首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
DNA gyrase is a DNA topoisomerase indispensable for cellular functions in bacteria. We describe a novel, hitherto unknown, mechanism of specific inhibition of Mycobacterium smegmatis and Mycobacterium tuberculosis DNA gyrase by a monoclonal antibody (mAb). Binding of the mAb did not affect either GyrA-GyrB or gyrase-DNA interactions. More importantly, the ternary complex of gyrase-DNA-mAb retained the ATPase activity of the enzyme and was competent to catalyse DNA cleavage-religation reactions, implying a new mode of action different from other classes of gyrase inhibitors. DNA gyrase purified from fluoroquinolone-resistant strains of M.tuberculosis and M.smegmatis were inhibited by the mAb. The absence of cross-resistance of the drug-resistant enzymes from two different sources to the antibody-mediated inhibition corroborates the new mechanism of inhibition. We suggest that binding of the mAb in the proximity of the primary dimer interface region of GyrA in the heterotetrameric enzyme appears to block the release of the transported segment after strand passage, leading to enzyme inhibition. The specific inhibition of mycobacterial DNA gyrase with the mAb opens up new avenues for designing novel lead molecules for drug discovery and for probing gyrase mechanism.  相似文献   

2.
DNA gyrase is an essential type II topoisomerase found in bacteria. We have previously characterized DNA gyrase from Mycobacterium tuberculosis and Mycobacterium smegmatis. In this study, several monoclonal antibodies were generated against the gyrase A subunit (GyrA) of M. smegmatis. Three, MsGyrA:C3, MsGyrA:H11 and MsGyrA:E9, were further analyzed for their interaction with the enzyme. The monoclonal antibodies showed high degree of cross-reactivity with both fast-growing and slow-growing mycobacteria. In contrast, none recognized Escherichia coli GyrA. All the three monoclonal antibodies were of IgG1 isotype falling into two distinct types with respect to epitope recognition and interaction with the enzyme. MsGyrA:C3 and MsGyrA:H11 IgG, and their respective Fab fragments, inhibited the DNA supercoiling activity catalyzed by mycobacterial DNA gyrase. The epitope for the neutralizing monoclonal antibodies appeared to involve the region towards the N-terminus (residues 351-415) of the enzyme in a conformation-dependent manner. These monoclonal antibodies would serve as valuable tools for structure-function analysis and immunocytological studies of mycobacterial DNA gyrase. In addition, they would be useful for designing peptide inhibitors against DNA gyrase.  相似文献   

3.
Topoisomerases are essential ubiquitous enzymes, falling into two distinct classes. A number of eubacteria including Escherichia coli, typically contain four topoisomerases, two type I topoisomerases and two type II topoisomerases viz. DNA gyrase and topoisomerase IV. In contrast several other bacterial genomes including mycobacteria, encode for one type I topoisomerase and a DNA gyrase. Here we describe a new type II topoisomerase from Mycobacterium smegmatis which is different from DNA gyrase or topoisomerase IV in its characteristics and origin. The topoisomerase is distinct with respect to domain organization, properties and drug sensitivity. The enzyme catalyses relaxation of negatively supercoiled DNA in an ATP-dependent manner and also introduces positive supercoils to both relaxed and negatively supercoiled substrates. The genes for this additional topoisomerase are not found in other sequenced mycobacterial genomes and may represent a distant lineage.  相似文献   

4.
5.
6.
Type I restriction enzymes cleave DNA at non-specific sites far from their recognition sequence as a consequence of ATP-dependent DNA translocation past the enzyme. During this reaction, the enzyme remains bound to the recognition sequence and translocates DNA towards itself simultaneously from both directions, generating DNA loops, which appear to be supercoiled when visualised by electron microscopy. To further investigate the mechanism of DNA translocation by type I restriction enzymes, we have probed the reaction intermediates with DNA topoisomerases. A DNA cleavage-deficient mutant of EcoAI, which has normal DNA translocation and ATPase activities, was used in these DNA supercoiling assays. In the presence of eubacterial DNA topoisomerase I, which specifically removes negative supercoils, the EcoAI mutant introduced positive supercoils into relaxed plasmid DNA substrate in a reaction dependent on ATP hydrolysis. The same DNA supercoiling activity followed by DNA cleavage was observed with the wild-type EcoAI endonuclease. Positive supercoils were not seen when eubacterial DNA topoisomerase I was replaced by eukaryotic DNA topoisomerase I, which removes both positive and negative supercoils. Furthermore, addition of eukaryotic DNA topoisomerase I to the product of the supercoiling reaction resulted in its rapid relaxation. These results are consistent with a model in which EcoAI translocation along the helical path of closed circular DNA duplex simultaneously generates positive supercoils ahead and negative supercoils behind the moving complex in the contracting and expanding DNA loops, respectively. In addition, we show that the highly positively supercoiled DNA generated by the EcoAI mutant is cleaved by EcoAI wild-type endonuclease much more slowly than relaxed DNA. This suggests that the topological changes in the DNA substrate associated with DNA translocation by type I restriction enzymes do not appear to be the trigger for DNA cleavage.  相似文献   

