首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although the capacity of cells to respond to environmental challengessuch as oxidative damage are ancient evolutionary developmentsthat have been carried through to modern higher vertebratesas "innate" immunity, the characteristic immune response ofvertebrates is a relatively recent evolutionary developmentthat is present only in jawed vertebrates. The vertebrate "combinatorial"response is defined by the presence of lymphocytes as specificantigen recognition cells and by the complete panel of antibodies,T cell receptors, and major histocompatibility complex moleculesall of which are members of the immunoglobulin family. Its emergencein evolution was an extremely rapid event (approximately 10million years) that was catalyzed by the horizontal transferof recombinase activator genes (RAG) from microbes to an ancestraljawed vertebrate. RAGs occur in jawed vertebrates, but havenot been found in invertebrates and other intermediate species.We propose that antigen recognition capacity contributed bythis novel combinatorial mechanism gave jawed vertebrates theability to recognize the entire range of potential antigenicmolecular structures, including self components and moleculesof infectious microbes not shared with vertebrates. The contrastwithin the vertebrates is striking because the most ancientextant jawed vertebrates, sharks and their kin, have the completepanoply of T-cell receptors, antibodies, MHC products and RAGgenes, whereas agnathans possess cells resembling lymphocytesbut ostensibly lack all of the molecules definitive of combinatorialimmunity. Another vertebrate innovation may have been the utilizationof nuclear receptor superfamily, in the regulation of lymphocytesand other cells of the immune lineage. Unlike, RAG, however,this superfamily occurs in all metazoans with the exceptionof sponges.  相似文献   

2.
The antigen receptors on cells of innate immune systems recognizebroadly expressed markers on non-host cells while the receptorson lymphocytes of the adaptive immune system display a higherlevel of specificity. Adaptive immunity, with its exquisitespecificity and immunological memory, has only been found inthe jawed vertebrates, which also display innate immunity. Jawlessfishes and invertebrates only have innate immunity. In the adaptiveimmune response, T and B-lymphocytes detect foreign agents orantigens using T cell receptors (TCR) or immunoglobulins (Ig),respectively. While Ig can bind free intact antigens, TCR onlybinds processed antigenic fragments that are presented on moleculesencoded in the major histocompatibility complex (MHC). MHC moleculesdisplay variation through allelic polymorphism. A diverse repertoireof Ig and TCR molecules is generated by gene rearrangement andjunctional diversity, processes carried out by the recombinaseactivating gene (RAG) products and terminal deoxynucleotidyltransferase (TdT). Thus, the molecules that define adaptiveimmunity are TCR, Ig, MHC molecules, RAG products and TdT. Nodirect predecessors of these molecules have been found in thejawless fishes or invertebrates. In contrast, the complementcascade can be activated by either adaptive or innate immunesystems and contains examples of molecules that gradually evolvedfrom non-immune functions to being part of the innate and thenadaptive immune system. In this paper we examine the moleculesof the adaptive immune system and speculate on the existenceof direct predecessors that were part of innate immunity.  相似文献   

3.
The hindbrain is a vertebrate-specific embryonic structure of the central nervous system formed by iterative transitory units called rhombomeres (r). Rhombomeric cells are segregated by interhombomeric boundaries which are prefigured by sharp gene expression borders. The positioning of the first molecular boundary within the hindbrain (the prospective r4/r5 boundary) responds to the expression of an Iroquois (Irx) gene in the anterior (r4) and the gene vHnf1 at the posterior (r5). However, while Irx3 is expressed anteriorly in amniotes, a novel Irx gene, iro7, acts in teleosts. To assess the evolutionary history of the genes responsible for the positioning of the r4/r5 boundary in vertebrates, we have stepped outside the gnathostomes to investigate these genes in the agnathans Lethenteron japonicum and Petromyzon marinus. We identified one representative of the Hnf1 family in agnathans. Its expression pattern recapitulates that of vHnf1 and Hnf1 in higher vertebrates. Our phylogenetic analysis places this gene basal to gnathostome Hnf1 and vHnf1 genes. We propose that the duplication of an ancestral hnf1 gene present in the common ancestor of agnathans and gnathostomes gave rise to the two genes found in gnathostomes. We have also amplified 3 Irx genes in L. japonicum: LjIrxA, LjIrxC, LjIrxD. The expression pattern of LjIrxA (the agnathan Irx1/3 ortholog) resembles those of Irx3 or iro7 in gnathostomes. We propose that an Irx/hnf1 pair already present in early vertebrates positioned the r4/r5 boundary and that gene duplications occurred in these gene families after the divergence of the agnathans.  相似文献   

