首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
This study isolated amoebae from two different dental-unit-waterline (DUWL) sources, a simulated laboratory system (sDUWL) and a decommissioned system (dDUWL), within 24 h of it being dismantled from a working clinical practice. Molecular profiles of the isolates were determined and morphological characteristics of the test organisms were examined using microscopy. DNA barcoding identified the amoebae from both sources as being Vermamoeba vermiformis (previously described as Hartmannella vermiformis). These amoebae have been deposited at the Culture Collection of Algae and Protozoa and as CCAP 1534/16, GenBank accession number KC161965 (in-vitro simulated system) and CCAP 1534/17, GenBank accession number KC188996 (decommissioned system). The organisms from both sources exhibited two main forms: motile trophozoites and non-motile cysts. Mature cysts displayed natural fluorescence with excitation and emission wavelength of 488 nm, attributed to the presence of natural flavins and nicotinamide compounds. Both the encysted and the trophozoite forms of V. vermiformis remained unaffected when exposed to the proprietary biocides tested at the concentrations recommended for use in dental surgeries and cysts successfully excysted, to release trophozoites upon subsequent culture. However, two out of three proprietary dental biocides tested on isolated heterotrophic bacteria were effective at controlling bacterial contamination.  相似文献   

2.
In this study we report observations on the structural mechanisms of the cytopathic effect of Acanthamoeba castellanii trophozoites on cultured MDCK cell monolayers. Co-incubations were carried out for a maximum of 24h. The first evidence of damage to the cell monolayer was detected by measuring the transepithelial resistance of cell monolayers that interacted with the amoebae. At 6h, transepithelial resistance diminished to 51% and amoebae required 5-6h to produce evidence of structural injury at the light microscopy level. Following 12h of incubation, the cell monolayer was severely damaged. After making intimate contact with the surface of target cells, trophozoites detached cells from the substrate, lysed and by means of food-cups ingested the damaged cells. There was no morphological evidence of modifications in MDCK cell membranes, membrane fusion or junction formation between the amoeba and host plasma membrane. The lytic capacity of the amoebas appears to be the result of cytotoxic factors secreted by the amoebae since, when monolayers were incubated with conditioned medium, there was also a decrease in the transepithelial resistance. Besides, mechanical injury produced by the attachment and movement of the trophozoites may contribute to the disruption of the cell monolayer. As in other pathogenic amoebae, the cytopathic action of A. castellanii on the cell monolayers can subjectively be separated into four stages: adhesion, cytolysis, phagocytosis, and intracellular degradation.  相似文献   

3.
Simkania negevensis, a novel microorganism belonging to the family Simkaniaceae in the order Chlamydiales, has an intracellular developmental cycle during which two morphological entities, elementary bodies (EB) and reticulate bodies (RB), are seen by electron microscopy. Rates of seropositivity to the organism are high in certain population groups, and S. negevensis has been associated with respiratory illness in humans. This study reports for the first time the ability of S. negevensis to survive and grow inside Acanthamoeba polyphaga in addition to its known ability to grow in cell cultures of human or simian origin. Infectivity of S. negevensis and growth in amoebae were monitored by immunoperoxidase assays. Long-term persistence and exponential growth of S. negevensis in amoebal trophozoites were demonstrated by infectivity assays and by electron microscopy. EB and dividing RB of S. negevensis were observed within inclusion bodies inside A. polyphaga. When S. negevensis-infected A. polyphaga amoebae were exposed to adverse conditions resulting in encystation of the amoebae, several possible outcomes were observed: cysts containing both normal amoebic cytoplasm and S. negevensis; cysts in which S. negevensis cells were relegated to the space between cyst walls; and cysts containing S. negevensis, but apparently lacking amoebal cytoplasm. S. negevensis within dried amoebal cysts was capable of long-term survival. The possibility that amoebae may have a role in natural transmission of S. negevensis needs to be investigated.  相似文献   

