首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Stoichiometry, stability constants and solution structures of the copper(II) complexes of the N-acetylated tetrapeptide HisGlyHisGly were determined in aqueous solution in the pH range 2-11. The potentiometric and spectroscopic data (UV-Vis, CD, EPR and Raman scattering) show that acetylation of the amino terminal group induces drastic changes in the coordination properties of AcHGHG compared to HGHG. The N3 atoms of the histidine side chains are the first anchoring sites of the copper(II) ion. At pH 4.7 and 5.6 both the imidazole rings cooperate in the formation of a 2N equatorial set, while, at higher pH values, 3N and 4N complexes are formed through the coordination of peptide N- atoms. The logbeta values of the copper complexes of AcHGHG are by far lower than those of the corresponding species in the parent CuII-HGHG system.  相似文献   

2.
Results are reported from potentiometric and spectroscopic (UV-Vis, CD, and ESR) studies of the protonation constants and Cu2+ complex stability constants of pituitary adenylate cyclase activating polypeptide fragments (HSDGI-NH2, TDSYS-NH2, RKQMAVKKYLAAVL-NH2). With HSDGI-NH2, the formation of a dimeric complex Cu2H-2L2 was found in the pH range 5-8, in which the coordination of copper(II) is glycylglycine-like, while the fourth coordination site is occupied by the imidazole N3 nitrogen atom, forming a bridge between two copper(II) ions. The formation of dimeric species does not prevent the deprotonation and coordination of the amide nitrogen, and in pH above 8 the CuH-2L complex is formed. Aspartic acid in the third position of peptide sequence stabilizes the CuH-2L species and prevents the coordination of a fourth nitrogen donor. Aspartic acid residue in the second position of TDSYS-NH2 stabilizes the CuL (2N) complex but does not prevent deprotonation and binding of the second and third peptide nitrogens to give 3N and 4N complexes at higher pH. The tetradecapeptide amide forms with copper(II) ions unusually stable 3N and 4N complexes compared to pentaalanine amide.  相似文献   

3.
The classical tachykinins, substance P, neurokinin A and neurokinin B are predominantly found in the nervous system where they act as neurotransmitters and neuromodulators. Significantly reduced levels of these peptides were observed in neurodegenerative diseases and it may be suggested that this reduction may also result from the copper(II)-catalyzed oxidation. The studies of the interaction of copper(II) with neurokinin A and the copper(II)-catalyzed oxidation were performed. Copper(II) complexes of the neurokinin A (His-Lys-Thr-Asp-Ser-Phe-Val-Gly-Leu-Met-NH2) and acetyl-neurokinin A (Ac-His-Lys-Thr-Asp-Ser-Phe-Val-Gly-Leu-Met-NH2) were studied by potentiometric, UV-Vis (UV-visible), CD (circular dichroism) and EPR spectroscopic methods to determine the stoichiometry, stability constants and coordination modes in the complexes formed. The histidine residue in first position of the peptide chain of neurokinin A coordinates strongly to Cu(II) ion with histamine-like {NH2, NIm} coordination mode. With increasing of pH, the formation of a dimeric complex Cu2H2L2 was found but this dimeric species does not prevent the deprotonation and coordination of the amide nitrogens. In the Ac-neurokinin A case copper(II) coordination starts from the imidazole nitrogen of the His; afterwards three deprotonated amide nitrogens are progressively involved in copper coordination. To elucidate the products of the copper(II)-catalyzed oxidation of the neurokinin A and Ac-neurokinin A, liquid chromatography-mass spectrometry (LC-MS) method and Cu(II)/hydrogen peroxide as a model oxidizing system were employed.Oxidation target for both studied peptides is the histidine residue coordinated to the metal ions. Both peptides contain Met and His residues and are very susceptible on the copper(II)-catalyzed oxidation.  相似文献   

4.
Copper(II) complexes of the peptide fragment (Dpl122-130) encompassing the sequence 122-130 of human doppel protein were characterized by potentiometric, UV-Visible, CD and EPR spectroscopic methods. An analogous peptide, in which the aspartate residue was substituted by an asparagine amino acid, was synthesized in order to provide evidence on the possible role of carboxylate group in copper(II) coordination. It was found that the carboxylic group is directly involved in copper(II) coordination at acidic pH, forming the CuLH2 species with Dpl122-130. This copper(II) complex displayed EPR parameters very similar to those of the analogous complex with the whole doppel protein. At pH higher than 7, the complexes showed magnetic parameters similar to those of the major species of protein formed in the pH range 7-8, with the metal coordination environment consisting of one imidazole and three amide nitrogen atoms. The comparison of Cu-Dpl122-130 binding constant values with those of the prion peptide fragments (PrP106-114), showed that doppel peptide had a higher metal binding affinity at acidic pH whereas the prion peptide fragment binds the metal tightly at physiological pH.  相似文献   