4.
Sponges [porifera], the most ancient metazoans, contain modules related to the vertebrate immune system, including the 2′,5′-oligoadenylate synthetase (OAS). The components of the antiviral 2′,5′-oligoadenylate (2–5A) system (OAS, 2′-Phosphodiesterase (2′-PDE) and RNAse L) of vertebrates have not all been identified in sponges. Here, we demonstrate for the first time that in addition to the OAS activity, sponges possess a 2′-PDE activity, which highlights the probable existence of a premature 2–5A system. Indeed, Suberites domuncula and Crella elegans exhibited this 2–5A degrading activity. Upon this finding, two out of three elements forming the 2–5A system have been found in sponges, only a endoribonuclease, RNAse L or similar, has to be found. We suspect the existence of a complex immune system in sponges, besides the self/non-self recognition system and the use of phagocytosis and secondary metabolites against pathogens.  相似文献   

5.
Wu FF  Ma N  Chen LY  Su P  Li QW 《遗传》2012,34(4):465-471
The agnathans (lampreys and hagfishes) are representatives of the jawless vertebrates. The receptor molecules of adaptive immune system in lampreys are different from the antigen receptors in mammal vertebrates. The unique receptor molecules of lampreys are known as variable lymphocyte receptors (VLR). There are three types of VLRs in lampreys, VLRA, VLRB, and VLRC. Multimeric antigen-specific VLRB antibodies are secreted by VLRB+ lymphocytes and constitute the major components of the humoral arm of the lamprey adaptive immune system. Oligomeric VLRB antibodies are composed of four or five disulfide-linked dimeric subunits, which are similar to IgM antibodies in structure and function. In this study, the conservative c-terminal of Lampetra japonica VLRB was cloned and expressed in BL21 E. coli. The recombinant VLRB protein was purified by Ni2+ affinity chromatography column. After Balb/c mice immunity, cell fusion, the positive clones were screened by indirect enzyme-linked immunosorbent assay (ELISA). Finally, the hybridoma cells that produced specific anti-VLRB monoclonal antibodies were obtained. In order to get a large number of antibodies against VLRB, the hybridoma cells were injected into the abdominal cavity of Balb/c mice and the antibodies were purified by protein G sepharose. The results of ELISA indicated that the valence of anti-VLRB antibodies was 1:40000. Western blotting assay showed that the antibodies were able to detect both recombinant VLRB and secreted VLRB in lamprey sera. Flow cytometry analysis also revealed the existence of VLRB on the surface of lymphocytes. In summary, the anti-VLRB monoclonal antibodies provided a major tool for studying lamprey adaptive immune system.  相似文献   

