, the inhibition by adrenaline or clonidine was completely abolished by treatment with (a) yohimbine or (b) islet-activating protein and NAD. It is suggested that alpha 2-receptor stimulation causes inhibitory influences on adenylate cyclase activity mediated by the inhibitory GTP binding regulatory protein in synaptic membranes of rat cerebral cortex.  相似文献   

11.
Adenylate cyclase activity was stimulated by vasoactive intestinal peptide (VIP) in rat parotid membranes, in the presence of 100 microM guanosine triphosphate (GTP). The threshold concentration of VIP was 300 nM and the activity doubled at the maximal VIP concentration tested (30 microM). The relative potency of peptides of the VIP family was: VIP greater than peptide histidine isoleucinamide (PHI) greater than secretin. The beta-adrenergic agent isoproterenol was a more efficient activator of rat parotid adenylate cyclase and its stimulatory effect, like that of VIP, depended on the presence of GTP. The effects of VIP and isoproterenol were both potentiated by 10 microM forskolin. By comparison with rat parotid preparations, membranes from a human parotid gland responded similarly to the VIP family of peptides (VIP greater than PHI greater than secretin). In both rat and human parotid membranes, two proteins (Mr 44 kDa and 53 kDa) of the alpha-subunit of Ns (the guanyl nucleotide-binding stimulatory protein) were labelled by ADP-ribosylation, in the presence of cholera toxin. Taken together, these results indicate that VIP receptors, when coupled to Ns, were able to activate the adenylate cyclase system in rat and human parotid membranes.  相似文献   

12.
The thrombin-stimulated GTPase activity of human platelets was additive with respect to the GTPase stimulation effected by prostaglandin E1, but not with that stimulated by adrenaline, vasopressin and platelet-activating factor (PAF). Treatment of platelet membranes with pertussis toxin partially inhibited the thrombin-stimulated GTPase, but had no effect on the vasopressin-stimulated GTPase activity, whereas cholera toxin treatment had no effect on either of these stimulated GTPase activities. Thrombin, adrenaline and PAF, but not vasopressin, inhibited the adenylate cyclase activity of isolated plasma membranes through the action of Ni only, this being inhibited by pertussis toxin. It is suggested that thrombin exerts effects through both the inhibitory guanine nucleotide regulatory protein Ni and through the putative guanine nucleotide regulatory protein, Np, involved in regulating receptor-stimulated inositol phospholipid metabolism. However, vasopressin appears to exert its effects solely through the putative Np.  相似文献   

13.
The influence of protein kinase C (PKC) activation on cyclic AMP production in GH3 cells has been studied. The stimulation of cyclic AMP accumulation induced by forskolin and cholera toxin was potentiated by 4 beta-phorbol 12,13-dibutyrate (PDBu). Moreover, PDBu, which causes attenuation of the maximal response to vasoactive intestinal polypeptide (VIP), also induced a small right shift in the dose-response curve for VIP-induced cyclic AMP accumulation. PDBu-stimulated cyclic AMP accumulation was unaffected by pretreatment of cells with pertussis toxin or the inhibitory muscarinic agonist, oxotremorine. PDBu stimulation of adenylate cyclase activity required the presence of a cytosolic factor which appeared to translocate to the plasma membrane in response to the phorbol ester. The diacylglycerol-generating agents thyroliberin, bombesin and bacterial phospholipase C each stimulated cyclic AMP accumulation, but, unlike PDBu, did not attenuate the stimulation induced by VIP. These results suggest that PKC affects at least two components of the adenylate cyclase complex. Stimulation of cyclic AMP accumulation is probably due to modification of the catalytic subunit, whereas attenuation of VIP-stimulated cyclic AMP accumulation appears to be due to the phosphorylation of a different site, which may be the VIP receptor.  相似文献   

14.
T Arima  T Segawa  Y Nomura 《Life sciences》1986,39(25):2429-2434
The influence of pertussis toxin on the effects of guanine nucleotide on adenylate cyclase activity were investigated in rat striatal membranes. GTP promoted and inhibited the activity at 1 and 100 microM, respectively. The inhibitory effects of GTP were abolished by pretreatment of the membranes with pertussis toxin. GppNHp (guanyl-5'-y1-beta,gamma-imidodiphosphate) exerted only stimulatory effects and pertussis toxin did not affect the effects of GppNHp. GDP at 10 and 100 microM caused significant inhibition which was completely suppressed by pertussis toxin. It is suggested that guanine nucleotide regulates the affinity of as in stimulatory GTP-binding regulatory protein to either beta gamma or catalytic units of adenylate cyclase in a flip-flop manner. Inhibitory GTP-binding regulatory protein seems to play a regulatory role in inhibiting alpha s activity supplying the beta gamma heterodimer.  相似文献   

15.
Pertussis toxin treatment modifies opiate action in the rat brain striatum   总被引:5,自引:0,他引:5  
In this report we present evidence that a guanine nucleotide regulatory protein, Gi, mediates opiate action in the rat brain striatum. Opiates inhibit basal adenylate cyclase activity in rat brain striatum. This effect on adenylate cyclase is dose-dependently attenuated by pretreatment of membranes with pertussis toxin, which ADP-ribosylates a protein with a molecular mass of 41,000 daltons. This protein co-migrates with the GTP-binding subunit of Gi, which mediates inhibition of adenylate cyclase. Several brain regions were compared for the extent of radiolabeling and effects on adenylate cyclase activity. Although Gi was found in each region examined, opiate inhibition of adenylate cyclase is clearly seen only in the striatum.  相似文献   

