首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Hematopoietic stem cells (HSCs) undergo self-renewing cell divisions and maintain blood production for their lifetime. Appropriate control of HSC self-renewal is crucial for the maintenance of hematopoietic homeostasis. Here we show that activation of p38 MAPK in response to increasing levels of reactive oxygen species (ROS) limits the lifespan of HSCs in vivo. In Atm(-/-) mice, elevation of ROS levels induces HSC-specific phosphorylation of p38 MAPK accompanied by a defect in the maintenance of HSC quiescence. Inhibition of p38 MAPK rescued ROS-induced defects in HSC repopulating capacity and in the maintenance of HSC quiescence, indicating that the ROS-p38 MAPK pathway contributes to exhaustion of the stem cell population. Furthermore, prolonged treatment with an antioxidant or an inhibitor of p38 MAPK extended the lifespan of HSCs from wild-type mice in serial transplantation experiments. These data show that inactivation of p38 MAPK protects HSCs against loss of self-renewal capacity. Our characterization of molecular mechanisms that limit HSC lifespan may lead to beneficial therapies for human disease.  相似文献   

3.
Whereas multiple growth-promoting cytokines have been demonstrated to be involved in regulation of the hemopoietic stem cell (HSC) pool, the potential role of negative regulators is less clear. However, IFN-gamma, if overexpressed, can mediate bone marrow suppression and has been directly implicated in a number of bone marrow failure syndromes, including graft-vs-host disease. Whether IFN-gamma might directly affect the function of repopulating HSCs has, however, not been investigated. In the present study, we used in vitro conditions promoting self-renewing divisions of human HSCs to investigate the effect of IFN-gamma on HSC maintenance and function. Although purified cord blood CD34(+)CD38(-) cells underwent cell divisions in the presence of IFN-gamma, cycling HSCs exposed to IFN-gamma in vitro were severely compromised in their ability to reconstitute long-term cultures in vitro and multilineage engraft NOD-SCID mice in vivo (>90% reduced activity in both HSC assays). In vitro studies suggested that IFN-gamma accelerated differentiation of targeted human stem and progenitor cells. These results demonstrate that IFN-gamma can negatively affect human HSC self-renewal.  相似文献   

4.
The regulatory mechanisms governing the cell cycle progression of hematopoietic stem cells (HSCs) are well characterized, but those responsible for the return of proliferating HSCs to a quiescent state remain largely unknown. Here, we present evidence that CD81, a tetraspanin molecule acutely responsive to proliferative stress, is essential for the maintenance of long-term repopulating HSCs. Cd81(-/-) HSCs showed a marked engraftment defect when transplanted into secondary recipient mice and a significantly delayed return to quiescence when stimulated to proliferate with 5-fluorouracil (5FU). In addition, we found that CD81 proteins form a polarized patch when HSCs are returning to quiescence. Thus, we propose that the spatial distribution of CD81 during the HSC recovery phase drives proliferative HSC to quiescence, and is important to preserve the self-renewal properties. Here, we show that lack of CD81 leads to loss of HSC self-renewal, and the clustering of CD81 on HSC membrane results in deactivation of Akt, which subsequently leads to nuclear translocation of FoxO1a. Thus, CD81 functions as part of a previously undefined mechanism that prohibits excessive proliferation of HSCs exposed to environmental stress.  相似文献   

5.
Hematopoietic stem cells (HSCs) are defined by their exclusive capacity to both self-renew and to give rise to multipotent progenitors (MPPs) that in turn differentiate into the mature blood cell lineages. The tumor suppressor p53, in addition to its role in the regulation of the cell cycle, plays an importatn role in HSC self-renewal, although it has not fully resolved. Here we report that in super-p53 mice (sp53), which carry one extra gene dose of p53, the miR-33 is down-regulated in HSCs and highly expressed in MPPs. Transplantation assays of miR-33-transduced sp53 HSC results in a significant acquisition of repopulating capacity and a decrease of recipients survival. Moreover, high levels of miR-33 represses the endogenous level of p53 protein in murine embryonic fibroblasts (MEFs), leads both to neoplastic transformation and anchorage independent growth of MEFs, and displays a decrease of apoptotic response using tumor-derived cell lines. Accordingly, we demonstrate that miR-33-mediated down-regulation of p53 is dependent on the binding of miR-33 to two conserved motifs in the 3UTR of p53. Together, these data show that the miR-33 modifies HSC repopulating efficiency of sp53 mice by impairing the p53 function. Defining the role of miR-33 in controlling the HSC self-renewal through p53 may lead to the prevention and treatment of hematopoietic disorders.  相似文献   

