首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Effects of sodium tungstate on the nuclear uptake of rat liver cytosolic glucocorticoidreceptor complex were examined at pH 7. The nuclear uptake of heat-activated [3H]triamcinolone acetonide-receptor complex was blocked completely in the presence of 1 mm tungstate. A preincubation of nuclear preparation with tungstate (>0.1 mm) blocked the subsequent uptake of [3H]triamcinolone acetonide-receptor complex. When the tungstate-treated nuclear preparation was washed with 0.3 M KCl, its [3H]triamcinolone acetonide-receptor complex binding capacity recovered to 50% of that of control samples with no tungstate treatment. A preincubation of chromatin with tungstate yielded similar results. The nuclear-bound [3H]triamcinolone acetonide-receptor complex, formed either by an in vivo administration of [3H]triamcinolone acetonide or by an in vitro incubation of glucocorticoid-receptor complex with isolated nuclei, was extracted by tungstate in a concentration-dependent manner. The majority of nuclear-bound [3H]triamcinolone acetonide could be extracted with 0.1 and 1 mm tungstate from in vitro- and in vivo-labeled nuclei, respectively. The tungstate-extracted steroid-receptor complexes sedimented in 4–5 S and 3.3–3.5 S region in 10 mm KCl- and 0.3 mm KCl-containing sucrose gradients, respectively. Tungstate treatment caused an irreversible loss of the nuclear binding capacity of [3H]triamcinolone acetonide-receptor complex which could not be recovered after dialysis. These studies indicate that tungstate affects both glucocorticoidreceptor complex and certain nuclear or chromatin proteins.  相似文献   

2.
Experiments were carried out to identify progestin-binding receptors in the mammary gland where casein synthesis is known to be inhibited by this hormone. A progestin-binding component with high affinity, low capacity and a sedimentation coefficient of 8.8 S was isolated from the cytosol of lactating rat mammary glands. This component strongly bound [3H]R5020 (17,21-dimethyl-19-nor-4,9-pregnadiene-3,20-dione) with a dissociation constant of 3.9 · 10?9 M under low-salt conditions and with that of 8.2 · 10?10 M in the presence of 0.3 M KCl. Specificity studies showed a higher degree of progestin specificity under high salt conditions. In the absence of KCl, binding of [3H]-R5020 was inhibited by unlabeled glucocorticoid in the same degree as unlabeled progestin, but the inhibition by glucocorticoid was greatly diminished by the presence of 0.3 M KCl. These observations suggest that the [3H]R5020-binding-component is the progestin receptor and that its function may be regulated by the concentration of glucocorticoid and salt.  相似文献   

3.
Administration of (10 mg/200 g) methylamine or chloroquine to adrenalectomized rats for 2 days followed by a single injection of either cortisol (2.5 mg/200 g) or dexamethasone (0.5 mg/200 g) resulted in a significant enhancement of the tyrosine aminotransferase enzymatic activity in rat liver versus rats given a single injection only of either steroid. Lysosomotrophic reagents were unable to induce tyrosine aminotransferase when administered alone. Cytosols from rat liver treated with lysosomotrophic reagents in vivo had approx. 20-30% more specific binding to [3H]dexamethasone as compared to the control, untreated rats. This enhanced binding was due to an increase in the concentration of the receptor rather than a change in the affinity of the hormone for the receptor. Rat livers perfused with and homogenized in 10 mM Tris-HCI/0.25 M sucrose buffer (pH 7.5) containing about 5 mM lysosomotrophic reagents showed optimum stabilization of the steroid unbound glucocorticoid receptor in vitro at both 4 degrees C and 25 degrees C. These reagents had no effect on in vitro transformation of [3H]dexamethasone-receptor complex or on the binding of the thermally transformed receptor to the nuclei. It is concluded from these studies that lysosomotrophic reagents enhance tyrosine aminotransferase induction by glucocorticoids and stabilize unbound glucocorticoid receptor both in vivo and in vitro without any effect on in vitro transformation of the steroid-receptor complex.  相似文献   