4.
Amoebae are the natural hosts for Legionella pneumophila and play essential roles in bacterial ecology and infectivity to humans. When L. pneumophila colonizes an aquatic installation, it can persist for years despite repeated treatments with disinfectants. We hypothesized that freshwater amoebae play an important role in bacterial resistance to disinfectants, and in subsequent resuscitation of viable non-culturable (VNC) L. pneumophila that results in re-emergence of the disease-causing strain in the disinfected water source. Our work showed that in the absence of Acanthamoeba polyphaga, seven L. pneumophila strains became non-culturable after treatment by 256 p.p.m. of sodium hypochlorite (NaOCl). In contrast, intracellular L. pneumophila within A. polyphaga was resistant to 1024 p.p.m. of NaOCl. In addition, L. pneumophila-infected A. polyphaga exhibited increased resistance to NaOCl. When chlorine-sterilized water samples were co-cultured with A. polyphaga, the non-culturable L. pneumophila were resuscitated and proliferated robustly within A. polyphaga. Upon treatment by NaOCl, uninfected amoebae differentiated into cysts within 48 h. In contrast, L. pneumophila-infected A. polyphaga failed to differentiate into cysts, and L. pneumophila was never detected in cysts of A. polyphaga. We conclude that amoebic trophozoites protect intracellular L. pneumophila from eradication by NaOCl, and play an essential role in resuscitation of VNC L. pneumophila in NaOCl-disinfected water sources. Intracellular L. pneumophila within trophozoites of A. polyphaga block encystation of the amoebae, and the resistance of both organisms to NaOCl is enhanced. To ensure long-term eradication and complete loss of the VNC state of L. pneumophila, we recommend that Legionella-protozoa co-culture should be an important tool to ensure complete loss of the VNC state of L. pneumophila.  相似文献   

5.
Aims:  In vitro experiments were undertaken to evaluate biocide formulations commonly used in cooling water systems against protozoa previously isolated from cooling towers. The investigations evaluated the efficacy of these formulations against amoebic cysts and trophozoites.
Methods and Results:  Laboratory challenges against protozoa isolated from cooling towers using chlorine, bromine and isothiazolinone biocides showed that all were effective after 4 h. The presence of molybdate and organic phosphates resulted in longer kill times for bromine and isothiazolinones. All treatments resulted in no detectable viable protozoa after 4 h of exposure.
Conclusions:  The chemical disinfection of planktonic protozoa in cooling water systems is strongly influenced by the residence time of the formulation and less so by its active constituent. Bromine and isothiazolinone formulations may require higher dosage of concentrations than currently practiced if used in conjunction with molybdate- and phosphate-based scale/corrosion inhibitors.
Significance and Impact of the Study:  Cooling water systems are complex microbial ecosystems in which predator–prey relationships play a key role in the dissemination of Legionella . This study demonstrated that at recommended dosing concentrations, biocides had species-specific effects on environmental isolates of amoebae that may act as reservoirs for Legionella multiplication in cooling water systems.  相似文献   

6.
Mycobacteria are isolated from soil and water environments, where free-living amoebae live. Free-living amoebae are bactericidal, yet some rapidly growing mycobacteria are amoeba-resistant organisms that survive in the amoebal trophozoites and cysts. Such a capacity has not been studied for the environmental rapidly growing organism Mycobacterium gilvum. We investigated the ability of M. gilvum to survive in the trophozoites of Acanthamoeba polyphaga strain Linc-AP1 by using optical and electron microscopy and culture-based microbial enumerations in the presence of negative controls. We observed that 29% of A. polyphaga cells were infected by M. gilvum mycobacteria by 6 h postinfection. Surviving M. gilvum mycobacteria did not multiply and did not kill the amoebal trophozoites during a 5-day coculture. Extensive electron microscopy observations indicated that M. gilvum measured 1.4 ± 0.5 μm and failed to find M. gilvum organisms in the amoebal cysts. Further experimental study of two other rapidly growing mycobacteria, Mycobacterium rhodesiae and Mycobacterium thermoresistibile, indicated that both measured <2 μm and exhibited the same amoeba-mycobacterium relationships as M. gilvum. In general, we observed that mycobacteria measuring <2 μm do not significantly grow within and do not kill amoebal trophozoites, in contrast to mycobacteria measuring >2 μm (P < 0.05). The mechanisms underlying such an observation remain to be determined.  相似文献   

