首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Multiple-equilibrium equations were solved to investigate the individual and separate effects of Mg2+, Mn2+, Ca2+, ATP4–, and their complexes on the kinetics of brain adenylate cyclase. The effects of divalent metals and/or ATP4– (in excess of their participation in complex formation) were determined and, from the corresponding apparent affinity values, the following kinetic constants were obtained:K m(MgATP)=1.0 mM,K i(ATP4–)=0.27 mM,K m(MnATP)=0.07 mM, andK i(CaATP)=0.015 mM. MgATP, MnATP, ATP4–, and CaATP were shown to compete for the active site of the enzyme. Hence, it is proposed that endogenous metabolites with a strong ligand activity for divalent metals, such as citrate and some amino acids, become integrated into a metabolite feedback control of the enzyme through the release of ATP4– from MgATP. Ca2+ fluxes may participate in the endogenous regulation of adenylate cyclase by modifying the level of CaATP. The free divalent metals show an order of affinityK 0.5(Ca2+)=0.02 mM,K 0.5(Mn2+)=3.8 mM,K 0.5(Mg2+)=4.7 mM, and an order of activity Mn2+>Mg2+>Ca2+. The data indicate that Mn2+ and Mg2+ ions may compete for a regulatory site distinct from the active site and increaseV m without changingK m(MgATP),K m(MnATP), orK i(ATP4–). The interactions of ATP4– and CaATP, which act as competitive inhibitors of the reaction of the enzyme with the substrates MgATP and MnATP, and Mg2+ and Mn2+, which act as activators of the enzyme in the absence of hormones, are shown to follow the random rapid equilibrium BiBi group-transfer mechanism of Cleland with the stipulation that neither Mg2+ nor Mn2+, in excess of their respective participation in substrate formation, are obligatorily required for basal activity. ATP4– and CaATP are involved in dead-end inhibition. For MgCl2 saturation curves at constant total ATP concentration, the computer-generated curves based on the RARE BiBi model predict a change in the Hill cooperativityh from a basal value of 2.6, when Mg2+ is not obligatorily required, to 4.0 when the addition of hormones or neurotransmitters induces an obligatory requirement for Mg2+.Abbreviations used: Me, divalent metal; MeT (MgT or MnT), total Me (Me2+ and its complexes); ATPT, total ATP (ATP4– and its complexes).  相似文献   

2.
—Some basic kinetic properties of adenylate cyclase in cell free preparations of mouse neuroblastoma were investigated. Production of cAMP from ATP by the enzyme requires the presence of either Mg2+ or Mn2+ in addition to ATP. In the presence of Mg2+, the Km for ATP is 120 ± 15 μM and the interaction of ATP and adenylate cyclase appears to be non-cooperative (Hill coefficient of 1). Magnesium ion concentrations in excess of the ATP concentration cause stimulation although similar excess concentrations of Mn2+ cause inhibition. Prostaglandin E1 and 2-chloroadenosine activate the enzyme. The Km of the cyclase for 2-chloroadenosine is 6 μm . Activation by 2-chloroadenosine leads to an increase in Vmax but does not effect the Km for ATP. At a fixed ATP concentration, the extent of activation caused by prostaglandin E1 and 2-chloroadenosine is inversely related to the Mg2+ concentration. Calcium ion causes inhibition of adenylate cyclase from 0.1 to 4mM with a Ki of 5 ± 10?4m . Ca2+ interaction with the enzyme in the absence or presence of either 2-chloroadenosine or prostaglandin E1 appears cooperative (i.e. Hill coefficients of ?2). Ca2+ inhibition is non-competitive with respect to either ATP or 2-chloroadenosine but is progressively diminished by increasing Mn2+ concentrations. Divalent cation effects and activation by 2-chloroadenosine and prostaglandin E1 of the neuroblastoma adenylate cyclase are compared with ion effects and hormone activation of the enzyme obtained from non-neuronal tissue.  相似文献   