7.
Glutamate racemase (MurI) catalyzes the interconversion of l-glutamate to d-glutamate, one of the essential amino acids present in the peptidoglycan. In addition to this essential enzymatic function, MurI from Escherichia coli, Bacillus subtilis and Mycobacterium tuberculosis inhibit DNA gyrase activity. A single gene for murI found in the Mycobacterium smegmatis genome was cloned and overexpressed in a homologous expression system to obtain a highly soluble enzyme. In addition to the racemization activity, M. smegmatis MurI inhibits DNA gyrase activity by preventing DNA binding of gyrase. The sequestration of the gyrase by MurI results in inhibition of all reactions catalyzed by DNA gyrase. More importantly, MurI overexpression in vivo in mycobacterial cells provides protection against the action of ciprofloxacin. The DNA gyrase-inhibitory property thus appears to be a typical characteristic of MurI and would have probably evolved to either modulate the function of the essential housekeeping enzyme or to provide protection to gyrase against gyrase inhibitors, which cause double-strand breaks in the genome.  相似文献   

8.
Glutamate racemase (MurI) catalyses the conversion of l-glutamate to d-glutamate, an important component of the bacterial cell wall. MurI from Escherichia coli inhibits DNA gyrase in presence of the peptidoglycan precursor. Amongst the two-glutamate racemases found in Bacillus subtilis, only one inhibits gyrase, in absence of the precursor. Mycobacterium tuberculosis has a single gene encoding glutamate racemase. Action of M.tuberculosis MurI on DNA gyrase activity has been examined and its mode of action elucidated. We demonstrate that mycobacterial MurI inhibits DNA gyrase activity, in addition to its precursor independent racemization function. The inhibition is not species-specific as E.coli gyrase is also inhibited but is enzyme-specific as topoisomerase I activity remains unaltered. The mechanism of inhibition is different from other well-known gyrase inhibitors. MurI binds to GyrA subunit of the enzyme leading to a decrease in DNA-binding of the holoenzyme. The sequestration of the gyrase by MurI results in inhibition of all reactions catalysed by DNA gyrase. MurI is thus not a typical potent inhibitor of DNA gyrase and instead its role could be in modulation of the gyrase activity.  相似文献   

9.
Mycobacterium smegmatis topoisomerase I differs from the typical type IA topoisomerase in many properties. The enzyme recognizes both single and double-stranded DNA with high affinity and makes sequence-specific contacts during DNA relaxation reaction. The enzyme has a conserved N-terminal domain and a highly varied C-terminal domain, which lacks the characteristic zinc binding motifs found in most of the type I eubacterial enzymes. The roles of the individual domains of the enzyme in the topoisomerase I catalyzed reactions were examined by comparing the properties of full-length topoisomerase I with those of truncated polypeptides lacking the conserved N-terminal or the divergent C-terminal region. The N-terminal larger fragment retained the site-specific binding, DNA cleavage and religation properties, hallmark characteristics of the full-length M.smegmatis topoisomerase I. In contrast, the non-conserved C-terminal fragment lacking the typical DNA binding motif, exhibited non-specific DNA binding behaviour. The two polypeptide fragments, on their own do not catalyze DNA relaxation reaction. The relaxation activity is restored when both the fragments are mixed in vitro reconstituting the enzyme function. These results along with the DNA interaction pattern of the proteins implicate an essential role for the C-terminal region in single-strand DNA passage between the two transesterification reactions catalyzed by the N-terminal domain.  相似文献   

10.
DNA topoisomerase I from Mycobacterium smegmatis unlike many other type I topoisomerases is a site specific DNA binding protein. We have investigated the sequence specific DNA binding characteristics of the enzyme using specific oligonucleotides of varied length. DNA binding, oligonucleotide competition and covalent complex assays show that the substrate length requirement for interaction is much longer ( approximately 20 nucleotides) in contrast to short length substrates (eight nucleotides) reported for Escherichia coli topoisomerase I and III. P1 nuclease and KMnO(4) footprinting experiments indicate a large protected region spanning about 20 nucleotides upstream and 2-3 nucleotides downstream of the cleavage site. Binding characteristics indicate that the enzyme interacts efficiently with both single-stranded and double-stranded substrates containing strong topoisomerase I sites (STS), a unique property not shared by any other type I topoisomerase. The oligonucleotides containing STS effectively inhibit the M. smegmatis topoisomerase I DNA relaxation activity.  相似文献   