7.
Adaptation of amoebae to four cooling tower Biocides, which included a thiocarbamate compound, tributyltin neodecanoate mixed with quaternary ammonium compounds (TBT/QAC), another QAC alone, and an isothiazolin derivative, was studied. Previously we found that amoebae isolated from waters of cooling towers were more resistant to cooling tower biocides than amoebae from other habitats. Acanthamoeba hatchetti and Cochliopodium bilimbosum, obtained from American Type Culture Collection and used in the previous studies, were tested to determine whether they could adapt to cooling tower Biocides. A. hatchetti was preexposed to subinhibitory concentrations of the four Biocides for 72h, after which they were tested for their resistance to the same and other biocides. C. bilimbosum was exposed to only two biocides, as exposure to the other two was lethal after 72 h. Preexposure to the subinhibitory concentrations of the Biocides increased the resistance of the amoebae, as indicated by a significant increase in the minimum inhibitory concentration (up to 30-fold). In addition, cross-resistance was also observed, i.e., exposure to one biocide caused resistance to other biocides. These results show that amoebae can adapt to biocides in a short time. The phenomenon of cross-resistance indicates that regularly alternating biocides, as is done to control microbial growth in cooling towers, may not be effective in keeping amoeba populations in check. On the contrary, exposure to one biocide may boost the amoebae's resistance to a second biocide before the second biocide is used in the cooling tower. Since amoebae may harbor Legionella, or alone cause human diseases, these results may be important in designing effective strategies for controlling pathogens in cooling towers. Correspondence to: S.G. Berk.  相似文献   

8.
The growth and starvation responses of Acanthamoeba castellanii and Hartmannella vermiformis were investigated in the presence and absence of Escherichia coli on an agar surface or within shaken suspensions. The amoebae perceived all the suspended systems to be unfavourable for growth, despite being challenged with high levels of prey, and as a consequence they exhibited a starvation response. However, the response differed between species, with A. castellanii producing characteristic cysts and H. vermiformis producing round bodies. These amoebic forms were reactivated into feeding trophozoites in the presence of bacterial aggregates, which formed in the suspended systems after 68 h of incubation. In contrast, both species of amoebae grew well in the presence of attached E. coli at a concentration of 1 x 10(6) cells cm(-2) of agar and yielded specific growth rates of c. 0.04 h(-1). Starvation responses were induced at the end of the growth phase, and these were equivalent to those recorded in the suspended systems. We conclude that, when suspended, amoebae in the 'floating form' cannot feed effectively on suspended prey, and hence the starvation response is initiated. Thus the majority of amoebic feeding is via trophozoite grazing of attached bacterial prey.  相似文献   

9.
Hartmannella vermiformis, a common amoebal inhabitant of potable-water systems, supports intracellular multiplication of Legionella pneumophila and is probably important in the transportation and amplification of legionellae within these systems. To provide a practical guide for decontamination of potable-water systems, we assessed the chlorine and heat resistance of H. vermiformis. H. vermiformis cysts and trophozoites were treated independently with chlorine at concentrations of 2.0 to 10.0 ppm for 30 min and then cocultured with L. pneumophila. Both cysts and trophozoites were sensitive to concentrations between 2.0 and 4.0 ppm and above (trophozoites somewhat more so than cysts), and 10.0 ppm was lethal to both forms. Hartmannellae treated with chlorine up to a concentration of 4.0 ppm supported the growth of legionellae. To determine whether heat would be an effective addendum to chlorine treatment of amoebae, hartmannellae were subjected to temperatures of 55 and 60°C for 30 min and alternatively to 50°C followed by treatment with chlorine at a concentration of 2 ppm. Fewer than 0.05% of the amoebae survived treatment at 55°C, and there were no survivors at 60°C. Pretreatment at 50°C appeared to make hartmannella cysts more susceptible to chlorine but did not further reduce the concentration of trophozoites.  相似文献   

10.
Survival studies were conducted on Legionella pneumophila cells that had been grown intracellularly in Acanthamoeba polyphaga and then exposed to polyhexamethylene biguanide (PHMB), benzisothiazolone (BIT), and 5-chloro-N-methylisothiazolone (CMIT). Susceptibilities were also determined for L. pneumophila grown under iron-sufficient and iron-depleted conditions. BIT was relatively ineffective against cells grown under iron depletion; in contrast, iron-depleted conditions increased the susceptibilities of cells to PHMB and CMIT. The activities of all three biocides were greatly reduced against L. pneumophila grown in amoebae. PHMB (1 x MIC) gave 99.99% reductions in viability for cultures grown in broth within 6 h and no detectable survivors at 24 h but only 90 and 99.9% killing at 6 h and 24 h, respectively, for cells grown in amoebae. The antimicrobial properties of the three biocides against A. polyphaga were also determined. The majority of amoebae recovered from BIT treatment, but few, if any, survived CMIT treatment or exposure to PHMB. This study not only shows the profound effect that intra-amoebal growth has on the physiological status and antimicrobial susceptibility of L. pneumophila but also reveals PHMB to be a potential biocide for effective water treatment. In this respect, PHMB has significant activity, below its recommended use concentrations, against both the host amoeba and L. pneumophila.  相似文献   