3.
4.
ATP and adenylylimidodiphosphate (AdoPP[NH]P) bind to (Na+ + K+)-ATPase in the absence of Mg2+ (EDTA present) with a homogeneous but 15-fold different affinity, the Kd values being 0.13 μM and 1.9 μM, respectively. The binding capacities of the two nucleotides are nearly equal and amount to 3.9 and 4 nmol/mg protein or 1.7 and 1.8 mol/mol (Na+ + K+)-ATPase, respectively. The Kd value for ATP is equal to the Km for phosphorylation by ATP (0.05–0.25 μM) and the binding capacity is equivalent to the phosphorylation capacity of 1.8 mol/mol (Na+ + K+)-ATPase. Hence, the enzyme contains two high-affinity nucleotide binding and phosphorylating sites per molecule, or one per α-subunit. Additional low-affinity nucleotide binding sites are elicited in the presence of Mg2+, as shown by binding studies with the non-phosphorylating (AdoPP[NH]P). The Kd and binding capacity for AdoPP[NH]P at these sites is dependent on the Mg2+ concentration. The Kd increases from 0.06 mM at 0.5 mM Mg2+ to a maximum of 0.26 mM at 2 mM Mg2+ and the binding capacity from 1.5 nmol/mg protein at 0.5 mM Mg2+ to 3.3 nmol/mg protein at 4 mM Mg2+. Extrapolation of a double reciprocal plot of binding capacity vs. total Mg2+ concentration yields a maximal binding capacity at infinite Mg2+ concentration of 3.8 nmol/mg protein or 1.7 mol/mol (Na+ + K+)-ATPase. The Kd for Mg2+ at the sites, where it exerts this effect, is 0.8 mM. The Kd for the high-affinity sites increases from 1.5–1.9 μM in the absence of Mg2+ to a maximum of 4.2 μM at 2 mM Mg2+ concentration. The binding capacity of these sites (1.8 mol/mol enzyme) is independent of the Mg2+ concentration. Hence, Mg2+ induces two low-affinity non-phosphorylating nucleotide binding sites per molecule (Na+ + K+)-ATPase in addition to the two high-affinity, phosphorylating nucleotide binding sites.  相似文献   

5.
ATP and the divalent cations Mg2+ and Ca2+ regulated K+ stimulation of the Ca2+-transport ATPase of cardiac sarcoplasmic reticulum vesicles. Millimolar concentrations of total ATP increased the K+-stimulated ATPase activity of the Ca2+ pump by two mechanisms. First, ATP chelated free Mg2+ and, at low ionized Mg2+ concentrations, K+ was shown to be a potent activator of ATP hydrolysis. In the absence of K+ ionized Mg2+ activated the enzyme half-maximally at approximately 1 mM, whereas in the presence of K+ the concentration of ionized Mg2+ required for half-maximal activation was reduced at least 20-fold. Second MgATP apparently interacted directly with the enzyme at a low affinity nucleotide site to facilitate K+-stimulation. With a saturating concentration of ionized Mg2+, stimulation by K+ was 2-fold, but only when the MgATP concentration was greater than 2 mM. Hill plots showed that K+ increased the concentration of MgATP required for half-maximal enzymic activation approx. 3-fold.Activation of K+-stimulated ATPase activity by Ca2+ was maximal at anionized Ca2+ concentration of approx. 1 μM. At very high concentrations of either Ca2+ or Mg2+, basal Ca2+-dependent ATPase activity persisted, but the enzymic response to K+ was completely inhibited. The results provide further evidence that the Ca2+-transport ATPase of cardiac sarcoplasmic reticulum has distinct sites for monovalent cations, which in turn interact allosterically with other regulatory sites on the enzyme.  相似文献   

6.
The Mg2+-dependency of Ca2+-induced ATP hydrolysis is studied in basolateral plasma membrane vesicles from rat kidney cortex in the presence of CDTA and EGTA as Mg2+- and Ca2+-buffering ligands. ATP hydrolysis is strongly stimulated by Mg2+ with a Km of 13 μ M in the absence or presence of 1 μ M free Ca2+. At free Mg2+ concentrations of 1 μ M and lower, ATP hydrolysis is Mg2+ -independent, but is strongly stimulated by submicromolar Ca2+ concentrations Km = 0.25 μM, Vmax = 24 μmol Pi/h per mg protein). The Ca2+-stimulated ATP hydrolysis strongly decreases at higher Mg2+ concentrations. The Ca2+-stimulated Mg2+-independent ATP hydrolysis is not affected by calmodulin or trifluoperazine and shows no specificity for ATP over ADP, ITP and GTP. In contrast, at high Mg2+ concentrations calmodulin and trifluoperazine affect the high affinity Ca2+-ATPase activity significantly and ATP is the preferred substrate. Control studies on ATP-dependent Ca2+-pumping in renal basolaterals and on Ca2+-ATPase in erythrocyte ghosts suggest that the Ca2+-pumping enzyme requires Mg2+. In contrast, a role of the Ca2+-stimulated Mg2+-independent ATP hydrolysis in active Ca2+ transport across basolateral membranes is rather unlikely.  相似文献   