4.
When rat liver cytosol containing [3H]dexamethasone-glucocorticoid receptor complex is exposed to immobilized heparin (Sepharose-heparin; Seph-hep) the steroid receptor complex binds to the substituted Sepharose avidly [Kd = 3.5 (+/- 1.7) X 10(-10) M], and 80-90% of the receptor present is adsorbed to the solid phase after 40 min at 0 degree C. The binding is enhanced by Mn2+ (10 mM) and Mg2+, whereas Ca2+ and Sr2+ are ineffective. Sodium molybdate (10 mM) does not influence the reaction but enhances receptor stability. Moreover, binding of the receptor to Seph-hep is dependent on the ionic strength of the medium, because binding is totally reversed by 300 mM KCl. The bound [3H]dexamethasone-receptor complex can be recovered from Seph-hep with solutions (4 mg/mL) of heparin (95% release), dextran sulfate (88%), and chondroitin sulfate (63%); total calf liver RNA is less effective (9%), whereas dextran, D-glucosamine, N-acetyl-D-glucosamine, D-glucuronic acid, and sheared calf thymus DNA are totally ineffective (less than 3%). Both "native" and temperature "transformed" forms of the glucocorticoid receptor interact with immobilized heparin. These results strongly suggest that the receptor site that binds heparin is distinct from that binding DNA. An immediate application of this newly found ability of the glucocorticoid receptor to interact with heparin is the use of Seph-hep for affinity chromatography purification of the glucocorticoid receptor. A purification of 10-fold, with a recovery of 55-65%, can be achieved by using either 4 mg/mL heparin or 300 mM KCl to elute [3H]dexamethasone-receptor bound to the resin.  相似文献   

5.
[3H]Triamcinolone acetonide glucocorticoid receptor complexes from human salivary gland adenocarcinoma cells (HSG cells) were shown to be activated with an accompanying decrease in molecular weight in intact cells, as analyzed by gel filtration, DEAE chromatography, the mini-column method and glycerol gradient centrifugation. Glucocorticoid receptor complexes consist of steroid-binding protein (or glucocorticoid receptor) and non-steroid-binding factors such as the heat-shock protein of molecular weight 90 000. To determine whether the steroid-binding protein decreases in molecular weight upon activation, affinity labeling of glucocorticoid receptor in intact cells by incubation with [3H]dexamethasone 21-mesylate, which forms a covalent complex with glucocorticoid receptor, was performed. Analysis by gel filtration and a mini-column method indicated that [3H]dexamethasone 21-mesylate-labeled receptor complexes can be activated under culture conditions at 37°C. SDS-polyacrylamide gel electrophoresis of [3H]dexamethasone 21-mesylate-labeled steroid-binding protein resolved only one specific 92 kDa form. Furthermore, only one specific band at 92 kDa was detected in the nuclear fraction which was extracted from the cells incubated at 37°C. These results suggest that there is no change in the molecular weight of steroid-binding protein of HSG cell glucocorticoid receptor complexes upon activation and that the molecular weight of nuclear-binding receptor does not change, although the molecular weight of activated glucocorticoid receptor complexes does decrease. Triamcinolone acetonide induced an inhibitory effect on DNA synthesis in HSG cells. Dexamethasone 21-mesylate exerted no such effect and blocked the action of triamcinolone acetonide on DNA synthesis. These results suggests that dexamethasone 21-mesylate acts as antagonist of glucocorticoid in HSG cells. The fact that dexamethasone 21-mesylate-labeled receptor complexes could be activated and could bind to DNA or nuclei aas well as triamcinolone acetonide-labeled complexes suggests that dexamethasone 21-mesylate-labeled complexes can not induce specific gene expression after their binding to DNA.  相似文献   