11.
Survival studies were conducted on Legionella pneumophila cells that had been grown intracellularly in Acanthamoeba polyphaga and then exposed to polyhexamethylene biguanide (PHMB), benzisothiazolone (BIT), and 5-chloro-N-methylisothiazolone (CMIT). Susceptibilities were also determined for L. pneumophila grown under iron-sufficient and iron-depleted conditions. BIT was relatively ineffective against cells grown under iron depletion; in contrast, iron-depleted conditions increased the susceptibilities of cells to PHMB and CMIT. The activities of all three biocides were greatly reduced against L. pneumophila grown in amoebae. PHMB (1 x MIC) gave 99.99% reductions in viability for cultures grown in broth within 6 h and no detectable survivors at 24 h but only 90 and 99.9% killing at 6 h and 24 h, respectively, for cells grown in amoebae. The antimicrobial properties of the three biocides against A. polyphaga were also determined. The majority of amoebae recovered from BIT treatment, but few, if any, survived CMIT treatment or exposure to PHMB. This study not only shows the profound effect that intra-amoebal growth has on the physiological status and antimicrobial susceptibility of L. pneumophila but also reveals PHMB to be a potential biocide for effective water treatment. In this respect, PHMB has significant activity, below its recommended use concentrations, against both the host amoeba and L. pneumophila.  相似文献   

12.
Giardia cysts isolated from humans, beavers, mice, and muskrats were tested in cross-species transmission experiments for their ability to infect either beavers or muskrats. Giardia cysts, derived from multiple symptomatic human donors and used for inoculation of beavers or muskrats, were shown to be viable by incorporation of fluorogenic dyes, excystation, and their ability to produce infections in the Mongolian gerbil model. Inoculation of beavers with 5 x 10(5) Giardia lamblia cysts resulted in the infection of 75% of the animals (n = 8), as judged by the presence of fecal cysts or intestinal trophozoites at necropsy. The mean prepatent period was 13.1 days. An infective dose experiment, using 5 x 10(1) to 5 x 10(5) viable G. lamblia cysts collected by fluorescence-activated cell sorting, demonstrated that doses of between, less than 50, and less than 500 viable cysts were required to produce infection in beavers. Scanning electron microscopy of beaver small intestine revealed that attachment of G. lamblia trophozoites produced lesions in the microvillous border. Inoculation of muskrats with G. lamblia cysts produced infections when the dose of cysts was equal to or greater than 1.25 x 10(5). The inoculation of beavers with Giardia ondatrae or Giardia muris cysts did not produce any infection; however, the administration to muskrats of Giardia cysts of beaver origin resulted in the infection of 62% of the animals (n = 8), with a prepatent period of 5 days. Our results demonstrated that beavers and muskrats could be infected with Giardia cysts derived from humans, but only by using large numbers of cysts.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Giardia cysts isolated from humans, beavers, mice, and muskrats were tested in cross-species transmission experiments for their ability to infect either beavers or muskrats. Giardia cysts, derived from multiple symptomatic human donors and used for inoculation of beavers or muskrats, were shown to be viable by incorporation of fluorogenic dyes, excystation, and their ability to produce infections in the Mongolian gerbil model. Inoculation of beavers with 5 x 10(5) Giardia lamblia cysts resulted in the infection of 75% of the animals (n = 8), as judged by the presence of fecal cysts or intestinal trophozoites at necropsy. The mean prepatent period was 13.1 days. An infective dose experiment, using 5 x 10(1) to 5 x 10(5) viable G. lamblia cysts collected by fluorescence-activated cell sorting, demonstrated that doses of between, less than 50, and less than 500 viable cysts were required to produce infection in beavers. Scanning electron microscopy of beaver small intestine revealed that attachment of G. lamblia trophozoites produced lesions in the microvillous border. Inoculation of muskrats with G. lamblia cysts produced infections when the dose of cysts was equal to or greater than 1.25 x 10(5). The inoculation of beavers with Giardia ondatrae or Giardia muris cysts did not produce any infection; however, the administration to muskrats of Giardia cysts of beaver origin resulted in the infection of 62% of the animals (n = 8), with a prepatent period of 5 days. Our results demonstrated that beavers and muskrats could be infected with Giardia cysts derived from humans, but only by using large numbers of cysts.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Parachlamydia acanthamoebae, belonging to the order Chlamydiales, is an obligately intracellular bacterium that infects free-living amoebae and is a potential human pathogen. However, no method exists to accurately quantify viable bacterial numbers. We present a novel quantification method for P. acanthamoebae based on coculture with amoebae. P. acanthamoebae was cultured either with Acanthamoeba spp. or with mammalian epithelial HEp-2 or Vero cells. The infection rate of P. acanthamoebae (amoeba-infectious dose [AID]) was determined by DAPI (4′,6-diamidino-2-phenylindole) staining and was confirmed by fluorescent in situ hybridization. AIDs were plotted as logistic sigmoid dilution curves, and P. acanthamoebae numbers, defined as amoeba-infectious units (AIU), were calculated. During culture, amoeba numbers and viabilities did not change, and amoebae did not change from trophozoites to cysts. Eight amoeba strains showed similar levels of P. acanthamoebae growth, and bacterial numbers reached ca. 1,000-fold (109 AIU preculture) after 4 days. In contrast, no increase was observed for P. acanthamoebae in either mammalian cell line. However, aberrant structures in epithelial cells, implying possible persistent infection, were seen by transmission electron microscopy. Thus, our method could monitor numbers of P. acanthamoebae bacteria in host cells and may be useful for understanding chlamydiae present in the natural environment as human pathogens.  相似文献   