6.
吴芬芳  马宁  陈立勇  苏鹏  李庆伟 《遗传》2012,34(4):87-93
七鳃鳗(Lampetra japonica)和盲鳗(Hyperotreti)作为现存的无颌类脊椎动物的代表,其适应性免疫系统中的受体分子与哺乳动物的抗原受体分子不同,这种独特的受体分子称为可变淋巴细胞受体VLRs(Variable lym-phocyte receptors)。目前VLRs分为3类,分别是VLRA、VLRB、VLRC,而VLRB由七鳃鳗类B淋巴细胞产生,是其体液免疫中主要成分,与IgM结构和功能类似。文章对日本七鳃鳗VLRB基因保守的C末端进行克隆、原核表达和重组蛋白纯化后,免疫Balb/c小鼠,通过细胞融合及间接酶联免疫吸附实验(Enzyme-linked immu-nosorbent assay,ELISA)筛选技术得到针对VLRB保守区的单克隆抗体细胞株。将杂交瘤细胞接种小鼠腹腔得到大量的单抗腹水,经Protein G亲和纯化后的单抗进行ELISA与Western blotting检测。经ELISA检测抗体效价为1:40000。Western blotting结果显示该单克隆抗体能够特异的检测重组VLRB蛋白及七鳃鳗血清中分泌型VLRB。流式细胞实验证明该单抗能特异识别七鳃鳗类淋巴细胞表面表达的膜型VLRB。VLRB单克隆抗体的成功制备和建株,为研究日本七鳃鳗基于VLR的适应性免疫系统提供了重要的工具。  相似文献   

7.
The adaptive immune system in vertebrates emerged in a multistep process that can be reconstructed on the basis of the data concerning the structure of immune systems of modern cartilaginous and bony fishes, as well as of cyclostomes. The most probable evolutionary scenario is likely to be as follows: the T cell receptor loci emerged on the basis of NK cell-like receptor genes; the antibody loci evolved on the basis of T cell receptor loci; the MHC locus arose on the basis of the locus responsible for innate immunity of early chordates. The ancestral MHC molecules likely participated in the transplantation immunity before they acquired the ability of antigen peptide presentation.  相似文献   

8.
The jawless vertebrates (lamprey and hagfish) are the closest extant outgroups to all jawed vertebrates (gnathostomes) and can therefore provide critical insight into the evolution and basic biology of vertebrate genomes. As such, it is notable that the genomes of lamprey and hagfish possess a capacity for rearrangement that is beyond anything known from the gnathostomes. Like the jawed vertebrates, lamprey and hagfish undergo rearrangement of adaptive immune receptors. However, the receptors and the mechanisms for rearrangement that are utilized by jawless vertebrates clearly evolved independently of the gnathostome system. Unlike the jawed vertebrates, lamprey and hagfish also undergo extensive programmed rearrangements of the genome during embryonic development. By considering these fascinating genome biologies in the context of proposed (albeit contentious) phylogenetic relationships among lamprey, hagfish, and gnathostomes, we can begin to understand the evolutionary history of the vertebrate genome. Specifically, the deep shared ancestry and rapid divergence of lampreys, hagfish and gnathostomes is considered evidence that the two versions of programmed rearrangement present in lamprey and hagfish (embryonic and immune receptor) were present in an ancestral lineage that existed more than 400 million years ago and perhaps included the ancestor of the jawed vertebrates. Validating this premise will require better characterization of the genome sequence and mechanisms of rearrangement in lamprey and hagfish.  相似文献   

9.
Recently the term Urmetazoa, as the hypothetical metazoan ancestor, was introduced to highlight the finding that all metazoan phyla including the Porifera (sponges) are derived from one common ancestor. Sponges as the evolutionarily oldest, still extant phylum, are provided with a complex network of structural and functional molecules. Analyses of sponge genomes from Demospongiae (Suberites domuncula and Geodia cydonium), Calcarea (Sycon raphanus) and Hexactinellida (Aphrocallistes vastus) have contributed also to the reconstruction of the evolutionary position of Metazoa with respect to Fungi. Furthermore, these analyses have provided evidence that the characteristic evolutionary novelties of Metazoa, such as the extracellular matrix molecules, the cell surface receptors, the nervous signal transduction molecules as well as the immune molecule existing in Porifera, share high sequence and in some aspects also functional similarities to related polypeptides found in other metazoan phyla. During the transition to Metazoa new domains occurred; as one example, the formation of the death domain from the ankyrin is outlined. In parallel, domanial proteins have been formed, such as the receptor tyrosine kinases. The metazoan essentials have been defined by analyzing and comparing the sponge sequences with the related sequences from the metazoans Homo sapiens, Caenorhabditis elegans and Drosophila melanogaster, the fungus Saccharomyces cerevisiae and the plant Arabidopsis thaliana. The data revealed that those sponge molecules grouped to cell adhesion cell recognition proteins are predominantly found in Protostomia and Deuterostomia while they are missing in Fungi and Viridiplantae. Moreover, evidence is presented allowing the conclusion that the sponge molecules are more closely related to the corresponding molecules from H. sapiens than to those of C. elegans or D. melanogaster. Especially surprising was the finding that the Demospongiae are provided with elements of adaptive immunity.  相似文献   