11.
Reverse gyrase is a unique type IA topoisomerase that is able to introduce positive supercoils into DNA in an ATP-dependent process. ATP is bound to the helicase-like domain of the enzyme that contains most of the conserved motifs found in helicases of the SF1 and SF2 superfamilies. In this paper, we have investigated the role of the conserved helicase motifs I, II, V, VI, and Q by generating mutants of the Thermotoga maritima reverse gyrase. We show that mutations in motifs I, II, V, and VI completely eliminate the supercoiling activity of reverse gyrase and that a mutation in the Q motif significantly reduces this activity. Further analysis revealed that for most mutants, the DNA binding and cleavage properties are not significantly changed compared with the wild type enzyme, whereas their ATPase activity is impaired. These results clearly show that the helicase motifs are tightly involved in the coupling of ATP hydrolysis to the topoisomerase activity. The zinc finger motif located at the N-terminal end of reverse gyrases was also mutated. Our results indicate that this motif plays an important role in DNA binding.  相似文献   

12.
13.
14.
Type IIA topoisomerases catalyze a variety of different reactions: eukaryotic topoisomerase II relaxes DNA in an ATP-dependent reaction, whereas the bacterial representatives gyrase and topoisomerase IV (Topo IV) preferentially introduce negative supercoils into DNA (gyrase) or decatenate DNA (Topo IV). Gyrase and Topo IV perform separate, dedicated tasks during replication: gyrase removes positive supercoils in front, Topo IV removes pre-catenanes behind the replication fork. Despite their well-separated cellular functions, gyrase and Topo IV have an overlapping activity spectrum: gyrase is also able to catalyze DNA decatenation, although less efficiently than Topo IV. The balance between supercoiling and decatenation activities is different for gyrases from different organisms. Both enzymes consist of a conserved topoisomerase core and structurally divergent C-terminal domains (CTDs). Deletion of the entire CTD, mutation of a conserved motif and even by just a single point mutation within the CTD converts gyrase into a Topo IV-like enzyme, implicating the CTDs as the major determinant for function. Here, we summarize the structural and mechanistic features that make a type IIA topoisomerase a gyrase or a Topo IV, and discuss the implications for type IIA topoisomerase evolution.  相似文献   

15.
Escherichia coli deletion mutants lacking DNA topoisomerase I have been identified previously and shown to grow at a normal rate. We show that such strains grow normally only because of spontaneously arising mutations that compensate for the topoisomerase I defect. Several of these compensatory mutations have been found to map at or near the genes encoding DNA gyrase, gyrA and gyrB. DNA gyrase assays of crude extracts show that strains carrying the mutations have lower gyrase activity. Thus the mutations are in the gyrase structural genes or in nearby regulatory sequences. These results, in conjunction with DNA supercoiling measurements of others, indicate that in vivo DNA superhelicity is a result of a balance between topoisomerase I and gyrase activities. An excess of negative supercoils due to an absence of topoisomerase I is deleterious to the cell, but a moderate gyrase deficiency is not harmful.  相似文献   

16.
Reverse gyrase is a unique hyperthermophile-specific DNA topoisomerase that induces positive supercoiling. It is a modular enzyme composed of a topoisomerase IA and a helicase domain, which cooperate in the ATP-dependent positive supercoiling reaction. Although its physiological function has not been determined, it can be hypothesized that, like the topoisomerase–helicase complexes found in every organism, reverse gyrase might participate in different DNA transactions mediated by multiprotein complexes. Here, we show that reverse gyrase activity is stimulated by the single-strand binding protein (SSB) from the archaeon Sulfolobus solfataricus. Using a combination of in vitro assays we analysed each step of the complex reverse gyrase reaction. SSB stimulates all the steps of the reaction: binding to DNA, DNA cleavage, strand passage and ligation. By co-immunoprecipitation of cell extracts we show that reverse gyrase and SSB assemble a complex in the presence of DNA, but do not make stable protein–protein interactions. In addition, SSB stimulates reverse gyrase positive supercoiling activity on DNA templates associated with the chromatin protein Sul7d. Furthermore, SSB enhances binding and cleavage of UV-irradiated substrates by reverse gyrase. The results shown here suggest that these functional interactions may have biological relevance and that the interplay of different DNA binding proteins might modulate reverse gyrase activity in DNA metabolic pathways.  相似文献   