5.
The new cyclic tetrapeptide c(HGHK) was synthesised in the solid phase and its complexes with copper(II) were studied in aqueous solution at various pH values by means of potentiometric and spectroscopic methods (UV, EPR, CD). Six mononuclear coordination species were clearly identified within the pH range 3-11. Spectroscopic data strongly suggest sequential formation of N, 2N, 3N and 4N equatorial donor sets around the copper(II) centre from the lowest to the highest pH, involving both imidazole nitrogens and amide nitrogens. A detailed comparison with the copper(II) binding properties of HGHG and Ac-HGHG ligands is also reported.  相似文献   

6.
The results are reported of a spectroscopic and potentiometric study of the copper(II) and nickel(II) complexes of the thyrotropin releasing factor (L-pyroglutamyl-L-histidyl-L-prolinamide, TRF) and some of its di- and tripeptide analogues Spectroscopic techniques used include absorption, circular dichroism and electron paramagnetic resonance spectroscopy TRF and pyroglutamyl-histidine behave similarly. At low pH the metal ions coordinate to the imidazole nitrogen and then cause the ionization of the amide protons of both the peptide linkage and the pyroglutamic acid with equal ease. Hence the concentration of MH?1 L species is always very low. The C-terminal proline amide residue plays an insignificant role in the complex formation Replacement of pyroglutamic acid with picolinic acid in the hormone molecule causes a major change in the structures of its complexes. The dipeptide analogue, Pic-His. forms dimeric species with Cu(II) that are not found in Cu(II) Pyr-His orCu(II) TRF solutions The introduction of tyrosine residue in the TRF sequence in place of histidine can, in some cases, lead to the direct involvement of proline amide in the binding of metal ions, e.g. , Ni(II) Pyr-Tyr-Pro-NH2  相似文献   

7.
The results are reported of a potentiometric and spectroscopic study of the H+ and Cu2+ complexes of Ala-Arg8-vasopressin (Ala-AVP) and oxytocin at 25 degrees C and an ionic strength of 0.10 mol dm-3 (KNO3). The coordination chemistry of oxytocin and Cu(II) has been shown to be virtually identical to that of Arg8-vasotocin, forming unusually stable complexes with four nitrogen coordination (4N complexes) below pH 7. Spectroscopic evidence suggests weak interaction between Cu(II) and the sulphur atom of the -Cys6- residue in the 2N species (pH congruent to 6) but this is absent in the 4N complex. Evidence is also presented for perturbation of electronic transitions within the aromatic ring of the Tyr residue by Cu(II). While the physiological potency of Ala-AVP is very high, its coordination chemistry differs significantly from that of Arg8-vasopressin. With Cu(II) it forms complexes of similar stability to those with tetraglycine, demonstrating that the addition of an alanyl residue to the amino-terminal of the peptide destroys the conformation which is particularly favorable for rapid 4N coordination.  相似文献   

8.
The interaction of Cu(II) ion with small peptides has been an interesting subject to clarify the role of copper in detail. As various Cu(II)-oligopeptide complexes can also be good models for the active centers of metalloenzymes, complexes of tripeptide and tetrapeptides are frequently investigated instead of the complexes of large peptides. The histidine side-chains of various metalloproteins frequently take part in the copper(II) coordination. Accordingly, we studied the coordination of Cu(II) to the N and C terminal protected tripeptide ligands L(A) (Ac-HisGlyHis-NHMe), L(B) (Ac-HisAlaHis-NHMe) and L(C) (Ac-HisAibHis-NHMe) in aqueous solution potentiometrially in order to determine the effect of C(alpha) methyl groups at middle residue acid on the ligation of the backbone NH and also on histidine's N(im) of coordination. Species distribution curves indicates that in acidic pH, all three peptides behave as bidentate ligands and a macrochelate forms on the metal coordination with the two histidine imidazolyl N. This coordination remains unaffected with the +I effect of increasing CH(3) groups at C(alpha) of middle residue. In the pH range 4-8, the tridentate coordination from the peptide is seen in ligand L(A) and L(B) while it is absent in L(C) due to +I effect of two C(alpha) methyl groups at middle residue as they makes N-terminal NH deprotonation difficult in this pH range and it takes place along with C terminal NH and only 4N coordinated species formed at higher pH. These 4N (N(im), N(-), N(-), N(im)) coordinated species are formed by all the three ligands at higher pH values.  相似文献   