6.
The high affinity antiestrogen [3H]H1285 bound to the cytosol calf uterine estrogen receptor dissociated very slowly (t 1/2 approx 30 h at 20 degrees C) and did not demonstrate a change in dissociation rate in the presence of molybdate, which is characteristic of [3H]estradiol-receptor complexes. [3H]H1285-Receptor complexes sediment at approx 6S on 5-20% sucrose density gradients containing 0.3M KCl with or without 10 mM molybdate. This is in contrast to [3H]estradiol-receptor complexes which sedimented at approx 4.5S without molybdate and at approx 6S with molybdate. These results suggest a physicochemical difference in the estrogen receptor when occupied by antiestrogens versus estrogens. We recently reported that the cytoplasmic uterine estrogen receptor, when bound by estradiol and prepared in 10 mM molybdate, eluted from DEAE-Sephadex columns as Peak I (0.21 M KCl) & Peak II (0.25 M KCl). However, [3H]H1285 bound to the estrogen receptor eluted only as one peak at 0.21 M KCl, also suggesting that the initial interaction of antiestrogens with the estrogen receptor is different. We have extended these studies and report that H1285 can compete with [3H]estradiol for binding to both forms of the estrogen receptor and [3H]H1285 can bind to both forms if the unoccupied receptor is first separated by DEAE-Sephadex chromatography. However, if the receptor is first bound by unlabeled H1285, eluted from the column and post-labeled by exchange with [3H]estradiol, only one peak is measured. Thus, it appears that H1285 binding alters the properties of the receptor such that all receptor components seem to elute as one form. These partially purified [3H]H1285-receptor complexes obtained from DEAE-Sephadex columns sedimented as 5.5S in sucrose density gradients in contrast to the sedimentation values for the [3H]estradiol-receptor components eluting as Peak I (4.5S) and Peak II (6.3S). These differences in the physicochemical characteristics of the estrogen receptor when bound by estrogen versus antiestrogens may be related to some of the biological response differences induced by these ligands.  相似文献   

7.
This study analyzes the sensitivity of nuclear bound glucocorticoid receptors to solubilization from nuclei by DNAase I and DNAase II. Thymocytes were incubated with 10(-8) M [3H]dexamethasone, [3H]cortisol or [3H]triamcinolone acetonide, without or with 10(-6) M unlabelled dexamethasone, for 30 min at 37 degrees C and nuclei from these cells were digested with either DNAase I and DNAase II. DNAase I for 2 h at 3 degrees C leads to solubilization of 60% of the nuclear DNA and release of 10--20% triamcinolone acetonide-receptor, 30--40% dexamethasone-receptor and 85--90% cortisol-receptor. DNAase II at the same enzymatic concentration solubilizes only 10--20% of the nuclear DNA, but releases 40--50% triamcinolone-receptor, 60--70% dexamethasone-receptor and 100% cortisol-receptor. Release of nuclear bound dexamethasone-receptor by DNAase I parallels the solubilization of DNA, reaching maximum values by 2 h at 3 degrees C, whereas maximal release by DNAase II is obtained within 45 min when DNA solubilization is not complete. When nuclei initially extracted with DNAase I are re-extracted with DNAase II, greater than 65% of the DNAase I residual dexamethasone-receptors are solubilized, whereas DNAase I is ineffective in solubilizing DNAase II residual dexamethasone-receptors. DNAase I solubilizes only 30% of the 0.4 M KCl residual dexamethasone-receptor whereas DNAase II digests over 90% of this fraction. DNAase I extracts of nuclear dexamethasone-receptor chromatograph on G-100 Sephadex as a single radioactive peak just after the void volume, whereas DNAase II extracts of nuclear dexamethasone-receptor chromatograph as two peaks of radioactivity, one which is similar to the DNAase I solubilized receptor and a second broad peak of macromolecular bound radioactivity which is smaller in size.  相似文献   