15.
Since the early 1960s, axenic culture and the development of procedures for the induction of encystation have made Acanthamoeba spp. superb experimental systems for studies of cell biology and differentiation. More recently, since their roles as human pathogens causing keratitis and encephalitis have become widely recognized, it has become urgent to understand the parameters that determine differentiation, as cysts are much more resistant to biocides than are the trophozoites. Viability of trophozoites of the soil amoeba Acanthamoeba castellanii (Neff), is conveniently measured by its ability to form plaques on a lawn of Escherichia coli. Use of confocal laser scanning microscopy with Calcofluor white, Congo Red or the anionic oxonol dye, DiBAC4(3) or flow cytometry with propidium iodide diacetate and fluorescein or oxonol provides more rapid assessment. For cysts, the plaque method is still the best, because dye exclusion does not necessarily indicate viability and therefore the plate count method has been used to study the sequence of development of biocide resistance during the differentiation process. After two hours, resistance to HCl was apparent. Polyhexamethylene biguanide, benzalkonium chloride, propamidine isethionate, pentamidine isethionate, dibromopropamine isethionate, and H2O2 and moist heat, all lost effectiveness at between 14 and 24 h after trophozoites were inoculated into encystation media. Chlorhexidine diacetate resistance was observed at between 24 and 36 h. The molecular biology and biochemistry of the modifications that underlie these changes are now being investigated.  相似文献   

16.
Free-living and enteric amoebae have similar two-stage life cycles, and both organisms depend on being able to monitor environmental conditions to determine whether to continue multiplying as trophozoites, or to differentiate into dormant or transmissible cysts. Conditions that support high trophozoite densities might also be expected to select for mechanisms of information exchange between these cells. We recently determined that trophozoites of at least one species ofEntamoeba release and respond to catecholamine compounds during differentiation from the trophozoite stage into the cyst stage. It turns out that this is not an entirely novel finding, as a number of previous studies have demonstrated parts of this story in free-living or enteric amoebae. We briefly review here major points of the previous studies and describe some of our recent results that have extended them.  相似文献   

17.
The effect of jasplakinolide. an actin-polymerizing and filament-stabilizing drug, on the growth, encystation, and actin cytoskeleton of Entamoeba histolytica and Entamoeba invadens was examined. Jasplakinolide inhibited the growth of E. histolytica strain HM-1:IMSS and E. invadens strain IP-1 in a concentration-dependent manner, the latter being more resistant to the drug. The inhibitory effect of jasplakinolide on the growth of E. histolytica trophozoites was reversed by removal of the drug after exposure to 1 microM for 1 day. Encystation of E. invadens as induced in vitro was also inhibited by jasplakinolide. Trophozoites exposed to jasplakinolide in encystation medium for 1 day did not encyst after removal of the drug, whereas those exposed to the drug in growth medium for 7 days did encyst without the drug. The process of cyst maturation was unaffected by jasplakinolide. Large round structures were formed in trophozoites of both amoebae grown with jasplakinolide; these were identified as F-actin aggregates by staining with fluorescent phalloidin. Accumulation in trophozoites of both amoebae of actin aggregates was observed after culture in jasplakinolide. Also, E. invadens cysts formed from trophozoites treated with jasplakinolide contained the actin aggregate. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and immunoblot analysis revealed that the jasplakinolide treatment led to an increase in the proportion of F-actin associated with formation of the aggregate. The results suggest that aggregates are formed from the cortical flow of F-actin filaments, and that these filaments would normally be depolymerized but are artificially stabilized by jasplakinolide binding.  相似文献   