9.
The solution conformation and the copper(II) binding properties have comparatively been investigated for the two novel hexapeptides Ac-HPSGHA-NH2 (P2) and Ac-HGSPHA-NH2 (P4). The study has been carried out by means of CD, NMR, EPR and UV-Vis spectroscopic techniques in addition to potentiometric measurements to determine the stability constants of the different copper(II) complex species formed in the pH range 3-11. The peptides contain two histidine residues as anchor sites for the metal ion and differ only for the exchanged position of the proline residue with glycine. CD and NMR results for the uncomplexed peptide ligands suggest a predominantly unstructured peptide chain in aqueous solution. Potentiometric and spectroscopic data (UV-Vis, CD and EPR) show that both peptides strongly interact with copper(II) ions by forming complexes with identical stoichiometries but different structures. Furthermore, Far-UV CD experiments indicate that the conformation of the peptides is dramatically affected following copper(II) complexation with the P4 peptide adopting a β-turn-like conformation.  相似文献   

10.
The main structural domains of prion proteins, in particular the N-terminal region containing characteristic amino acid repeats, are well conserved among different species, despite divergence in primary sequence. The repeat region seems to play an important role, as verified by pathogenicity only observed in organisms having repeats composed of eight residues. In this work three different peptides belonging to the tandem repeat region of StPrP-2 from the Japanese pufferfish Takifugu rubripes have been considered; the coordination modes and conformations of their complexes with Cu(II) have been investigated by using potentiometric titrations, spectroscopic data, and restrained molecular dynamics simulations. In all cases the histidine imidazole(s) provide the anchoring site for copper, with the further involvement of amide nitrogens depending on the peptide sequence and on pH. An increase in copper binding affinity has been observed going from the shortest peptide, corresponding to a single repeat and containing two histidines, to the longest one, encompassing three repeats with six histidines.  相似文献   

11.
The superoxide anion radical is a highly reactive toxic species produced during the metabolic processes. A number of copper (II) complexes with amino acids and peptides are known to show superoxide dismutase (SOD) like activity. The design and application of synthetic low molecular weight metal complexes as SOD mimics have received considerable attention during the last decade. A variety of di- and tri-peptides containing histidyl residue in different positions have been employed to bind Cu(II) and to show the activity. But reports on Cu(II) complex with tetra-peptide having histidine amino acid in this regard are limited. As the HGGGW peptide having His at its N-terminal is reported to be a potential moiety for Cu(2+) binding, in the present work the synthesis of HisGlyGlyTrp peptide and its complexation with copper (II) ions has been reported. The interaction of synthesized peptide with Cu(II) was studied by electron spray ionization-mass spectrometer (ESI-MS) and UV-Vis spectroscopic methods. The species distribution was studied by combined spectrophotometric and potentiometric methods. The studies were performed at 25 ± 0.1 °C with constant ionic strength (μ = 0.1 M NaNO(3)) in aqueous solution using Bjerrum-Calvin's pH-titration technique as adopted by Irving and Rossotti for binary systems. The solution studies suggested that the pH of the medium play important role in the different species formation of the copper complexes. Species distribution curves indicate that Cu complexation takes place at all physiological pH values from 3-11. The resultant copper (II) peptide complex at physiological pH was tested for superoxide dismutase activity using standard NBT method. The complex has SOD activity with the IC(50) value of 1.32 μM.  相似文献   

12.
The formation of Cu(II)-bleomycin complexes as a function of pH has been studied using circular dichroism, absorption, electron paramagnetic resonance spectroscopy, and potentiometric titration. Our data support the following points: the formation of Cu(II)-bleomycin complexes occurs in a three-step process: a first complex (I) is formed at pH 1.2, which most probably involves the pyrimidine nitrogen, the secondary amine nitrogen, and two water molecules as the four in-plane ligands of copper. A second complex (II) is formed at pH 2.5, through the further coordination of the peptide nitrogen of histidine residue, and histidine imidazole nitrogen giving rise to the release of two protons. The fixation, in apical position, of the alpha-amino nitrogen of beta-aminoalanine occurs in a last step through the release of one additional proton. A value of 2.7 has been obtained for the pK of formation of this third complex, which is the species present at physiological pH. In the Cu(II)-depbleomycin system only one complex (II') has been detected.  相似文献   