8.
We studied the glucocorticoid receptor complexes of pulmonary and thymic cytosols of female A/J and CD-1 mice and of hepatoma G2 cells by two column-chromatographic systems, using both [3H]dexamethasone (DEX) and [3H]phenytoin (DPH) as ligands. Three DNA-cellulose adsorbable [3H]DEX-receptor complexes were separated in each system. Molecular sieving gave a 7-, a 5.4-, and a 3.5-nm complex (Stokes radii), and DEAE-Sephadex A-50 chromatography gave a complex eluting in the wash, one at 0.14 M KCl, and one at 0.20 M KCl by a KCl gradient. DPH blocked the binding of the 7- and 3.5-nm, wash, and 0.14 M KCl [3H]DEX complexes. Only two DNA-cellulose adsorbable [3H]DPH complexes, each blocked by DEX, were obtained in each system: a 7- and a 3.5-nm, a wash, and a 0.14 M KCl complex. Thus, there is a common receptor for both DPH and DEX. This receptor has two properties which distinguish it from the 5.4-nm DEX-specific receptor: (i) it binds with a variety of steroids other than glucocorticoids and DPH, and (ii) it rebinds new [3H]DEX or [3H]DPH after loss of ligand during chromatographic separation. These results indicate that DPH binds to receptor IB and not to receptor II of Litwack. [G. Litwack, 1976, in Glutathion: Metabolism and Function (Arias, I.M., and Jakoby, W.B., eds.), pp. 285-299, Raven Press, New York]. We have also found that hepatoma G2 cells have only receptor II. DPH affects neither the induction of tyrosine aminotransferase by DEX nor the basal level of this enzyme in these cells. Moreover, neither DEX nor DPH inhibits the release of [3H]arachidonic acid prelabeled in these cells, as they do in thymocytes which have the common receptor. Thus, it appears that glucocorticoid receptor IB binds DEX and DPH as glucocorticoid agonists mediating the anti-inflammatory and teratogenic action of these drugs, while receptor II apparently is responsible for the induction of tyrosine aminotransferase by DEX.  相似文献   

9.
Abstract

To investigate if G-protein-receptor interactions can be characterized using sucrose density gradients (SDG) we have determined the experimental conditions for muscarinic acetylcholine receptor (mAChR) solubilization and analysis on SDG. Solubilization of 65–80% of [3H]QNB bound mAChR was accomplished with 1% of detergent. Analysis of solubilized receptors on SDG containing 0.4M KCl and 0.1% detergent demonstrated that the physical properties of the receptor-detergent complexes are influenced by the solubilizing detergent as well as detergents included in the SDG. Neither GTPγS nor NaF and AlCl3 altered the sedimentation properties of mAChR, suggesting that the solubilized mAChR is no longer associated with G-protein under these conditions. Receptors bound to [3H]oxotremorine and [3H]QNB had similar sedimentation properties, suggesting that, once solubilized, mAChRs do not remain associated with G-proteins. Covalent labeling with [3H]PrBCM followed by solubilization and analysis on SDS-gel electrophoresis demonstrated the presence of intact receptor molecule. These observations suggest that the changes in the sedimentation properties of detergent-receptor complexes are independent of G-protein interactions and are influenced by the nature of the detergent associated with the mAChR during analysis.  相似文献   

10.
The binding of [3H]aldosterone in the chick intestine cytosol was analyzed in terms of affinity and specificity. In this tissue, aldosterone binds to the mineralocorticosteroid receptor, with a high affinity (Kd approximately 0.3 nM) and low capacity (approximately 50 fmol/mg protein), and to the glucocorticosteroid receptor. The selective labeling of the mineralocorticosteroid receptor was achieved by incubating the cytosol with [3H]aldosterone in the presence of RU 486. This synthetic steroid completely inhibited the binding of [3H]aldosterone to the glucocorticosteroid receptor and did not bind to the mineralocorticosteroid receptor. The oligomeric structure of the mineralocorticosteroid receptor was studied by using BF4, a monoclonal antibody which reacts with the 90-kDa heat shock protein (hsp 90), a nonhormone-binding component of nontransformed steroid receptors. The mineralocorticosteroid receptor sedimented at 8.5 +/- 0.4 S (n = 8) in a 15-40% glycerol gradient. This peak was shifted to 11.2 +/- 0.6 S (n = 5) after incubation with BF4, indicating that, in the cytosol, hsp 90 was associated with the mineralocorticosteroid receptor. Dissociation of the complex was observed on gradients containing 0.4 M KCl, as judged by the absence of displacement by BF4 of the 4.3 +/- 0.4 S (n = 10) peak. The effect of molybdate and tungstate ions, and of dimethyl pimelimidate, an irreversible cross-linking agent, on the stability of the hsp 90-receptor complex was investigated. Complexes recovered in the presence of 20 mM molybdate ions dissociated on gradients containing 0.4 M KCl (5.2 +/- 0.6 S (n = 4), whereas complexes prepared in the presence of 20 mM tungstate ions sedimented at 8.5 +/- 0.4 S (n = 7). Similarly, complexes prepared in the presence of molybdate ions dissociated during high pressure liquid chromatography (HPLC) gel filtration analysis performed in 0.4 M KCl (RS (Stokes radius) = 3.9 +/- 0.5 nm (n = 3) versus 7.3 +/- 0.2 nm (n = 3) in the presence of 20 mM molybdate ions), whereas complexes prepared in the presence of tungstate ions did not dissociate (RS = 6.9 +/- 0.2 nm (n = 3]. As observed for the tungstate-stabilized receptor, the cross-linked receptor dissociated neither on gradient containing 0.4 M KCl (9.5 +/- 0.1 S (n = 3] nor during HPLC performed in 0.4 M KCl (RS = 6.5 +/- 0.3 (n = 4]. Furthermore, the cross-linked receptor was more resistant to the inactivating effect of urea on aldosterone binding than the noncross-linked receptor prepared in the presence of either molybdate or tungstate ions.  相似文献   