16.
Although 3,4-dihydroxyphenylethylamine (dopamine, DA) and vasoactive intestinal peptide (VIP) have been reported to stimulate adenylate cyclase activity in the rabbit retina, possible interactions between VIP-sensitive and DA-sensitive adenylate cyclase systems have not been previously investigated. To elucidate the interactions between these two putative transmitter-stimulated cyclase systems, the effects of VIP, DA, and VIP + DA on the conversion of [alpha-32P]ATP to [32P]cyclic AMP in rabbit retinal homogenates were measured. VIP stimulated adenylate cyclase activity in a biphasic manner, suggesting that two classes of VIP receptors may be involved in the induction of cyclic AMP formation. DA was less potent than VIP, and stimulated cyclase activity with a monophasic dose-response curve. When assayed together, these stimulations were partially nonadditive, implying the existence of a common adenylate cyclase pool that may be stimulated by both putative neurotransmitters. The dopaminergic antagonist (+)-butaclamol completely blocked dopaminergic stimulation, but had no significant effect on VIP-induced stimulation, indicating that VIP interacts with specific VIP receptor sites, which are distinct from the dopaminergic receptor sites. Furthermore, the specific D-2 dopaminergic receptor agonist LY141865 demonstrated no inhibitory effect on adenylate cyclase activity, suggesting that the interaction between the VIP- and DA-sensitive adenylate cyclase systems does not result from a D-2 receptor-mediated cyclase inhibition in the rabbit retina. Finally, at maximally effective concentrations, DA and VIP were less potent than fluoride or forskolin in the stimulation of cyclic AMP formation, suggesting that adenylate cyclase pools that are not sensitive to DA and VIP may also be present in this retina.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
ADP-ribosylation of membrane proteins from rabbit small intestinal epithelium was investigated following incubation of membranes with [32P]NAD and cholera toxin. Cholera toxin catalyzes incorporation of 32P into three proteins of 40 kDA, 45 kDa and 47 kDa located in the brush-border membrane. In contrast, basal lateral membranes do not contain any protein which becomes labeled in a toxin-dependent manner when incubated with cholera toxin and [32P]NAD. The modification of membrane proteins from brush border occurred in spite of the virtual absence in these membranes of adenylate cyclase activatable either by cholera toxin, vasoactive intestinal peptide (VIP) or fluoride. The three agents activated adenylate cyclase when crude plasma membrane were used. Cholera toxin activated fivefold at 10 micrograms/ml. Vasoactive intestinal peptide activated at concentrations from 10-300 nM, the maximal stimulation being sixfold. Fluoride activated 10-fold at 10 mM. When basal lateral membranes were assayed for adenylate cyclase it was found that, with respect to the crude membranes, the specific activity of fluoride-activated enzyme was 3.3-fold higher, VIP stimulated enzyme was maintained while cholera-toxin-stimulated enzyme showed half specific activity. Moreover, while fluoride stimulated ninefold and VIP stimulated fivefold, cholera toxin only stimulated twofold at the highest concentration. The results suggest that the activation by cholera toxin of adenylate cyclase located at the basal lateral membrane requires ADPribosylation of proteins in the brush border membrane.  相似文献   

18.
Treatment of HT29 cells with the tumor promoting phorbol ester PMA resulted in an attenuation of VIP-stimulated cAMP production in intact cells and VIP-stimulated adenylate cyclase activity in cell membranes. PMA did not decrease the ability of cholera toxin and forskolin to elevate cAMP levels in intact cells. Fluoride-stimulated adenylate cyclase activity in HT29 cells homogenates was not affected by PMA. The maximal VIP binding capacity of homogenates prepared from HT29 cells treated with PMA was decreased by 50%. It is concluded that protein kinase C regulates VIP receptor function possibly through phosphorylation of the VIP receptor.  相似文献   

19.
The effects of cholera toxin and 5′-guanylylimidodiphosphate (Gpp(NH)p) on human spermatozoal adenylate cyclase activity were tested. Cholera toxin had no demonstrable effect on adenylate cyclase activity in human spermatozoa at concentrations between 5 and 20 μg/ml, whether the toxin was preincubated with intact spermatozoa between 5 min and 5 h prior the adenylate cyclase assay, or was added to lysed spermatozoa, where the adenylate cyclase would be accessible to the toxin. In contrast, Gpp(NH)p at concentrations between 10 and 100 μM was effective in activating human spermatozoal adenylate cyclase activity.  相似文献   

20.
Opiates and opioid peptides inhibit adenylate cyclase and stimulate specific low Km GTPase activity in membranes from neuroblastoma x glioma NG108-15 hybrid cells. The effects of opiate agonists on both enzymes are mediated by high affinity stereospecific receptors and require Mg2+, GTP, and Na+. In the presence of Mg2+, Na+ inhibits basal GTPase activity; opiates stimulate GTP hydrolysis by antagonizing the Na+-induced inhibition. Activation of GTPase leads, in turn, to inactivation of GTP-stimulated adenylate cyclase activity. The intrinsic activities (or efficacies) of a series of opiates are identical for stimulation of GTPase and inhibition of adenylate cyclase. These results provide a mechanism for the dual requirement for Na+ and GTP in the inhibitory coupling of opiate receptors to the adenylate cyclase system in these cells and may be of general significance to the action of other inhibitory hormones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号