7.
(1) The effects of calmodulin binding on the rates of Ca2+-dependent phosphorylation and dephosphorylation of the red-cell Ca2+ pump, have been tested in membranes stripped of endogenous calmodulin or recombined with purified calmodulin. (2) In Mg2+-containing media, phosphorylation and dephosphorylation rates are accelerated by a large factor (at 0°C), but the steady-state level of phosphoenzyme is unaffected by calmodulin binding (at 0°C and 37°C). In Mg2+-free media, slower rates of phosphoenzyme formation and hydrolysis are observed, but both rates and the steady-state phosphoenzyme level are raised following calmodulin binding. (3) At 37°C and 0°C, the rate of (Ca2+ + Mg2+)-ATPase activity is stimulated maximally by 6–7-fold, following calmodulin binding. At 37°C the apparent Ca2+ affinity for sustaining ATP hydrolysis is raised at least 20-fold, Km(Ca) ? 10 μM (—calmodulin) and Km(Ca) < 0.5 μM (+ calmodulin), but at 0°C the apparent Ca2+ affinity is very high in calmodulin-stripped membranes and little or no effect of calmodulin is observed (Km(Ca) ? 3–4 · 10-8 M). (Ca2+ + Mg2+)-ATPase activity in calmodulin activated membranes and at saturating ATP levels, is sharply inhibited by addition of calcium in the range 50–2000 μM. (4) A systematic study of the effects of the nucleotide species MgATP, CaATP and free ATP on (Ca2+ + Mg2+)-ATPase activity in calmodulin-activated membranes reveals: (a) In the 1–10 μmolar concentration range MgATP, CaATP and free ATP appear to sustain (Ca2+ + Mg2+)-ATPase activity equally effectively. (b) In the range 100–2000 μM, MgATP accelerates ATP hydrolysis (Km(MgATP) ? 360 μM), and CaATP is an inhibitor (Ki(CaATP) ? 165 μM), probably competing with MgATP fo the regulatory site. (5) The results suggest that calmodulin binding alters the conformational state of the Ca2+- pump active site, producing a high (Ca2+ + Mg2+)-ATPase activity, high Ca2+ affinity and regulation of activity by MgATP.  相似文献   

8.
O'neal D  Joy KW 《Plant physiology》1974,54(5):773-779
Purified glutamine synthetase from pea seedlings was most active with Mg2+ as the metal activator, but Mn2+ and Co2+ were 45 to 60% and 30 to 45% as effective, respectively, when assayed at the optimal pH for each cation. The Mg2+ saturation curve was quite sigmoid, and evidence indicates that MgATP is the active ATP substance. Co2+ also gave a sigmoidal saturation curve, but when Mn2+ was varied only slightly sigmoidal kinetics were seen. Addition of Mn2+, Ca2+, or Zn2+ at low concentrations sharply inhibited the Mg2+ -dependent activity, partially by shifting the pH optimum. Addition of Co2+ did not inhibit Mg2+-dependent activity. The nucleotide triphosphate specificity changed markedly when Co2+ or Mn2+ replaced Mg2+. Using the Mg2+-dependent assay, the Michaelis constant (Km) for NH4+ was about 1.9 × 10−3 M. The Km for l-glutamate was directly proportional to ATP concentration and ranged from 3.5 to 12.4 mm with the ATP levels tested. The Km for MgATP also varied with the l-glutamate concentration, ranging from 0.14 mm to 0.65 mm. Ethylenediaminetetracetic acid activated the enzyme by up to 54%, while sulfhydryl reagents gave slight activation, occasionally up to 34%.  相似文献   