11.
The dexamethasone-binding receptor protein in rat liver cytosol has a Stokes radius of 61 Å and a sedimentation coefficient of 4.0 S. In contrast, cell nuclei labelled with [3H]dexamethasone in vivo or in vitro (reconstitution experiments with [3H]dexamethasone-labelled cytosol and isolated unlabelled nuclei) contain a high-salt-extractable dexamethasone-receptor complex with a Stokes radius of 30–36 Å and a sedimentation coefficient of 3.2 S. Exposure of liver homogenate or 1000 × g homogenate supernatant to low ionic strenght during preparation of cytosol resulted in conversion of the 61 Å to a 36 Å complex very similar to the intranuclear form of dexamethasone receptor. 61 → 36 Å complex-verting activity was present in both the 100 × g ?10 000 × g sediment of liver homogenate, from which it could be extracted by hypotonic media, and in the liver cell nuclei, from which it could be extracted by hypertonic media. Mild digestion of the 61 Å dexamethasone-receptor complex with trypsin also gave rise to a complex with a Stokes radius of 36 Å. Reconstitution experiments with isolated liver cell nuclei indicated that both the 61 Å and 36 Å dexamethasone-receptor complexes were taken up by the nuclei; reextraction of the nuclei incubated with the 61 Å complex revealed that this form had been converted to the 30–36 Å complex.Further digestion of teh 61 and 36 Å [3H]dexamethasone-receptor complexes with hypotonic extract of the 1000 × g ?10 000 × g sediment of liver homogenate or with trypsin resulted in formation of a third complex with a Stokes radius of 19 Å and a sedimentation coefficient of 2.5 S. The approximate molecular weights of the 61, 36 and 19 Å dexamethasone-receptor complexes were calculated as 102 000, 46 00 and 19 000, respectively, and the frictional ratios of the molecules as 1. 84, 1. 38 amd 1.00, respectively.It is concluded that the nuclear 30–36 Å dexamethasone-receptor complex is formed from the cytosol 61 Å complex by proteolytic digestion and that this latter protein contains at least two sites with a relatively high sensitivity to protelytic cleavage.  相似文献   

12.
RNase-sensitive glucocorticoid-receptor complexes from HELA cell nuclei   总被引:2,自引:0,他引:2  
Dexamethasone-receptor complexes can be extracted from HeLa cell nuclei by mild sonication. These complexes can account for 800-1000 binding sites/cell, and are indistinguishable from salt-extractable ones as judged by sucrose gradient centrifugation in the presence of 0.3 M KCl, showing a sedimentation coefficient of 3.6 S. These complexes, however, broadly sediment in the 7 to 3.6 S region of low salt sucrose gradients. Enzymatic treatment of soluble extracts from nuclear sonicates shows that RNA is associated to dexamethasone-receptor complexes.  相似文献   