13.
The stoichiometry, stability constants and solution structure of the complexes formed in the reaction of copper(II) with N-terminal fragments of human and mouse beta-amyloid peptide, 1-6, 1-9, 1-10 have been determined by potentiometric, UV/VIS, CD and EPR spectroscopic methods. The fragments 1-9 and 1-10 form complexes with the same coordination modes as the fragments 1-6. The coordination of the metal ion for human and mouse fragments starts from the N-terminal Asp residue which stabilizes significantly the 1N complex as a result of chelation through the beta-carboxylate group. In a wide pH range of 4-10, the imidazole nitrogen of His(6) is coordinated to form a macrochelate. Results show that, in the pH range 5-9 the human fragments form the complex with different coordination mode compared to that of the mouse fragments. The low pK(1)(amide) values (approximately 5) obtained for the mouse fragments may suggest the coordination of the amide nitrogen of His(6) while in case of the human fragments the coordination of the amide nitrogen of Ala(2) is suggested. The replacement of glycine by the arginine residue in the fifth position of the beta-amyloid peptide sequence changes the coordination modes of a peptide to metal ion in the physiological pH range. In a wide pH (including physiological) range the mouse fragments of beta-amyloid peptide are much more effective in Cu(II) binding than the human fragments.  相似文献   

14.
A new, 14-membered, tetraza cyclic tetrapeptide containing histidine and lysine side-chains, c(β3homoLysdHisβ-AlaHis), was designed, synthesized and characterized; its copper(II) binding properties were investigated in dependence of pH by potentiometric and spectroscopic methods. In line with previous studies of similar systems, the progressive involvement of amide nitrogens in copper(II) coordination was evidenced for pH values greater than 6. At physiological pH the dominant species consists of a copper(II) center coordinated by two amide nitrogens, an imidazole nitrogen and a water molecule. In contrast, at pH values higher than 8.7, a copper(II) coordination environment consisting of four amide nitrogens in the equatorial plane and the axial imidazole ligands is formed as clearly indicated by spectroscopic data and theoretical calculations. The behavior of this 14-membered cyclic tetrapeptide is compared to that of its 12-membered cyclic analog, particular attention being paid to the effects of ring size on the respective copper(II) binding abilities.  相似文献   

15.
16.
The systematic investigation of the copper(II) complexes of tripeptides Xaa-Xaa-His, Xaa-His-Xaa and His-Xaa-Xaa, where Xaa=Gly or Ala was performed by combined pH-metry, spectrophotometry, CD and in part EPR spectroscopy. The matrix rank analysis of the spectral data revealed the number of the coloured and optically active species as a basis for the solution speciation. A critical evaluation on the speciation and solution structure of the complexes formed is presented on the basis of their d-d band optical activity. The replacement of a Gly residue with the chiral Ala amino acid allowed us to gain decisive information on the solution structure of the complexes by CD spectroscopy. It was shown that the tripeptides with histidine in the third position formed CuH(-2)L species with (NH(2), 2N(-), ImN - where Im stands for imidazole) coordination sphere as a major species, and only the macrochelated CuL complexes as minor species around pH 5.0. In copper(II)-Xaa-His-Xaa tripeptide systems the CuH(-1)L (NH(2), N(-), ImN) is the most stable species at physiological pH, but the vacant fourth site around copper(II)ions is offered for further deprotonation, most probably resulting in mixed hydroxo species at low (<5 x 10(-4)M) metal ion concentrations, while a tetrameric complex is dominant when the copper concentration exceeds 3 x 10(-3)M. The histamine type coordination mode in CuL and CuL(2) complexes of His-Xaa-Xaa ligands predominates at low pH. The structural consequences drawn from the CD spectra for the mono and bis parent complexes were supported by theoretical calculations. CD spectra strongly suggest the participation of the imidazole nitrogen both in the Cu(2)H(-2)L(2) and CuH(-2)L complexes.  相似文献   

17.
Copper(II) complexes of the peptides Ac-HisSarHis-NH2, Ac-HisSarHisSarHis-NH2 and Ac-HisSarHisSarHisSarHis-NH2 have been studied by potentiometric, UV-Vis, CD and EPR spectroscopic methods. Stability constants for the corresponding zinc(II) complexes have also been reported. The formation of M(II)-2Nim, M(II)-3Nim and M(II)-4Nim bonded macrochelates was suggested in the pH range 5-7. The macrochelates were, however, not stable enough to prevent metal ion hydrolysis in slightly alkaline solutions. In the case of copper(II) complexes, the metal ion promoted deprotonation and coordination of the amide groups of histidyl residues were also suggested. The stability constants of macrochelate complexes were compared to the literature data reported for the macrochelates of the other peptides of histidine. It was found that the thermodynamic stability of macrochelate species is largely influenced by the number and location of histidyl residues in the peptide backbone. The highest stability was obtained for the HXHYH-type sequences, while the distant arrangement of histidyl residues resulted in a significant reduction of the stability constants.  相似文献   