9.
C J Marcus  W L Byrne  A M Geller 《Life sciences》1974,15(10):1765-1780
Treatment of purified fructose 1,6-diphosphatase from bovine liver (which is maximally active at neutral pH) with pyridoxal 5'-phosphate produces changes in the spectral, catalytic, and allosteric properties of the enzyme. After modification the Michaelis constants for fructose-1,6-diphosphate and Mg2+ are increased, and inhibition by AMP is decreased. Substrate inhibition is decreased, but not abolished; the curve is merely shifted toward higher substrate concentration. Fructose-1, 6-diphosphate protects against the increases in the Km for fructose-1, 6-diphosphate and the Km for Mg2+, and against the changes in substrate inhibition, but not against the changes in AMP inhibition. AMP protects against the changes in AMP inhibition and the increase in the Km for magnesium, but does not prevent the changes in substrate inhibition or the increase in the Km for fructose-1, 6-diphosphate. The pH curves in the modified enzyme are altered at high, but not at low, substrate concentration.  相似文献   

10.
The proton translocating membrane ATPase of oral streptococci has been implicated in cytoplasmatic pH regulation, acidurance and cariogenicity. Studies have confirmed that Streptococcus mutans is the most frequently detected species in dental caries. A P-type ATPase that can act together with F1Fo-ATPase in S. mutans membrane has been recently described. The main objective of this work is to characterize the kinetic of ATP hydrolysis of this P-type ATPase. The optimum pH for ATP hydrolysis is around 6.0. The dependence of P-type ATPase activity on ATP concentration reveals high (K0.5=0.27 mM) and low (K0.5=3.31 mM) affinity sites for ATP, exhibiting positive cooperativity and a specific activity of about 74 U/mg. Equimolar concentrations of ATP and magnesium ions display a behavior similar to that described for ATP concentration in Mg2+ saturating condition (high affinity site, K0.5=0.10 mM, and low affinity site, K0.5=2.12 mM), exhibiting positive cooperativity and a specific activity of about 68 U/mg. Sodium, potassium, ammonium, calcium and magnesium ions stimulate the enzyme, showing a single saturation curve, all exhibiting positive cooperativities, whereas inhibition of ATPase activity is observed for zinc ions and EDTA. The kinetic characteristics reveal that this ATPase belongs to type IIIA, like the ones found in yeast and plants.  相似文献   

11.
Summary A method is described for the partial purification of pyruvate carboxylase from rainbow trout liver. The enzyme has a pH optimum of about 8.0, possesses an absolute requirement for activation by acetylCoA, and prefers MgATP over other nucleoside triphosphates. K+ causes a decrease in the apparentK m for HCO 3 . AcetylCoA activation shows positive cooperativity withK a=0.072 mM andn H=1.78 at pH 7.7, 2.5 mM free Mg2+, 100 mM K+, and saturating concentrations of substrates. A high acetylCoA concentration causes a decrease in the apparentK m values for MgATP and HCO 3 and a biphasic double reciprocal plot with pyruvate as the varied substrate. MgADP and AMP are competitive inhibitors with respect to MgATP. The enzyme shows a U-type response to the adenylate energy charge and retains considerable activity throughout a wide range of energy charge values. It is proposed that intramitochondrial acetylCoA concentration and the adenylate energy charge control the rate of pyruvate carboxylation in vivo.Abbreviations DTT dithiothreitol - PMSF phenylmethylsulfonylfluoride  相似文献   

12.
Free ribulose hisphosphate (RuBP4?) rather than its magnesium complex (RuBP-Mg2?) was the apparent substrate for spinach ribulose bisphosphate carboxylase/oxygenase. The apparent Km for total RuBP (pH 8.0 at 30° C) increased with increasing Mg2+ concentrations from 11.6 μM at 13.33 mM Mg2+ to 32.6 μM at 40.33 mM Mg2+. Similarly the apparent Km for RuBP-Mg2? complex increased with increasing Mg2+ from 9.4 μM at 13.33 mM Mg2+ to 29.7 μM at 40.33 mM Mg2+. However, the Km values for uncomplexed RuBP4? were independent of the (saturating) concentration of Mg2+ (Km=2.2 μM). The Vmax did not vary with the changing concentrations of Mg2+. In contrast, the Km for total RuBP remained constant with varying Mg2+ concentrations (Km=59.5 μM) for the enzyme from R. rubrum. The apparent Km for the RuBP-Mg2? complex decreased with increasing Mg2+ concentrations from 16.0 μM at 7.5 mM Mg2+ to 5.9 μM at 27.5 mM Mg2+. The initial velocity for the C. vinosum enzyme was also found to be independent of the (saturating) concentration of Mg2+ when total RuBP was varied in the assay. Thus the response to total RuBP by these two bacterial enzymes, which markedly differ in structure, was closely similar.  相似文献   