13.
The synthetic progestin 16α-ethyl-21-hydroxy-19-norpregn-4-ene-3,20-dione (Org 2058) was used to characterize the progesterone receptor in the uterine cytosol of the rabbit. [3H] Org 2058 binds to a homogeneous population of protin binding sites with an apparent association equilibrium constant of 7.7· 108 M−1 at 0°C. The concentration of protein-bound steroid at saturation is 2.3 pmol per mg of cytosol protein. [3H] Progesterone binds to the same set of binding sites but exhibits a 4–5 fold lower apparent association constant. The difference in affinity is mainly due to a 13-fold slower rate of dissociation of the synthetic progestin compared with progesterone. Org 2058 competes very efficiently for the binding of [3H] progesterone to the uterine cytosol, and progesterone also competes, although less efficiently, for the binding of [3H]-Org 2058. There is a good correlation between the progestational activity of various steroids and their ability to compete with [3H] Org 2058 binding to the cytosol. At 0°C, there is no metabolic transformation of either Org 2058 or progesterone in the uterine cytosol.When filled with the steroid, the progesterone receptor is stable, but in the absence of the steroid the receptor binding sites are thermolabile and show a rapid decay at 20°C . Org 2058 is more effective than progesterone in protecting the receptor against thermal inactivation. The rate constant of association and dissociation of [3H] Org 2058 and the cytosol receptor are strongly dependent on temperature and the activation energy of the dissociation reaction is 17.8 kcal/mol. The equilibrium association constant is less dependent on temperature and exhibits ΔH° of −4.7 kcal/mol. The binding reaction shows a positive entropy change of 23 cal · K−1 · mol−1.At low ionic strength the complex of Org 2058 and the progesterone receptor tends ot aggregate. It sediments as a broad peak on sucrose gradients (4–6 S), and is excluded from columns of Sephadex G-100 and G-200. At concentrations of NaCl above 0.15 M, the receptor sediments in sucrose gradients as an homogeneous peak at 3.6 S, but upon gel filtration it aggregates and a complex elution pattern is observed, that prevents a precise estimation of the molecular weight.  相似文献   

14.
The cytosolic glucocorticoid receptor of 21st gestational day rat epiphyseal chondrocytes has been evaluated. The receptor, a single class of glucocorticoid binding component approached saturation, utilizing [3H]triamcinolone acetonide ([3H]TA) as the radiolabeled ligand, at approximately 1.8-2.0 x 10(-8) M. The dissociation constant (Kd) reflected high-affinity binding, equaling 4.0 +/- 1.43 x 10(-9) M (n = 7) for [3H]TA. The concentration of receptor estimated from Scatchard analysis was approximately 250 fmol/mg cytosolic protein and when calculated on a sites/cell basis equalled 5800 sites/cell. The relative binding affinities of steroid for receptor were found to be triamcinolone acetonide greater than corticosterone greater than hydrocortisone greater than progesterone greater than medroxyprogesterone acetate much greater than 17 alpha-hydroxyprogesterone much greater than testosterone greater than 17 beta-estradiol. Cytosolic preparations activated in vitro by warming (25 degrees C for 20 min) were shown to exhibit an increased affinity for DNA-cellulose. 46% of the total specifically bound activated ligand-receptor complex was bound to DNA-cellulose. Cytosol maintained at 0-4 degrees C in the presence of 10 mM molybdate or activated in vitro in the presence of molybdate, bound to DNA-cellulose at 8 and 10% respectively. DEAE-Sephadex elution profiles of the nonactivated receptor were indicative of a single binding moiety which eluted from the columns at 0.4 M KCl. Elution profiles of activated receptor were suggestive of an activation induced receptor lability. The 0.4 M KCl peak was diminished, while a concomitant increase in the 0.2 M KCl peak was only modestly discernible. Evaluation of endogenous proteolytic activity in chondrocyte cytosol using [methyl-14C]casein as substrate show a temperature-dependent proteolytic activity with a pH optimum of 5.9-6.65. The proteolytic activity was susceptible to heat inactivation and was inhibitable, by 20 mM EDTA. The sedimentation coefficient of the nonactivated receptor was 9.3s (n = 6) on sucrose density gradients and exhibited steroid specificity and a resistance to activation induced molecular alterations when incubated in the presence of 10 mM molybdate. Receptor activation in vitro, in the absence of molybdate induced an increased receptor susceptibility to proteolytic attack and/or enhanced ligand receptor dissociation as evidenced by a diminution of the 9.3s binding form without a concomitant increase in 5s or 3s receptor fragments.  相似文献   