10.
无脊椎动物先天免疫模式识别受体研究进展   总被引:6,自引:0,他引:6  
免疫系统的基本功能是“自己”与“非己”识别.对入侵物的识别是免疫防御的起始,最终引发效应物反应系统,包括吞噬作用、包被作用、激活蛋白酶级联反应和黑化作用以及诱导抗菌肽的合成等,从而清除或消灭入侵物.研究证明,这种“非己”识别是因为存在某些特异性的、可溶的或与细胞膜结合的模式识别受体,可以识别或结合微生物表面保守的、而在宿主中又不存在的病原相关分子模式.模式识别受体通过对病原相关分子的识别启动先天免疫防御.近年来这方面的研究进展很快,已经在无脊椎动物中确定了多种模式识别受体,包括肽聚糖识别蛋白、含硫酯键蛋白、革兰氏阴性菌结合蛋白、清除受体、C型凝集素、硫依赖型凝集素、Toll样受体和血素等,并对其性质和功能进行了研究.  相似文献   

11.
无颌类脊椎动物适应性免疫系统的进化   总被引:1,自引:0,他引:1  
刘岑杰  黄惠芳  马飞  刘欣  李庆伟 《遗传》2008,30(1):13-19
适应性免疫系统的起源与进化问题一直是人们研究的热点, 以七鳃鳗为代表的无颌类脊椎动物, 被普遍认为处在进化出适应性免疫系统的边缘。因此, 研究无颌类脊椎动物适应性免疫的机制, 对揭示适应性免疫系统的起源与进化具有重要意义。研究表明, 无颌类在一定范围内具有高等脊椎动物特有的适应性免疫特征, 并发现了一些在结构或功能上与高等脊椎动物免疫相关基因同源的免疫因子。文章就近年来对无颌类脊椎动物适应性免疫系统机制的研究进展作一概述, 为进一步深入研究脊椎动物适应性免疫系统的起源与进化提供有益的参考。  相似文献   

12.
The origin of Metazoa remained--until recently--the most enigmatic of all phylogenetic problems. Sponges [Porifera] as "living fossils", positioned at the base of multicellular animals, have been used to answer basic questions in metazoan evolution by molecular biological techniques. During the last few years, cDNAs/genes coding for informative proteins have been isolated and characterized from sponges, especially from the marine demosponges Suberites domuncula and Geodia cydonium. The analyses of their deduced amino acid sequences allowed a molecular biological resolution of the monophyly of Metazoa. Molecules of the extracellular matrix/basal lamina, with the integrin receptor, fibronectin and galectin as prominent examples, cell-surface receptors (tyrosine kinase receptors), elements of nerve system/sensory cells (metabotropic glutamate receptor), homologs/modules of an immune system [immunoglobulin-like molecules, SRCR- and SCR-repeats, cytokines, (2-5)A synthetase], as well as morphogens (myotrophin) classify the Porifera as true Metazoa. As "living fossils", provided with simple, primordial molecules allowing cell-cell and cell-matrix adhesion, as well as processes of signal transduction as known in a more complex manner from higher Metazoa, sponges also show peculiarities. Tissues of sponges are rich in telomerase activity, suggesting a high plasticity in the determination of cell lineages. It is concluded that molecular biological studies with sponges as models will not only help to understand the evolution to the Metazoa but also the complex, hierarchical regulatory network of cells in higher Metazoa [reviewed in Progress in Molecular Subcellular Biology, vols. 19, 21 (1998) Springer Verlag]. The hypothetical ancestral animal, the Urmetazoa, from which the metazoan lineages diverged (more than 600 MYA), may have had the following characteristics: cell adhesion molecules with intracellular signal transduction pathways, morphogens/growth factors forming gradients, a functional immune system, and a primordial nerve cell/receptor system.  相似文献   