6.
MIR233 is genetically or epigenetically silenced in a subset of acute myeloid leukemia (AML). MIR223 is normally expressed throughout myeloid differentiation and highly expressed in hematopoietic stem cells (HSCs). However, the contribution of MIR223 loss to leukemic transformation and HSC function is largely unknown. Herein, we characterize HSC function and myeloid differentiation in Mir223 deficient mice. We show that Mir223 loss results in a modest expansion of myeloid progenitors, but is not sufficient to induce a myeloproliferative disorder. Loss of Mir223 had no discernible effect on HSC quiescence, long-term repopulating activity, or self-renewal capacity. These results suggest that MIR223 loss is likely not an initiating event in AML but may cooperate with other AML associated oncogenes to induce leukemogenesis.  相似文献   

7.
8.
BACKGROUND: Extensive efforts to develop hematopoietic stem cell (HSC) based gene therapy have been hampered by low gene marking. Major emphasis has so far been directed at improving gene transfer efficiency, but low gene marking in transplanted recipients might equally well reflect compromised repopulating activity of transduced cells, competing for reconstitution with endogenous and unmanipulated stem cells. METHODS: The autologous settings of clinical gene therapy protocols preclude evaluation of changes in repopulating ability following transduction; however, using a congenic mouse model, allowing for direct evaluation of gene marking of lympho-myeloid progeny, we show here that these issues can be accurately addressed. RESULTS: We demonstrate that conditions supporting in vitro stem cell self-renewal efficiently promote oncoretroviral-mediated gene transfer to multipotent adult bone marrow stem cells, without prior in vivo conditioning. Despite using optimized culture conditions, transduction resulted in striking losses of repopulating activity, translating into low numbers of gene marked cells in competitively repopulated mice. Subjecting transduced HSCs to an ex vivo expansion protocol following the transduction procedure could partially reverse this loss. CONCLUSIONS: These studies suggest that loss of repopulating ability of transduced HSCs rather than low gene transfer efficiency might be the main problem in clinical gene therapy protocols, and that a clinically feasible ex vivo expansion approach post-transduction can markedly improve reconstitution with gene marked stem cells.  相似文献   

9.
The in vivo regulation of hematopoietic stem cell (HSC) function is poorly understood. Here, we show that hematopoietic repopulation can be augmented by administration of a glycogen synthase kinase-3 (GSK-3) inhibitor to recipient mice transplanted with mouse or human HSCs. GSK-3 inhibitor treatment improved neutrophil and megakaryocyte recovery, recipient survival and resulted in enhanced sustained long-term repopulation. The output of primitive Lin(-)c-Kit(+)Sca-1(+) cells and progenitors from HSCs increased upon GSK-3 inhibitor treatment without altering secondary repopulating ability, suggesting that the HSC pool is maintained while overall hematopoietic reconstitution is increased. GSK-3 inhibitors were found to modulate gene targets of Wnt, Hedgehog and Notch pathways in cells comprising the primitive hematopoietic compartment without affecting mature cells. Our study establishes GSK-3 as a specific in vivo modulator of HSC activity, and suggests that administration of GSK-3 inhibitors may provide a clinical means to directly enhance the repopulating capacity of transplanted HSCs.  相似文献   

10.
11.
Hematopoietic stem cell (HSC) division leads to self-renewal, differentiation, or death of HSCs, and adequate balance of this process results in sustained, lifelong, high-throughput hematopoiesis. Despite their contribution to hematopoietic cell production, the majority of cells within the HSC population are quiescent at any given time. Recent studies have tackled the questions of how often HSCs divide, how divisional history relates to repopulating potential, and how many HSCs contribute to hematopoiesis. Here, we summarize these recent findings on HSC turnover from different experimental systems and discuss hypothetical models for HSC cycling and maintenance in steady-state and upon hematopoietic challenge.  相似文献   