15.
The chicken oviduct androgen receptor was characterized by sucrose density gradient centrifugation, Scatchard analysis, competition studies, and affinity labeled with dihydrotestosterone 17 beta-bromoacetate. A specific 8.5 S peak was seen on 0.01 M KCl sucrose density gradients when the receptor was labeled with [3H]5 alpha-dihydrotestosterone. Specific 4.6 S peaks were seen when receptor labeled with [3H]5 alpha-dihydrotestosterone or [3H]dihydrotestosterone 17 beta-bromoacetate was analyzed on 0.3 M KCl sucrose density gradients. Scatchard analysis of [3H]5 alpha-dihydrotestosterone binding by oviduct cytosol was consistent with two binding sites. A Kd of 0.13 nM was found for the high affinity androgen receptor. Competition studies showed the following order of ligand affinity: 5 alpha-dihydrotestosterone greater than dihydrotestosterone 17 beta-bromoacetate greater than progesterone greater than estradiol. A 61.2 kDa protein was specifically covalently labeled with [3H]dihydrotestosterone 17 beta-bromoacetate. The chicken oviduct androgen receptor possesses characteristics similar to other androgen receptors, and provides a good source of androgen receptor for physicochemical studies of the native receptor protein.  相似文献   

16.
V K Moudgil  C Hurd 《Biochemistry》1987,26(16):4993-5001
Effects of different transforming agents were examined on the sedimentation characteristics of calf uterine progesterone receptor (PR) bound to the synthetic progestin [3H]R5020 or the known progesterone antagonist [3H]RU38486 (RU486). [3H]R5020-receptor complexes [progesterone-receptor complexes (PRc)] sedimented as fast migrating 8S moieties in 8-30% linear glycerol gradients containing 0.15 M KCl and 20 mM Na2MoO4. Incubation of cytosol containing [3H]PRc at 23 degrees C for 10-60 min, or at 0 degrees C with 0.15-0.3 M KCl or 1-10 mM ATP, caused a gradual transformation of PRc to a slow sedimenting 4S form. This 8S to 4S transformation was molybdate sensitive. In contrast, the [3H]RU486-receptor complex exhibited only the 8S form. Treatment with all three activation agents caused a decrease in the 8S form but no concomitant transformation of the [3H]RU486-receptor complex into the 4S form. PR in the calf uterine cytosol incubated at 23 or at 0 degrees C with 0.3 M KCl or 10 mM ATP could be subsequently complexed with [3H]R5020 to yield the 4S form of PR. However, the cytosol PR transformed in the absence of any added ligand failed to bind [3H]RU486. Heat treatment of both [3H]R5020- and [3H]RU486-receptor complexes caused an increase in DNA-cellulose binding, although the extent of this binding was lower when RU486 was bound to receptors. An aqueous two-phase partitioning analysis revealed a significant change in the surface properties of PR following both binding to ligand and subsequent transformation. The partition coefficient (Kobsd) of the heat-transformed [3H]R5020-receptor complex increased about 5-fold over that observed with PR at 0 degrees C.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Protamine sulfate was found to precipitate completely the nonactivated [3H]-dexamethasone-receptor complex of rat liver. This observation was then used as the basis of a method to separate activated from nonactivated complex. Thus, addition of 10 mg/ml of protamine sulfate to the rat hepatic cytosol [3H]dexamethasone-receptor complex, incubated at 0–4°C for 2 hr, resulted in the complete precipitation of [3H]dexamethasone-receptor complex. The remaining supernatant obtained on centrifugation at 800g was unable to bind either to nuclei or to DNA-cellulose. An increase in temperature to 25°C or the addition of 10 mm CaCl2 to the cytosol resulted in the appearance of activated [3H]dexamethasone-receptor complex in the supernatant obtained by addition of protamine sulfate. This was determined by characteristic binding to nuclei or DNA cellulose and by pI. Protamine sulfate could not affect the separation of activated [3H]dexamethasone-receptor complex at salt concentrations above 100 mm NaCl. This procedure therefore had to be carried out under conditions of relatively low ionic strength. Finally, a one-step rapid method is described for the separation of activated [3H]dexamethasone-receptor complex from nonactivated receptor complex. The homogeneous population of activated complex thus obtained should have considerable applicability in studies of the mechanisms of in vitro glucocorticoid-receptor activation.  相似文献   