17.
Brino L  Bronner C  Oudet P  Mousli M 《Biochimie》1999,81(10):973-980
DNA gyrase is an essential enzyme that regulates the DNA topology in bacteria. It belongs to the type II DNA topoisomerase family and is responsible for the introduction of negative supercoils into DNA at the expense of hydrolysis of ATP molecules. The aim of the present work was to study the contribution of I10, one of the most important residues responsible for the stabilization of GyrB dimer and involved in the ATP-binding step, in the ATP-hydrolysis reaction and in the DNA supercoiling mechanism. We constructed MBP-tagged GyrB mutants I10G and Delta4-14. Our results demonstrate that both mutations severely affect the DNA-dependent ATPase activity and DNA supercoiling. Mutation of Y5 residue involved in the formation of ATPase catalytic site (Y5G mutant) had only little effect on the DNA-dependent ATPase activity and DNA supercoiling. Interestingly, the DNA-relaxation activity of MBP-GyrB mutants and wild type was completely inhibited by ATP. Binding of ADPNP to MBP-tagged mutants was significantly decreased. ADPNP had no effect on DNA-relaxation activity of MBP-tagged mutants but was able to inhibit MBP-tagged wild type enzyme. Our results demonstrate that GyrB N-terminal arm, and specially I10 residue is essential for ATP binding/hydrolysis efficiency and DNA transfer through DNA gyrase.  相似文献   

18.
Park JY  Ahn B 《FEBS letters》2000,476(3):174-178
Escherichia coli nucleotide excision repair (NER) is responsible for removing bulky DNA adducts by dual incisions of the UvrABC endonuclease. Although the activity of the UvrAB complex which can induce DNA conformational change is employed in NER, the involvement of DNA topology and DNA topoisomerases remains unclear. We examined the effect of topoisomerase inhibitions on a NER in vivo system. The repair analysis of intracellular plasmid revealed that the DNA damage on positive supercoils generated by gyrase inhibition remained unrepaired, whereas the DNA damage was repaired in topoisomerase I mutants. These results suggest that DNA topology affects the NER process and the removal of positive supercoils by gyrase is vital for the efficiency of the E. coli NER system.  相似文献   

19.
A topoisomerase capable of introducing positive supercoils into closed-circular DNA has been isolated from the extremely thermophilic anaerobic archaebacterium Desulfurococcus amylolyticus. This polypeptide has an Mr of 135,000, as determined by electrophoresis under denaturing conditions. The enzyme is active in the temperature range from 65 degrees C to 100 degrees C and catalyzes positive supercoiling both in negatively supercoiled DNA and in relaxed DNA. These reactions require the presence of ATP. The enzyme's action on a single topoisomer has shown the linking number to increase by an integral number upon the relaxation of negative supercoils and the introduction of positive ones. This means that the reverse gyrase from D. amylolyticus is a type I topoisomerase. The presence of an extended AT sequence within the closed-circular DNA enhances the activity of the Desulfurococcus topoisomerase. Even though the enzyme is isolated from a strictly anaerobic bacterium, it is fully active in the presence of oxygen.  相似文献   

20.
The rise in bacterial resistance to antibiotics demonstrates the medical need for new antibacterial agents. One approach to this problem is to identify new antibacterials that act through validated drug targets such as bacterial DNA gyrase. DNA gyrase uses the energy of ATP hydrolysis to introduce negative supercoils into plasmid and chromosomal DNA and is essential for DNA replication. Inhibition of the ATPase activity of DNA gyrase is the mechanism by which coumarin-class antibiotics such as novobiocin inhibit bacterial growth. Although ATPase inhibitors exhibit potent antibacterial activity against gram-positive pathogens, no gyrase ATPase activity from a gram-positive organism is described in the literature. To address this, we developed and optimized an enzyme-coupled phosphate assay and used this assay to characterize the ATPase kinetics of Streptococcus pneumoniae gyrase. The S. pneumoniae enzyme exhibits cooperativity with ATP and requires organic potassium salts. We also studied inhibition of the enzyme by novobiocin. Apparent inhibition constants for novobiocin increased linearly with ATP concentration, indicative of an ATP-competitive mechanism. Similar binding affinities were measured by isothermal titration calorimetry. These results reveal unique features of the S. pneumoniae DNA gyrase ATPase and demonstrate the utility of the assay for screening and kinetic characterization of ATPase inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号