13.
A microsomal (Na++ K++ Mg2+)ATPase preparation from sugar beet roots was used. The activation by simultaneous addition of Na+ and K+ at different levels was examined in terms of steady state kinetics. The observed data can be summarized in the following way: 1. The apparent affinity between the enzyme and the substrate MgATP depends on the ratio between Na+ and K+. At low Na+ concentration (below 5 mM), the apparent Km decreases with increasing concentrations of K+ (1–20 mM). At 5 mM Na+, the K+ level does not change the apparent Km, while at Na+ levels above 10 mM, the apparent Km between enzyme and substrate increases with increasing concentration of K+. 2. When the MgATP concentration is kept constant, homotropic cooperativity (concerning one type of ligand) and heterotropic cooperativity (concerning different types of ligands) exist in the activation by Na+ and K+. The Na+ binding is cooperative with different Km values and Hill coefficients (n) in the presence of low and high concentration of K+. At low Na+ level (< 5 mM). a negative cooperativity exists for Na+ (nNa < 1) which is more pronounced in the presence of high [K+]. When the concentration of Na+ is raised the negative cooperativity disappears and turns into a positive one (nNa > 1). Only K+ binding in the presence of low [Na+] shows cooperativity with a Hill coefficient that reflects changes from negative to positive homotropic cooperativity with increasing concentrations of K+ (nK < 1 → nK > 1). In the presence of [Na+] > 10 mM, the changes in nk are insignificant. 3. A model is proposed in which one or two different K sites and one or two Na sites control the catalytic activity, with multiple interactions between Na+, K+ and MgATP. 4. In the presence of Na+ (< 10 mM), K+ is probably bound to two K sites, one of which translocates K+ through the membrane by an antiport Na+/K+ mechanism. This could be connected with an elevated K+ uptake in the presence of Na+ and could therefore explain some field properties of sugar beets.  相似文献   

14.
Free ribulose bisphosphate (RuBP4?) rather than its magnesium complex (RuBP-Mg2?) was the apparent substrate for spinach ribulose bisphosphate carboxylase/oxygenase. The apparent Km for total RuBP (pH 8.0 at 30° C) increased with increasing Mg2+ concentrations from 11.6 μM at 13.33 mM Mg2+ to 32.6 μM at 40.33 mM Mg2+. Similarly the apparent Km for RuBP-Mg2? complex increased with increasing Mg2+ from 9.4 μM at 13.33 mM Mg2+ to 29.7 μM at 40.33 mM Mg2+. However, the Km values for uncomplexed RuBP4? were independent of the (saturating) concentration of Mg2+ (Km=2.2 μM). The Vmax did not vary with the changing concentrations of Mg2+. In contrast, the Km for total RuBP remained constant with varying Mg2+ concentrations (Km=59.5 μM) for the enzyme from R. rubrum. The apparent Km for the RuBP-Mg2? complex decreased with increasing Mg2+ concentrations from 16.0 μM at 7.5 mM Mg2+ to 5.9 μM at 27.5 mM Mg2+. The initial velocity for the C. vinosum enzyme was also found to be independent of the (saturating) concentration of Mg2+ when total RuBP was varied in the assay. Thus the response to total RuBP by these two bacterial enzymes, which markedly differ in structure, was closely similar.  相似文献   