12.
HOXB4-induced expansion of adult hematopoietic stem cells ex vivo   总被引:48,自引:0,他引:48  
  相似文献   

13.
The age‐dependent decline in the self‐renewal capacity of stem cells plays a critical role in aging, but the precise mechanisms underlying this decline are not well understood. By limiting proliferative capacity, senescence is thought to play an important role in age‐dependent decline of stem cell self‐renewal, although direct evidence supporting this hypothesis is largely lacking. We have previously identified the E3 ubiquitin ligase Smurf2 as a critical regulator of senescence. In this study, we found that mice deficient in Smurf2 had an expanded hematopoietic stem cell (HSC) compartment in bone marrow under normal homeostatic conditions, and this expansion was associated with enhanced proliferation and reduced quiescence of HSCs. Surprisingly, increased cycling and reduced quiescence of HSCs in Smurf2‐deficient mice did not lead to premature exhaustion of stem cells. Instead, HSCs in aged Smurf2‐deficient mice had a significantly better repopulating capacity than aged wild‐type HSCs, suggesting that decline in HSC function with age is Smurf2 dependent. Furthermore, Smurf2‐deficient HSCs exhibited elevated long‐term self‐renewal capacity and diminished exhaustion in serial transplantation. As we found that the expression of Smurf2 was increased with age and in response to regenerative stress during serial transplantation, our findings suggest that Smurf2 plays an important role in regulating HSC self‐renewal and aging.  相似文献   

14.
Roundabout (Robo) family proteins are immunoglobulin-type surface receptors critical for cellular migration and pathway finding of neuronal axons. We have previously shown that Robo4 was specifically expressed in hematopoietic stem and progenitor cells and its high expression correlated with long-term repopulating (LTR) capacity. To reveal the physiological role of Robo4 in hematopoiesis, we examined the effects of Robo4 disruption on the function of hematopoietic stem cells (HSCs) and progenitors. In Robo4-deficient mice, basic hematological parameters including complete blood cell count and differentiation profile were not affected. In contrast to the previous report, HSC/hematopoietic progenitor (HPC) frequencies in the bone marrow (BM) were perfectly normal in Robo4−/− mice. Moreover, Robo4−/− HSCs were equally competitive as wild-type HSCs in transplantation assays and had normal long-term repopulating (LTR) capacity. Of note, the initial engraftment at 4-weeks after transplantation was slightly impaired by Robo4 ablation, suggesting a marginal defect in BM homing of Robo4−/− HSCs. In fact, homing efficiencies of HSCs/HPCs to the BM was significantly impaired in Robo4-deficient mice. On the other hand, granulocyte-colony stimulating factor-induced peripheral mobilization of HSCs was also impaired by Robo4 disruption. Lastly, marrow recovery from myelosuppressive stress was equally efficient in WT- and Robo4-mutant mice. These results clearly indicate that Robo4 plays a role in HSC trafficking such as BM homing and peripheral mobilization, but is not essential in the LTR and self-renewal capacity of HSCs.  相似文献   

15.
Evi-1 has been recognized as one of the dominant oncogenes associated with murine and human myeloid leukemia. Here, we show that hematopoietic stem cells (HSCs) in Evi-1-deficient embryos are severely reduced in number with defective proliferative and repopulating capacity. Selective ablation of Evi-1 in Tie2(+) cells mimics Evi-1 deficiency, suggesting that Evi-1 function is required in Tie2(+) hematopoietic stem/progenitors. Conditional deletion of Evi-1 in the adult hematopoietic system revealed that Evi-1-deficient bone marrow HSCs cannot maintain hematopoiesis and lose their repopulating ability. In contrast, Evi-1 is dispensable for blood cell lineage commitment. Evi-1(+/-) mice exhibit the intermediate phenotype for HSC activity, suggesting a gene dosage requirement for Evi-1. We further demonstrate that disruption of Evi-1 in transformed leukemic cells leads to significant loss of their proliferative activity both in vitro and in vivo. Thus, Evi-1 is a common and critical regulator essential for proliferation of embryonic/adult HSCs and transformed leukemic cells.  相似文献   

16.
Immune suppressor factor (ISF) is a subunit of the vacuolar ATPase proton pump. We earlier identified a short form of ISF (ShIF) as a stroma-derived factor that supports cytokine-independent growth of mutant Ba/F3 cells. Here, we report that ISF/ShIF supports self-renewal and expansion of primary hematopoietic stem cells (HSCs). Co-culture of murine bone marrow cells with a stromal cell line overexpressing ISF or ShIF (MS10/ISF or MS10/ShIF) not only enhanced their colony-forming activity and the numbers of long-term culture initiating cells, but also maintained the competitive repopulating activity of HSC. This stem cell supporting activity depended on the proton-transfer function of ISF/ShIF. Gene expression analysis of ISF/ShIF-transfected cell lines revealed down-regulation of secreted frizzled-related protein-1 and tissue inhibitor of metalloproteinase-3, and the restoration of their expressions in MS10/ISF cells partially reversed its enhanced LTC-IC supporting activity to a normal level. These results suggest that ISF/ShIF confers stromal cells with enhanced supporting activities for HSCs by modulating Wnt-activity and the extracellular matrix.  相似文献   