13.
Discrimination between self and non-self by lectins (carbohydrate-binding proteins) is a strategy of innate immunity that is found in both vertebrates and invertebrates. In vertebrates, immune recognition mediated by ficolins (lectins that consist of a fibrinogen-like and a collagen-like domain), as well as by mannose-binding lectins, triggers the activation of the complement system, which results in the activation of novel serine proteases. The presence of a similar lectin-based complement system in ascidians, our closest invertebrate relatives, indicates that the complement system probably had a pivotal role in innate immunity before the evolution of an adaptive immune system in jawed vertebrates.  相似文献   

14.
Sponges are the simplest extant animals but nevertheless possess self-nonself recognition that rivals the specificity of the vertebrate MHC. We have used dissociated cell assays and grafting techniques to study tissue acceptance and rejection in the marine sponge Microciona prolifera. Our data show that allogeneic, but not isogeneic, cell contacts trigger cell death and an increased expression of cell adhesion and apoptosis markers in cells that accumulate in graft interfaces. Experiments investigating the possible existence of immune memory in sponges indicate that faster second set reactions are nonspecific. Among the different cellular types, gray cells have been proposed to be the sponge immunocytes. Fluorescence confocal microscopy results from intact live grafts show the migration of autofluorescent gray cells toward graft contact zones and the inhibition of gray cell movements in the presence of nontoxic concentrations of cyclosporin A. These results suggest that cell motility is an important factor involved in sponge self/nonself recognition. Communication between gray cells in grafted tissues does not require cell contact and is carried by an extracellular diffusible marker. The finding that a commonly used immunosuppressor in human transplantation such as cyclosporin A blocks tissue rejection in marine sponges indicates that the cellular mechanisms for regulating this process in vertebrates might have appeared at the very start of metazoan evolution.  相似文献   

15.
Collagens are large, triple-helical proteins that form fibrils and network-like structures in the extracellular matrix. The collagens may have participated in the evolution of the metazoans from their very earliest origins. Cell adhesion receptors, such as the integrins, are at least as old as the collagens. Still, the early metazoan cells might not have been able to anchor directly to collagen fibrils, since the integrin-type collagen receptors have only been identified in vertebrates. Instead, the early metazoans may have used integrin-type receptors in the recognition of collagen-binding glycoproteins. It is possible that specialized, high-avidity collagen-receptor integrins have become instrumental for the evolution of bone, cartilage, circulatory and immune systems in the chordates. In vertebrates, specific collagen-binding receptor tyrosine kinases send signals into cells after adhesion to collagen. These receptors are members of the discoidin domain receptor (DDR) group. The evolutionary history of DDRs is poorly known at this time. DDR orthologs have been found in many invertebrates, but their ability to function as collagen receptors has not yet been tested. The two main categories of collagens, fibrillar and non-fibrillar, already exist in the most primitive metazoans, such as the sponges. Interestingly, both integrin and DDR families seem to have members that favor either one or the other of these two groups of collagens.  相似文献   

16.
The study of immune related genes in lampreys and hagfish provides a unique perspective on the evolutionary genetic underpinnings of adaptive immunity and the evolution of vertebrate genomes. Separated from their jawed cousins at the stem of the vertebrate lineage, these jawless vertebrates have many of the gene families and gene regulatory networks associated with the defining morphological and physiological features of vertebrates. These include genes vital for innate immunity, inflammation, wound healing, protein degradation, and the development, signaling and trafficking of lymphocytes. Jawless vertebrates recognize antigen by using leucine-rich repeat (LRR) based variable lymphocyte receptors (VLRs), which are very different from the immunoglobulin (Ig) based T cell receptor (TCR) and B cell receptor (BCR) used for antigen recognition by jawed vertebrates. The somatically constructed VLR genes are expressed in monoallelic fashion by T-like and B-like lymphocytes. Jawless and jawed vertebrates thus share many of the genes that provide the molecular infrastructure and physiological context for adaptive immune responses, yet use entirely different genes and mechanisms of combinatorial assembly to generate diverse repertoires of antigen recognition receptors.  相似文献   