15.
Summary As reported previously, enzymatic production of ATP from adenine by resting cells of Brevibacterium ammoniagenes (Fujio and Furuya 1983) accumulated 13.0 mg of ATP · Na2 · 3H2O/ml, but ATP formation ceased within 6–8 h. Simultaneous addition of magnesium ion and phytic acid, a chelator of divalent cations, allowed ATP formation to continue longer, and 24.2 mg of ATP · Na2 · 3H2O/ml was accumulated in 10 h. However, ATP formation ceased thereafter.This second cessation was found to be caused by the lack of magnesium ion active as a co-factor (Mgact). The Mgact was tentatively taken as the difference between soluble magnesium ion (Mgsol) and the ion chelated by an equimolar amount of ATP (MgATP), namely Mgact=Mgsol-MgATP. In order to provide Mgact, sufficient phytic acid had to be added at the beginning of the reaction and magnesium ion was also added intermittently. Under these conditions ATP formation continued further, and the rate of ATP formation was increased; 37.0 mg of ATP · Na2 · 3H2O/ml was accumulated in 13 h.Since whole culture broth is preferable to frozen cells as a practical enzyme source, the conditions neccessary for use of whole culture broth of B. ammoniagenes were also investigated.  相似文献   

16.
Fructokinase (Fraction III) of Pea Seeds   总被引:5,自引:4,他引:1       下载免费PDF全文
A second fructokinase (EC 2.7.1.4) was obtained from pea seed (Pisum sativum L. var. Progress No. 9) extracts. The enzyme, termed fructokinase (fraction III), was specific for fructose and had little activity with glucose. With fructose concentrations above 0.25 millimolar, there was strong substrate inhibition at the optimum pH (8.0) and also at pH 6.6. The apparent Km values at pH 8.0 for fructose and glucose were 0.06 millimolar and 0.14 millimolar, respectively. The apparent Km for Mg adenosine 5′-triphosphate (MgATP) was 0.06 millimolar and excess MgATP was inhibitory. Mg2+ was essential for activity but the enzyme was inhibited by excess Mg2+ or ATP. Mg adenosine 5′-pyrophosphate was also inhibitory. Activity was stimulated by the addition of monovalent cations: of those tested K+, Rb+, and NH4+ were the most effective. The possible role of fructokinase (fraction III) is discussed.  相似文献   

17.
The (Ca2+-Mg2+)-ATPase from sarcoplasmic reticulum presents negative cooperativity for the hydrolysis of Mg2+-ATP at different concentration ranges of this substrate. A kinetic model is proposed according to which Mg2+-ATP may bind to three different enzymatic species present during the catalytic cycle, E (K 1=1 µM), EP.Ca2 (K 9=500 µM) and *EP (K 7=20 µM), accelerating the release of Pi. The fact that each of these species has a different affinity for Mg2+-ATP allows a significant enhancement of the rate of Pi release to the medium at the different ranges of Mg2+-ATP concentration where the enzyme shows a kinetic cooperativity. The kinetic analysis of this mechanism yields an equation which is a ratio of two cubic polynomials (3:3 rate equations) with respect to Mg2+-ATP and which may explain the negative cooperativity of the enzyme at different concentration ranges of Mg2+-ATP.Abbreviations: EGTA, ethylene glycol bis(-aminoethylether)-N,N,N,N-tetraacetic acid; I.U., international units; piruvate kinase (EC 2.7.1.40); lactate dehydrogenase (EC 1.1.1.27); ATP phosphohydrolase (EC 3.8.1.3).  相似文献   