18.
Mononuclear copper(II) complexes of the alloferon 1 His-Gly-Val-Ser-Gly-His-Gly-Gln-His-Gly-Val-His-Gly, alloferon 2 Gly-Val-Ser-Gly-His-Gly-Gln-His-Gly-Val-His-Gly, Ac-alloferon 1 Ac-His-Gly-Val-Ser-Gly-His-Gly-Gln-His-Gly-Val-His-Gly and Ac-alloferon 2 Ac-Gly-Val-Ser-Gly-His-Gly-Gln-His-Gly-Val-His-Gly have been studied by potentiometric, UV-vis, CD and EPR spectroscopic methods. The potentiometric and spectroscopic data shows that acetylation of the amino terminal group induces significant changes in the coordination properties of the Ac-alloferons 1 and 2 compared to the alloferons 1 and 2, respectively. The presence of four (Ac-alloferon 1) or three (Ac-alloferon 2) histidyl residues provides a high possibility for the formation of macrochelates via the exclusive binding of imidazole-N donor atoms. The macrochelation suppresses, but cannot preclude the deprotonation and metal ion coordination of amide functions and the CuH−3L species with {NIm, 3N} bonding mode at pH above 8 are formed. The N-terminal amino group of the alloferons 1 and 2 takes part in the coordination of the metal ion and the 4N complex with {NH2, 3NIm} coordination mode dominates at physiological pH 7.4 for alloferon 1 and the 3N {NH2, CO, 2NIm} binding mode for alloferon 2. However, at higher pH values sequential amide nitrogens are deprotonated and coordinated to copper(II) ions.  相似文献   

19.
The synthesis of four tetrapeptides, L-Phe-L-Pro-Gly-Gly, Gly-L-Pro-L-Phe-Gly, Gly-L-Pro-D-Phe-Gly, and Gly-L-Pro-Gly-L-Phe is described. The hydrogen ion and copper(II) complex formation constants have been measured at 25°C and I = 0.10 mol dm?3 (KNO3). Circular dichroism spectra have been recorded for copper(II)-peptide mixtures as a function of pH. The potentiometric and Spectrophotometric studies have been combined to ascertain the complex species over a broad pH range. The results obtained support the earlier suggestion on the specific role of a proline residue as a “break-point” in copper complex formation with peptides: the insertion of a proline residue into the second position of a tetrapeptide sequence leads to a novel coordination mode in Cu(II)-tetrapeptide systems.  相似文献   

20.
His-Val-His and His-Val-Gly-Asp are two naturally occurring peptide sequences, present at the active site of Cu,Zn-superoxide dismutase (Cu,Zn-SOD). The interactions of His-Val-His=A (copper binding site) with Cu(II) and of His-Val-Gly-Asp=B (zinc binding site) with Zn(II) have been studied by using both potentiometric and spectroscopic methods (visible, EPR, NMR). The stoichiometry, stability constants and solution structure of the complexes formed have been determined. The binding modes of the species [CuAH](2+) and [CuA](+) were characterized by histamine type of coordination. [CuA](+) is further stabilized by the formation of a macrochelate with the involvement of the imidazole of the C-terminal histidine. The existence of macrochelate results in a slight distortion of the coordination geometry providing good base for the development of enzyme models. The enhanced stability of the macrochelate suppresses the formation of bis-complexes as well as the amide deprotonation. This process, however, takes place at higher pH resulting in the formation of the 4 N(-) coordinated [NH(2),N(-),N(-),N(im)] species [CuAH(2-)](-). On the other hand, in the case of the Zn(II)-His-Val-Gly-Asp system, coordination takes place at the terminal carboxylate in species [ZnBH(2)](2+). Monodentate binding occurs via the N-terminal imidazole in [ZnBH](+) while histamine type of coordination is possible in [ZnB], [ZnB(2)H](-) and [ZnB(2)](2-) species. Amide deprotonation does not take place in the case of Zn(2+), hydroxo-complexes are formed instead.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号