17.
18.
梁佼  刘欣  吴芬芳  李庆伟 《遗传》2009,31(10):969-976
在以七鳃鳗和盲鳗为代表的无颌类脊椎动物中, 虽然发现了与有颌类脊椎动物T细胞受体(T-cell receptors, TLRs)、B细胞受体 (B-cell receptors, BCRs)可变区具有相似结构的先天性免疫受体, 却从未发现有颌类脊椎动物适应性免疫系统的核心组分: TCRs、BCRs、组织相容性复合体 (Major histocompatibility complex, MHC)。因此, 长期以来, 人们一直认为适应性免疫系统只存在于有颌类脊椎动物中。但最近的一项发现彻底改变了这一传统观念, 即在无颌类脊椎动物中, 存在一种新型可变淋巴细胞受体VLRs(Variable lymphocyte receptors), VLRs通过改变亮氨酸富集序列LRRs(Leucine-rich repeats)的插入情况, 实现对特异性抗原的高效识别。晶体衍射分析发现, 盲鳗的VLRs呈现一种“马蹄”型结构, 抗原结合位点则位于“马蹄”的凹面区。分泌型的VLRs以四聚体或五聚体的形式识别、结合特异性抗原。综上所述, 无颌类和有颌类脊椎动物应用不同的抗原识别系统完成适应性免疫反应。文章对近年来无颌类脊椎动物适应性免疫系统相关分子的研究进展加以概述, 为揭示适应性免疫系统起源与进化问题提供有益参考。  相似文献   

19.
The innate immune system provides the first line of defence against infection. Through a limited number of germline-encoded receptors called pattern recognition receptors (PRRs), innate cells recognize and are activated by highly conserved structures expressed by large group of microorganisms called pathogen-associated molecular patterns (PAMPs). PRRs are involved either in recognition (scavenger receptors, C-type lectins) or in cell activation (Toll-like receptors or TLR, helicases and NOD molecules). TLRs play a pivotal role in cell activation in response to PAMPs. TLR are type I transmembrane proteins characterized by an intracellular Toll/IL 1 receptor homology domain that are expressed by innate immune cells (dendritic cells, macrophages, NK cells), cells of the adaptive immunity (T and B lymphocytes) and non immune cells (epithelial and endothelial cells, fibroblasts). In all the cell types analyzed, TLR agonists, alone or in combination with costimulatory molecules, induce cell activation. The crucial role played by TLR in immune cell activation has been detailed in dendritic cells. A TLR-dependent activation of dendritic cells is required to induce their maturation and migration to regional lymph nodes and to activate na?ve T cells. The ability of different cell types to respond to TLR agonists is related to the pattern of expression of the TLRs and its regulation as well as their intracellular localization. Recent studies suggest that the nature of the endocytic and signaling receptors engaged by PAMPs may determine the nature of the immune response generated against the microbial molecules, highlighting the role of TLRs as molecular interfaces between innate and adaptive immunity. In this review are summarized the main biological properties of the TLR molecules.  相似文献   

20.
Numerous studies of the mammalian immune system have begun to uncover profound interrelationships, as well as fundamental differences, between the adaptive and innate systems of immune recognition. Coincident with these investigations, the increasing experimental accessibility of non-mammalian jawed vertebrates, jawless vertebrates, protochordates and invertebrates has provided intriguing new information regarding the likely patterns of emergence of immune-related molecules during metazoan phylogeny, as well as the evolution of alternative mechanisms for receptor diversification. Such findings blur traditional distinctions between adaptive and innate immunity and emphasize that, throughout evolution, the immune system has used a remarkably extensive variety of solutions to meet fundamentally similar requirements for host protection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号