18.
Summary The characteristics of the cholera toxin-stimulated adenylate cyclase of toad (Bufus marinus) and rat erythrocyte plasma membranes have been examined, with special emphasis on the response to purine nucleotides, fluoride, magnesium and catecholamine hormones. Toad erythrocytes briefly exposed to low concentrations of cholera toxin (40,000 to 60,000 molecules per cell) and incubated 2 to 4 hr at 30°C exhibit dramatic alterations in the kinetic and regulatory properties of adenylate cyclase. The approximateK m for ATP, Mg++ increases from about 1.8 to 3.4mm in the toxinstimulated enzyme. The stimulation by cholera toxin increases with increasing ATP, Mg++ concentrations, from 20% at low levels (0.2mm) to 500% at high concentrations (greater than 3mm). Addition of GTP, Mg++ (0.2mm) restores normal kinetic properties to the toxin-modified enzyme, such that stimulation is most simply explained by an elevation ofV max. GTP enhances the toxin-treated enzyme activity two-to fourfold at low ATP concentrations, but this effect disappears at high levels of the substrate. At 0.6mm ATP and 5mm MgCl2 the apparentK a for GTP, Mg++ is 5 to 10m. The control (unstimulated) enzyme demonstrates a very small response to the guanyl nucleotide. 5-ITP also stimulates the toxin-treated enzyme but cGMP, guanine, and the pyrimidine nucleotides have no effect. Cholera toxin also alters the activation of adenylate cyclase by free Mg++, decreasing the apparentK a from about 25 to 5mm. (–)-Epinephrine sensitizes the toad erythrocyte adenylate cyclase to GTP and also decreases the apparentK a for free metal. Sodium fluoride, which cause a 70- to 100-fold activation of enzyme activity, has little effect on sensitivity to GTP, and does not change the apparentK a for Mg++; moreover, it prevents modulation of these parameters by cholera toxin. Conversely, cholera toxin severely inhibits NaF activation, and in the presence of fluoride ion the usual three- to fivefold stimulation by toxin becomes a 30 to 60% inhibition of activity. The toxin-stimulated enzyme can be further activated by catecholamines; in the presence of GTP the (–)-epinephrine stimulation is enhanced by two- to threefold. The increased catecholamine stimulation of toad erythrocyte adenylate cyclase induced by cholera toxin is explained primarily by an increase in the maximal extent of activation by the hormones. Rat erythrocyte adenylate cyclase is also modified by cholera toxin. In the mammalian system the apparent affinity for the hormone appears to be increased. Cholera toxin thus induces profound and nearly permanent changes in adenylate cyclase by a unique process which mimics the stimulation by hormones in important ways, and which also accentuates the normal hormonal response. The relevance of these findings to the mechanism of action of cholera toxin is considered.Part of this work was reported at the 1974 meeting of the Federation of American Societies for Experimental Biology (Bennett & Cuatrecasas, 1974).  相似文献   

19.
Red cells of hibernating species have a higher relative rate of Na+–K+ pump activity at low temperature than the red cells of a mammal with a typical sensitivity to cold. The kinetics of ATP stimulation of the Na+–K+ pump were determined in guinea pig and ground squirrel red cells at different temperatures between 5 and 37°C by measuring ouabain-sensitive K+ influx at different levels of ATP. In guinea pig cells, elevation of intracellular free Mg2+ to 2 mmol·l-1 by use of the divalent cation ionophore A23187 caused the apparent affinity of the pump for ATP to increase with cooling to 20°C, rather than to decrease, as occurs in cells not loaded with Mg2+. In ground squirrel cells raising intracellular free Mg2+ had little effect on apparent affinity of the pump for ATP at 20°C. ATP affinity rose slightly with cooling both in Mg2+-enriched and in control ground squirrel cells. Increased intracellular free Mg2+ in guinea pig cells stimulated Na+–K+ pump activity so that at 20°C the pump rate was the same in the Mg2+-enriched guinea pig and control ground squirrel cells. Pump activity in Mg2+-enriched guinea pig cells at 5°C was significantly improved but still lower than pump activity in control cells from ground squirrel. Thus, loss of affinity of the Na+–K+ pump for ATP that occurs with cooling in cold-sensitive guinea pig red cells can be, at least partially, prevented by elevating cytoplasmic free Mg2+. Conversely, in ground squirrel red cells natural rise of free Mg2+ may in part account for the preservation of the ATP affinity of their Na+–K+ pump with cooling.Abbreviations K m Michaelis-Menten constant for apparent affinity - MOPS 3-(N-morpholino)-propanesulphonic acid - [Mg2+]i intracellular concentration of free Mg2+ - OD optical density - RBC red blood cell(s) - T b body temperature  相似文献   

20.
ATP-dependent active calcium transport in inside-out human red cell membrane vesicles is stimulated by magnesium essentially parallel with an increase in MgATP concentration. At a constant, low (1 μM) calcium concentration, increasing ATP and magnesium increase the maximum calcium transport rate irrespective of the constant or decreasing concentrations of CaATP present. KCa for calcium pumping is practically unchanged at variable ATP and magnesium concentrations. Free magnesium above 1–2 mM inhibits active calcium transport, probably through a direct interaction with the transport enzyme. Based on the experimental findings reported we suggest that the true, physiological substrate of the red cell calcium pump is MgATP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号