18.
Free-living amoebae in water are hosts to many bacterial species living in such an environment. Such an association enables bacteria to select virulence factors and survive in adverse conditions. Waterborne mycobacteria (WBM) are important sources of community- and hospital-acquired outbreaks of nontuberculosis mycobacterial infections. However, the interactions between WBM and free-living amoebae in water have been demonstrated for only few Mycobacterium spp. We investigated the ability of a number (n = 26) of Mycobacterium spp. to survive in the trophozoites and cysts of Acanthamoeba polyphaga. All the species tested entered the trophozoites of A. polyphaga and survived at this location over a period of 5 days. Moreover, all Mycobacterium spp. survived inside cysts for a period of 15 days. Intracellular Mycobacterium spp. within amoeba cysts survived when exposed to free chlorine (15 mg/liter) for 24 h. These data document the interactions between free-living amoebae and the majority of waterborne Mycobacterium spp. Further studies are required to examine the effects of various germicidal agents on the survival of WBM in an aquatic environment.  相似文献   

19.
Amoebae of the cellular slime mould Dictyostelium discoideum Ax2 grown on Aerobacter aerogenes as food source have a DNA content (36.0 ± 0.9 × 10−14 g/cell) approximately twice that of the same amoebae grown axenically (16.8 ± 0.4 × 10−14 g/cell). Isolation and characterization of DNA from amoebae grown either axenically or on bacteria, by several methods (melting curve, density gradient centrifugation, DNA/DNA hybridization) suggests that not more than 16% of the DNA content of bacterially grown amoebae is of bacterial origin. Studies of the rate of reannealing of DNA samples isolated from amoebae grown either axenically or on bacteria and of the degree to which they hybridize with ribosomal RNA, suggests that the ‘extra’ DNA that bacterially grown cells contain is biologically similar to that contained in axenically grown cells. It is therefore concluded that amoebae growing exponentially on bacteria have, on average, 2.4 to 2.7 genome equivalents per cell and amoebae growing exponentially in axenic medium have 1.3 to 1.4 genome equivalents per cell. Since it is believed that amoebae of this strain growing on bacteria are haploid and since these differences in DNA content persist during their subsequent differentiation, it is concluded that axenically grown amoebae differentiate whilst in the G1 phase of the cell cycle and bacterially grown amoebae differentiate whilst in the G2 phase of the cell cycle.  相似文献   

20.
Simkania negevensis, a novel microorganism belonging to the family Simkaniaceae in the order Chlamydiales, has an intracellular developmental cycle during which two morphological entities, elementary bodies (EB) and reticulate bodies (RB), are seen by electron microscopy. Rates of seropositivity to the organism are high in certain population groups, and S. negevensis has been associated with respiratory illness in humans. This study reports for the first time the ability of S. negevensis to survive and grow inside Acanthamoeba polyphaga in addition to its known ability to grow in cell cultures of human or simian origin. Infectivity of S. negevensis and growth in amoebae were monitored by immunoperoxidase assays. Long-term persistence and exponential growth of S. negevensis in amoebal trophozoites were demonstrated by infectivity assays and by electron microscopy. EB and dividing RB of S. negevensis were observed within inclusion bodies inside A. polyphaga. When S. negevensis-infected A. polyphaga amoebae were exposed to adverse conditions resulting in encystation of the amoebae, several possible outcomes were observed: cysts containing both normal amoebic cytoplasm and S. negevensis; cysts in which S. negevensis cells were relegated to the space between cyst walls; and cysts containing S. negevensis, but apparently lacking amoebal cytoplasm. S. negevensis within dried amoebal cysts was capable of long-term survival. The possibility that amoebae may have a role in natural transmission of S. negevensis needs to be investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号