17.
The life-long supply of blood cells depends on the long-term function of hematopoietic stem cells (HSCs). HSCs are functionally defined by their multi-potency and self-renewal capacity. Because of their self-renewal capacity, HSCs were thought to have indefinite lifespans. However, there is increasing evidence that genetically identical HSCs differ in lifespan and that the lifespan of a HSC is predetermined and HSC-intrinsic. Lifespan is here defined as the time a HSC gives rise to all mature blood cells. This raises the intriguing question: what controls the lifespan of HSCs within the same animal, exposed to the same environment? We present here a new model based on reliability theory to account for the diversity of lifespans of HSCs. Using clonal repopulation experiments and computational-mathematical modeling, we tested how small-scale, molecular level, failures are dissipated at the HSC population level. We found that the best fit of the experimental data is provided by a model, where the repopulation failure kinetics of each HSC are largely anti-persistent, or mean-reverting, processes. Thus, failure rates repeatedly increase during population-wide division events and are counteracted and decreased by repair processes. In the long-run, a crossover from anti-persistent to persistent behavior occurs. The cross-over is due to a slow increase in the mean failure rate of self-renewal and leads to rapid clonal extinction. This suggests that the repair capacity of HSCs is self-limiting. Furthermore, we show that the lifespan of each HSC depends on the amplitudes and frequencies of fluctuations in the failure rate kinetics. Shorter and longer lived HSCs differ significantly in their pre-programmed ability to dissipate perturbations. A likely interpretation of these findings is that the lifespan of HSCs is determined by preprogrammed differences in repair capacity.  相似文献   

18.
19.
Recent studies have proposed that bone marrow hematopoietic stem cells (HSCs) are maintained via N-cadherin-mediated homophilic adhesion with osteoblasts. However, there is not yet any evidence that N-cadherin-expressing cells have HSC activity or that osteoblasts are required for HSC maintenance. We were unable to detect N-cadherin expression in highly purified HSCs by polymerase chain reaction, by using commercial anti-N-cadherin antibodies, or by beta-galactosidase staining of N-cadherin gene trap mice. Only N-cadherin-negative bone marrow cells exhibited HSC activity in irradiated mice. Finally, biglycan-deficient mice had significant reductions in trabecular bone and osteoblasts but showed no defects in hematopoiesis, HSC frequency, or function. Thus, reductions in osteoblasts do not necessarily lead to reductions in HSCs. Most bone marrow HSCs in wild-type and biglycan-deficient mice localized to sinusoids, and few localized within five cell diameters of the endosteum. These results question whether significant numbers of HSCs depend on N-cadherin-mediated adhesion to osteoblasts.  相似文献   

20.
The elements of stem cell self-renewal: a genetic perspective   总被引:3,自引:0,他引:3  
Pazianos G  Uqoezwa M  Reya T 《BioTechniques》2003,35(6):1240-1247
Every day, the body produces billions of new blood cells. Each of these is derived from a rare cell in the bone marrow called the hematopoietic stem cell (HSC). Because most mature blood cells have a limited lifespan, the ability of HSCs to self-renew and replenish the mature cell compartment is critical to sustaining life. While great progress has been made in isolating HSCs and defining their functional and phenotypic characteristics, the molecular mechanisms that regulate their self-renewal remain a mystery. Over the last few years, alterations in HSC frequency and self-renewal capacity in transgenic and knock-out mice have led to the identification of novel mediators of HSC homeostasis in vivo. These genetically modified mice have revealed that maintenance of survival, proliferation, quiescence, and normal telomere length all contribute to the self-renewal of HSCs. They also highlight the need to test in context of the normal microenvironment the role of signaling molecules such as Notch and Wnt, which have emerged recently as important regulators of HSC self-renewal. The emerging picture these data provide of the regulation of self-renewal in HSCs has provided a better understanding of the basic biology of stem cells and holds promise for designing strategies to improve bone marrow transplantation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号