18.
The glucocorticoid receptor (GR) from mouse AtT-20 pituitary tumor cells, when transformed using a variety of in vitro protocols, yields a DNA-binding RNA-containing 6 S form. In order to better understand the physiological role of RNA interaction with the transformed GR, we have isolated and purified the putative RNA from AtT-20 cells. [3H]Triamcinolone acetonide-labeled cytosolic GR was transformed, using Sephadex G-25 filtration, to yield the RNA-containing 6 S GR. The transformed 6 S GR was separated on DEAE-cellulose into the 4 S GR (eluting at about 100 mM KCl) while its associated RNA eluted at 0.30-0.45 M KCl. The addition of only these RNA fractions to the 4 S GR can reconstitute 6 S GR as shown on 5-20% sucrose gradients. RNA (0.3-0.45 M KCl fractions) was further purified by hydroxylapatite chromatography, and the bound RNA (eluted at approximately 70 mM PO4(-2)) was then loaded onto preparative 5-20% sucrose gradients to separate RNA on the basis of size (sedimentation rate). A uniform class of RNA sedimenting at 4 S was obtained and then adsorbed to oligo(dT)-cellulose columns. The unbound fraction (poly(A-)) was capable of shifting 4 S GR to 6 S. Using these chromatographic procedures about 90% of the cellular RNA, incapable of reconstituting the 6 S GR from the 4 S form, was eliminated. The 4 S GR was covalently cross-linked with the purified RNA (termed PIVB RNA) using formaldehyde. The resulting cross-linked GR X RNA complexes were shown to sediment at the density of ribonucleoprotein (1.38 g/cm3) in CsCl gradients and at the 6 S position in high salt sucrose gradients. The hydrolysis of PIVB RNA with ribonuclease A prevented the formation of high salt-resistant ribonucleoprotein complexes, indicating that the GR may be in close contact with PIVB RNA. Electrophoresis of the PIVB RNA on 5% agarose-formaldehyde-denaturing gels yielded one major band with a molecular size of approximately 75 bases. It thus appears that an endogenous 4 S RNA (PIVB RNA) of about 25 kDa specifically interacts with the monomeric 4 S GR to yield the 6 S GR.  相似文献   

19.
Neoplastic epithelial duct cell line from human salivary gland (HSG cell) contained cytosol glucocorticoid receptor. Scatchard analysis of cytosol indicated that the dissociation constant (Kd) was 5.6-6.5 nmol/l and the number of binding sites was 83-92 fmol/mg protein. A competitive assay showed that the binding sites for [3H]triamcinolone acetonide were specific to glucocorticoid. Glycerol density gradient centrifugation displayed that the [3H]triamcinolone acetonide receptor complexes sedimented in the 8.5 S region under low salt conditions and in the 4.2 S region under high salt condition (0.4 M KCl). The same high salt conditions induced an increased binding of [3H]triamcinolone acetonide complexes for DNA-cellulose.  相似文献   

20.
The synthetic androgen methyltrienolone is superior to testosterone and androstenedione for the measurement of androgen receptor in tissues where the native ligands are metabolized into inactive derivatives. [3H]Methyltrienolone binds with a high affinity to androgen receptor in cytosol prepared from male rat livers, as the Scatchard analysis revealed that the Kd value was 3.3 · 10−8 M and the number of binding sites was 35.5 fmol/mg protein. Since methyltrienolone also binds glucocorticoid receptor which exists in rat liver, the apparent binding of androgen receptor is faulty when measured in the presence of glucocorticoid receptor. The binding of methyltrienolone to glucocorticoid receptor can be blocked by the presence of a 100-fold molar excess of unlabeled synthetic glucocorticoid, triamcinolone acetonide, without interfering in its binding to androgen receptor, because triamcinolone does not bind to androgen receptor. Triamcinolone-blocked cytosol exhibited that the Kd value was 2.5 · 10−8 M and the number of binding sites was 26.3 fmol/mg protein, indicating a reduction to of that in the untreated cytosol. The profile of glycerol gradient centrifiguration indicated that [3H]methyltriemolone-bound receptor migrated in the 8–9 S region in both untreated and triamcinolone-blocked cytosols, but the 8–9 S peak in triamcinolone-blocked cytosol was reduced to about of that of untreated cytosol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号